Abstract

We present the optical design and realization of a low-resolution liquid-crystal (LC) Fourier-transform spectrometer (FTS). This FTS is based on a polarization interferometer that has a Wollaston prism made of a LC material as a key component. It has a compact design, a good acceptance angle, and low temperature dependence and can be fabricated with cost-effective LC technology. Because the LC is polymerized, it is robust, and the temperature dependence is drastically reduced. The performance of a compact handheld version of the spectrometer and the characteristics (angular dependence, resolution, stray light, and temperature dependence) will be discussed.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972).
  2. J. Chamberlin, The Principle of Interferometric Spectroscopy (Wiley Interscience, Chichester, UK, 1979).
  3. O. Manzardo, P. Kipfer, H. P. Herzig, “Dispersive compact Fourier transform spectrometer for the visible,” in Fourier Transform Spectroscopy: New Methodes and Applications (Optical Society of America, Washington, D.C., 1999), pp. 165–167.
  4. O. Manzardo, H. P. Herzig, C. R. Marxer, N. F. de Rooij, “Miniaturized time-scanning Fourier transform spectrometer based on silicon technology,” Opt. Lett. 24, 1705–1707 (1999).
    [CrossRef]
  5. S. D. Collins, R. L. Smith, C. González, K. P. Stewart, J. G. Hagopian, J. M. Sirota, “Fourier-transform optical microsystems,” Opt. Lett. 24, 844–846 (1999).
    [CrossRef]
  6. B. H. Billings, “Visual Fourier-transform spectroscopy with a single crystal plate,” J. Opt. Soc. Am. 65, 817–824 (1975).
    [CrossRef] [PubMed]
  7. M. J. Padgett, A. R. Harvey, A. J. Duncan, W. Sibbett, “Single-pulse Fourier-transform spectrometer having no moving parts,” Appl. Opt. 33, 6035–6040 (1994).
    [CrossRef] [PubMed]
  8. M. J. Padgett, A. R. Harvey, “A static Fourier-transform spectrometer based on Wollaston prisms,” Rev. Sci. Instrum. 66, 2807–2811 (1995).
    [CrossRef]
  9. B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun. 130, 1–6 (1996).
    [CrossRef]
  10. J. Courtial, B. A. Patterson, A. R. Harvey, W. Sibbett, M. J. Padgett, “Design of a static Fourier-transform spectrometer with increased field of view,” Appl. Opt. 35, 6698–6702 (1996).
    [CrossRef] [PubMed]
  11. A. R. Harvey, M. Begbie, M. J. Padgett, “Stationary Fourier transform spectrometer for use as a teaching tool,” Am. J. Phys. 62, 1033–1036 (1994).
    [CrossRef]
  12. J. Courtial, B. A. Patterson, W. Hirst, A. R. Harvey, A. J. Duncan, W. Sibbett, M. J. Padgett, “Static Fourier-transform ultraviolet spectrometer for gas detection,” Appl. Opt. 36, 2813–2817 (1997).
    [CrossRef] [PubMed]
  13. D. Steers, W. Sibbett, M. J. Padgett, “Dual-purpose, compact spectrometer and fiber-coupled laser wavemeter based on a Wollaston prism,” Appl. Opt. 37, 5777–5781 (1998).
    [CrossRef]
  14. F. J. Dunmore, L. M. Hanssen, “Miniature Fourier instrument for radiation thermometry,” AIP Conf. Proc. 430, 415–418 (1998).
    [CrossRef]
  15. S. Prunet, B. Journet, G. Fortunato, “Exact calculation of the optical path difference and description of a new birefringent interferometer,” Opt. Eng. 38, 983–990 (1999).
    [CrossRef]
  16. T. Inoue, A. Hirai, K. Itoh, Y. Ichioka, “Compact spectral imaging system using liquid crystal for fast measurement,” Opt. Rev. 1, 129–131 (1994).
    [CrossRef]
  17. M. Stalder, P. Seitz, “Wollaston prism and use of it in a Fourier transform spectrometer,” European patent applicationEP 0 939 323A1 (1September1998).
  18. G. Boer, T. Scharf, R. Dändliker, “Compact static Fourier transform spectrometer with a large field of view based on liquid-crystal technology,” Appl. Opt. 41, 1400–1407 (2002).
    [CrossRef] [PubMed]
  19. R. Dändliker, H. P. Herzig, O. Manzardo, T. Scharf, G. Boer, “Micro-optics for spectroscopy,” in International Trends in Applied Optics (SPIE Press, Bellingham, Wash., 2002), Chap. 11, p. 219.
  20. M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, Oxford, UK, 1975), p. 508.
  21. C. C. Montarou, T. K. Gaylord, “Analysis and design of modified Wollaston prisms,” Appl. Opt. 33, 6604–6613 (1999).
    [CrossRef]
  22. Breault Research Organization, “Wave optics,” Advanced System Analysis Program (ASAP) application notes (Breault Research Organization, Tuscon, Ariz., 2001).
  23. G. Boer, T. Scharf, “Polarization ray trace in twisted liquid crystal systems,” Mol. Cryst. Liq. Cryst. 375, 301–311 (2002).
  24. Manufactured by ASLUAB S.A. (Marin, Switzerland).
  25. Kaspar Cottier, “Fourier transform spectrometer system based on liquid crystal optical elements,” Diploma thesis (École Polytechnique Federal Lausanne, Lausanne, 2001).
  26. G. Boer, R. Dangel, K. Cottier, T. Scharf, P. Seitz, “Illumination module for a reflection spectrometer,” European patent applicationEP 1 278 049 A1 (22January2003).
  27. O. Manzardo, Micro-Sized Fourier Spectrometers, Ph.D thesis (University of Neuchâtel, Neuchâtel, Switzerland, 2002), p. 24.
  28. G. Boer, “Polarization interferometer with reduced noise,” European patent applicationEP 1 278 050 A1 (22January2003).
  29. M. Hashimoto, S. Kawata, “Multichannel Fourier-transform infrared spectrometer,” Appl. Opt. 31, 6096–6101 (1992).
    [CrossRef] [PubMed]

2002

1999

C. C. Montarou, T. K. Gaylord, “Analysis and design of modified Wollaston prisms,” Appl. Opt. 33, 6604–6613 (1999).
[CrossRef]

S. Prunet, B. Journet, G. Fortunato, “Exact calculation of the optical path difference and description of a new birefringent interferometer,” Opt. Eng. 38, 983–990 (1999).
[CrossRef]

S. D. Collins, R. L. Smith, C. González, K. P. Stewart, J. G. Hagopian, J. M. Sirota, “Fourier-transform optical microsystems,” Opt. Lett. 24, 844–846 (1999).
[CrossRef]

O. Manzardo, H. P. Herzig, C. R. Marxer, N. F. de Rooij, “Miniaturized time-scanning Fourier transform spectrometer based on silicon technology,” Opt. Lett. 24, 1705–1707 (1999).
[CrossRef]

1998

F. J. Dunmore, L. M. Hanssen, “Miniature Fourier instrument for radiation thermometry,” AIP Conf. Proc. 430, 415–418 (1998).
[CrossRef]

D. Steers, W. Sibbett, M. J. Padgett, “Dual-purpose, compact spectrometer and fiber-coupled laser wavemeter based on a Wollaston prism,” Appl. Opt. 37, 5777–5781 (1998).
[CrossRef]

1997

1996

J. Courtial, B. A. Patterson, A. R. Harvey, W. Sibbett, M. J. Padgett, “Design of a static Fourier-transform spectrometer with increased field of view,” Appl. Opt. 35, 6698–6702 (1996).
[CrossRef] [PubMed]

B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun. 130, 1–6 (1996).
[CrossRef]

1995

M. J. Padgett, A. R. Harvey, “A static Fourier-transform spectrometer based on Wollaston prisms,” Rev. Sci. Instrum. 66, 2807–2811 (1995).
[CrossRef]

1994

A. R. Harvey, M. Begbie, M. J. Padgett, “Stationary Fourier transform spectrometer for use as a teaching tool,” Am. J. Phys. 62, 1033–1036 (1994).
[CrossRef]

M. J. Padgett, A. R. Harvey, A. J. Duncan, W. Sibbett, “Single-pulse Fourier-transform spectrometer having no moving parts,” Appl. Opt. 33, 6035–6040 (1994).
[CrossRef] [PubMed]

T. Inoue, A. Hirai, K. Itoh, Y. Ichioka, “Compact spectral imaging system using liquid crystal for fast measurement,” Opt. Rev. 1, 129–131 (1994).
[CrossRef]

1992

1975

Antoni, M.

B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun. 130, 1–6 (1996).
[CrossRef]

Begbie, M.

A. R. Harvey, M. Begbie, M. J. Padgett, “Stationary Fourier transform spectrometer for use as a teaching tool,” Am. J. Phys. 62, 1033–1036 (1994).
[CrossRef]

Bell, R. J.

R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972).

Billings, B. H.

Boer, G.

G. Boer, T. Scharf, R. Dändliker, “Compact static Fourier transform spectrometer with a large field of view based on liquid-crystal technology,” Appl. Opt. 41, 1400–1407 (2002).
[CrossRef] [PubMed]

G. Boer, T. Scharf, “Polarization ray trace in twisted liquid crystal systems,” Mol. Cryst. Liq. Cryst. 375, 301–311 (2002).

R. Dändliker, H. P. Herzig, O. Manzardo, T. Scharf, G. Boer, “Micro-optics for spectroscopy,” in International Trends in Applied Optics (SPIE Press, Bellingham, Wash., 2002), Chap. 11, p. 219.

G. Boer, R. Dangel, K. Cottier, T. Scharf, P. Seitz, “Illumination module for a reflection spectrometer,” European patent applicationEP 1 278 049 A1 (22January2003).

G. Boer, “Polarization interferometer with reduced noise,” European patent applicationEP 1 278 050 A1 (22January2003).

Born, M.

M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, Oxford, UK, 1975), p. 508.

Chamberlin, J.

J. Chamberlin, The Principle of Interferometric Spectroscopy (Wiley Interscience, Chichester, UK, 1979).

Collins, S. D.

Cottier, K.

G. Boer, R. Dangel, K. Cottier, T. Scharf, P. Seitz, “Illumination module for a reflection spectrometer,” European patent applicationEP 1 278 049 A1 (22January2003).

Cottier, Kaspar

Kaspar Cottier, “Fourier transform spectrometer system based on liquid crystal optical elements,” Diploma thesis (École Polytechnique Federal Lausanne, Lausanne, 2001).

Courtial, J.

Dändliker, R.

G. Boer, T. Scharf, R. Dändliker, “Compact static Fourier transform spectrometer with a large field of view based on liquid-crystal technology,” Appl. Opt. 41, 1400–1407 (2002).
[CrossRef] [PubMed]

R. Dändliker, H. P. Herzig, O. Manzardo, T. Scharf, G. Boer, “Micro-optics for spectroscopy,” in International Trends in Applied Optics (SPIE Press, Bellingham, Wash., 2002), Chap. 11, p. 219.

Dangel, R.

G. Boer, R. Dangel, K. Cottier, T. Scharf, P. Seitz, “Illumination module for a reflection spectrometer,” European patent applicationEP 1 278 049 A1 (22January2003).

de Rooij, N. F.

Duncan, A. J.

Dunmore, F. J.

F. J. Dunmore, L. M. Hanssen, “Miniature Fourier instrument for radiation thermometry,” AIP Conf. Proc. 430, 415–418 (1998).
[CrossRef]

Fortunato, G.

S. Prunet, B. Journet, G. Fortunato, “Exact calculation of the optical path difference and description of a new birefringent interferometer,” Opt. Eng. 38, 983–990 (1999).
[CrossRef]

Gaylord, T. K.

C. C. Montarou, T. K. Gaylord, “Analysis and design of modified Wollaston prisms,” Appl. Opt. 33, 6604–6613 (1999).
[CrossRef]

González, C.

Hagopian, J. G.

Hanssen, L. M.

F. J. Dunmore, L. M. Hanssen, “Miniature Fourier instrument for radiation thermometry,” AIP Conf. Proc. 430, 415–418 (1998).
[CrossRef]

Harvey, A. R.

Hashimoto, M.

Herzig, H. P.

O. Manzardo, H. P. Herzig, C. R. Marxer, N. F. de Rooij, “Miniaturized time-scanning Fourier transform spectrometer based on silicon technology,” Opt. Lett. 24, 1705–1707 (1999).
[CrossRef]

R. Dändliker, H. P. Herzig, O. Manzardo, T. Scharf, G. Boer, “Micro-optics for spectroscopy,” in International Trends in Applied Optics (SPIE Press, Bellingham, Wash., 2002), Chap. 11, p. 219.

O. Manzardo, P. Kipfer, H. P. Herzig, “Dispersive compact Fourier transform spectrometer for the visible,” in Fourier Transform Spectroscopy: New Methodes and Applications (Optical Society of America, Washington, D.C., 1999), pp. 165–167.

Hirai, A.

T. Inoue, A. Hirai, K. Itoh, Y. Ichioka, “Compact spectral imaging system using liquid crystal for fast measurement,” Opt. Rev. 1, 129–131 (1994).
[CrossRef]

Hirst, W.

Ichioka, Y.

T. Inoue, A. Hirai, K. Itoh, Y. Ichioka, “Compact spectral imaging system using liquid crystal for fast measurement,” Opt. Rev. 1, 129–131 (1994).
[CrossRef]

Inoue, T.

T. Inoue, A. Hirai, K. Itoh, Y. Ichioka, “Compact spectral imaging system using liquid crystal for fast measurement,” Opt. Rev. 1, 129–131 (1994).
[CrossRef]

Itoh, K.

T. Inoue, A. Hirai, K. Itoh, Y. Ichioka, “Compact spectral imaging system using liquid crystal for fast measurement,” Opt. Rev. 1, 129–131 (1994).
[CrossRef]

Journet, B.

S. Prunet, B. Journet, G. Fortunato, “Exact calculation of the optical path difference and description of a new birefringent interferometer,” Opt. Eng. 38, 983–990 (1999).
[CrossRef]

Kawata, S.

Kipfer, P.

O. Manzardo, P. Kipfer, H. P. Herzig, “Dispersive compact Fourier transform spectrometer for the visible,” in Fourier Transform Spectroscopy: New Methodes and Applications (Optical Society of America, Washington, D.C., 1999), pp. 165–167.

Manzardo, O.

O. Manzardo, H. P. Herzig, C. R. Marxer, N. F. de Rooij, “Miniaturized time-scanning Fourier transform spectrometer based on silicon technology,” Opt. Lett. 24, 1705–1707 (1999).
[CrossRef]

R. Dändliker, H. P. Herzig, O. Manzardo, T. Scharf, G. Boer, “Micro-optics for spectroscopy,” in International Trends in Applied Optics (SPIE Press, Bellingham, Wash., 2002), Chap. 11, p. 219.

O. Manzardo, P. Kipfer, H. P. Herzig, “Dispersive compact Fourier transform spectrometer for the visible,” in Fourier Transform Spectroscopy: New Methodes and Applications (Optical Society of America, Washington, D.C., 1999), pp. 165–167.

O. Manzardo, Micro-Sized Fourier Spectrometers, Ph.D thesis (University of Neuchâtel, Neuchâtel, Switzerland, 2002), p. 24.

Marxer, C. R.

Montarou, C. C.

C. C. Montarou, T. K. Gaylord, “Analysis and design of modified Wollaston prisms,” Appl. Opt. 33, 6604–6613 (1999).
[CrossRef]

Padgett, M. J.

Patterson, B. A.

Prunet, S.

S. Prunet, B. Journet, G. Fortunato, “Exact calculation of the optical path difference and description of a new birefringent interferometer,” Opt. Eng. 38, 983–990 (1999).
[CrossRef]

Scharf, T.

G. Boer, T. Scharf, “Polarization ray trace in twisted liquid crystal systems,” Mol. Cryst. Liq. Cryst. 375, 301–311 (2002).

G. Boer, T. Scharf, R. Dändliker, “Compact static Fourier transform spectrometer with a large field of view based on liquid-crystal technology,” Appl. Opt. 41, 1400–1407 (2002).
[CrossRef] [PubMed]

G. Boer, R. Dangel, K. Cottier, T. Scharf, P. Seitz, “Illumination module for a reflection spectrometer,” European patent applicationEP 1 278 049 A1 (22January2003).

R. Dändliker, H. P. Herzig, O. Manzardo, T. Scharf, G. Boer, “Micro-optics for spectroscopy,” in International Trends in Applied Optics (SPIE Press, Bellingham, Wash., 2002), Chap. 11, p. 219.

Seitz, P.

G. Boer, R. Dangel, K. Cottier, T. Scharf, P. Seitz, “Illumination module for a reflection spectrometer,” European patent applicationEP 1 278 049 A1 (22January2003).

M. Stalder, P. Seitz, “Wollaston prism and use of it in a Fourier transform spectrometer,” European patent applicationEP 0 939 323A1 (1September1998).

Sibbett, W.

Sirota, J. M.

Smith, R. L.

Stalder, M.

M. Stalder, P. Seitz, “Wollaston prism and use of it in a Fourier transform spectrometer,” European patent applicationEP 0 939 323A1 (1September1998).

Steers, D.

Stewart, K. P.

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, Oxford, UK, 1975), p. 508.

AIP Conf. Proc.

F. J. Dunmore, L. M. Hanssen, “Miniature Fourier instrument for radiation thermometry,” AIP Conf. Proc. 430, 415–418 (1998).
[CrossRef]

Am. J. Phys.

A. R. Harvey, M. Begbie, M. J. Padgett, “Stationary Fourier transform spectrometer for use as a teaching tool,” Am. J. Phys. 62, 1033–1036 (1994).
[CrossRef]

Appl. Opt.

J. Opt. Soc. Am.

Mol. Cryst. Liq. Cryst.

G. Boer, T. Scharf, “Polarization ray trace in twisted liquid crystal systems,” Mol. Cryst. Liq. Cryst. 375, 301–311 (2002).

Opt. Commun.

B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun. 130, 1–6 (1996).
[CrossRef]

Opt. Eng.

S. Prunet, B. Journet, G. Fortunato, “Exact calculation of the optical path difference and description of a new birefringent interferometer,” Opt. Eng. 38, 983–990 (1999).
[CrossRef]

Opt. Lett.

Opt. Rev.

T. Inoue, A. Hirai, K. Itoh, Y. Ichioka, “Compact spectral imaging system using liquid crystal for fast measurement,” Opt. Rev. 1, 129–131 (1994).
[CrossRef]

Rev. Sci. Instrum.

M. J. Padgett, A. R. Harvey, “A static Fourier-transform spectrometer based on Wollaston prisms,” Rev. Sci. Instrum. 66, 2807–2811 (1995).
[CrossRef]

Other

R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972).

J. Chamberlin, The Principle of Interferometric Spectroscopy (Wiley Interscience, Chichester, UK, 1979).

O. Manzardo, P. Kipfer, H. P. Herzig, “Dispersive compact Fourier transform spectrometer for the visible,” in Fourier Transform Spectroscopy: New Methodes and Applications (Optical Society of America, Washington, D.C., 1999), pp. 165–167.

M. Stalder, P. Seitz, “Wollaston prism and use of it in a Fourier transform spectrometer,” European patent applicationEP 0 939 323A1 (1September1998).

R. Dändliker, H. P. Herzig, O. Manzardo, T. Scharf, G. Boer, “Micro-optics for spectroscopy,” in International Trends in Applied Optics (SPIE Press, Bellingham, Wash., 2002), Chap. 11, p. 219.

M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, Oxford, UK, 1975), p. 508.

Breault Research Organization, “Wave optics,” Advanced System Analysis Program (ASAP) application notes (Breault Research Organization, Tuscon, Ariz., 2001).

Manufactured by ASLUAB S.A. (Marin, Switzerland).

Kaspar Cottier, “Fourier transform spectrometer system based on liquid crystal optical elements,” Diploma thesis (École Polytechnique Federal Lausanne, Lausanne, 2001).

G. Boer, R. Dangel, K. Cottier, T. Scharf, P. Seitz, “Illumination module for a reflection spectrometer,” European patent applicationEP 1 278 049 A1 (22January2003).

O. Manzardo, Micro-Sized Fourier Spectrometers, Ph.D thesis (University of Neuchâtel, Neuchâtel, Switzerland, 2002), p. 24.

G. Boer, “Polarization interferometer with reduced noise,” European patent applicationEP 1 278 050 A1 (22January2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Principle of a FTS based on a Wollaston prism.

Fig. 2
Fig. 2

Interferograms simulated with a nonsequential ray-tracing program for different localizations of the detection plane behind the exit surface.

Fig. 3
Fig. 3

(a) Handheld FTS prototype. (b) Birefringent part of the spectrometer with polarizers compared with a 2 Swiss franc coin.

Fig. 4
Fig. 4

Deformation of a wedge-shaped cell. The thickness variation can be transposed into a shift of the interferogram in the y direction.

Fig. 5
Fig. 5

(a) Phase correction applied to each pixel of the interferogram. The maximum accumulated phase deviation is approximately half the fringe period. (b) Uncorrected (dashed curve) and phase-corrected spectra (solid curve) for monochromatic light of 570 nm.

Fig. 6
Fig. 6

Spectra obtained by illuminating the spectrometer with a He–Ne laser. Stray-light suppression is significantly increased by use of the phase-antiphase correction.

Fig. 7
Fig. 7

Measurements of a edge filter cutting at 495 nm. (a) In-phase interferogram, (b) antiphase interferogram, (c) difference between (a) and (b), and (d) normalized Fourier transform of (c), which represents the transmission curve of the filter. The windows show magnified parts of the interferograms.

Fig. 8
Fig. 8

Transmission curve of the complete spectrometer including the polarizers and TN cells.

Fig. 9
Fig. 9

Temperature dependence of prototypes with a conventional LC and with a LC polymer. The curves indicate the shift rate measured with monochromatic light sources (500 and 650 nm) at different temperatures.

Tables (1)

Tables Icon

Table 1 Overview of the Key Parameters and Performances of the Investigated Spectrometer Shown in Fig. 7

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

δ=4πσneσ-noσtanθy+δTN,
Ioutr=σ14 BσDσTσK1+|μ12r, σ|×cosδy, σdσ,
Bσ=FTIδ=-δmaxδmax Ioutδcosδ+Δδdδ,
Δδy=2πλ ΔyyΔnλtan ϕ.
I=I1-I2=S+P1+m--S+P1+m=2S+mS.

Metrics