Abstract

A system for advanced fluorescence investigation of works of art has been assembled and integrated in a characterization procedure that allows one to localize and identify organic compounds that are present in artworks. At the beginning of the investigation, fluorescence lifetime imaging and spectroscopy address a selective microsampling of the artwork. Then analytical measurements of microsamples identify the chemical composition of the materials under investigation. Finally, on the basis of fluorescence lifetime and amplitude maps, analytical data are extended to the whole artwork. In such a way, information on the spatial distribution of organic materials can be inferred. These concepts have been successfully applied in an extensive campaign for analysis of Renaissance fresco paintings in Castiglione Olona, Italy. Residue of various types of glue and stucco left from a restoration carried out in the early 1970s was localized and classified. Insight into the technique used by the painter to make gilded reliefs was also obtained.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. S. Baer, R. Snethlage, Saving our Architectural Heritage: the Conservation of Historic Stone Structures, report of the Dahlem workshop (Wiley, Berlin, 1997).
  2. C. Fiorini, A. Longoni, “Application of a new noncryogenic x-ray detector in portable instruments for archaeometric analyses,” Rev. Sci. Instrum. 69, 1523–1528 (1998).
    [CrossRef]
  3. F. Pedersini, A. Sarti, S. Tubaro, “Automatic monitoring and 3D reconstruction applied to cultural heritage,” J. Cult. Heritage 1, 301–313 (2000).
    [CrossRef]
  4. M. Bacci, M. Fabbri, M. Picollo, S. Porcinai, “Non-invasive fibre optic Fourier transform-infrared reflectance spectroscopy on painted layers,” Anal. Chim. Acta 446, 15–21 (2001).
    [CrossRef]
  5. P. Castellani, E. Esposito, N. Paone, E. P. Tomasini, “Non-invasive measurements of damage of frescoes paintings and icon by laser scanning vibrometer: experimental results on artificial samples and real works of art,” Measurements 28, 33–45 (2000).
  6. P. Weibring, T. Johansson, H. Edner, S. Svanberg, B. Sundner, V. Raimondi, G. Cecchi, L. Pantani, “Fluorescence lidar imaging of historical monuments,” Appl. Opt. 40, 6111–6120 (2001).
    [CrossRef]
  7. K. Melessanaki, V. Papadakis, C. Balas, D. Anglos, “Laser induced breakdown spectroscopy and hyper-spectral imaging analysis of pigments on an illuminated manuscript,” Spectrochim. Acta B 56, 2337–2346 (2001).
    [CrossRef]
  8. C. Balas, V. Papadakis, N. Papadakis, A. Papadakis, E. Vazgiouraki, G. Themelis, “A novel hyper-spectral imaging apparatus for the non-destructive analysis of objects of artistic and historic value,” J. Cult. Heritage 4, 330s–337s (2003).
    [CrossRef]
  9. F. Casadio, L. Toniolo, “The analysis of polychrome works of art: 40 years of infrared spectroscopic investigations,” J. Cult. Heritage 2, 71–78 (2001).
    [CrossRef]
  10. D. Anglos, “Laser-induced breakdown spectroscopy in art and archaeology,” Appl. Spectrosc. 55, 186A–205A (2001).
    [CrossRef]
  11. S. Daniilia, S. Sotiropoulou, D. Bikiaris, C. Salpistis, G. Karagiannis, Y. Chryssoulakis, B. A. Price, J. H. Carlson, “Panselinos’ Byzantine wall paintings in the Protaton Church, Mount Athos, Greece: a technical examination,” J. Cult. Heritage 1, 91–110 (2000).
    [CrossRef]
  12. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed. (Kluwer Academic, New York, 1999).
    [CrossRef]
  13. S. Sotiropoulou, Y. Chryssoulakis, “An optimisation study of colour measurements on digitised slides of painted works of art,” J. Soc. Dyers Colour. 116, 23–31 (2000).
  14. T. Ni, L. A. Melton, “2-Dimensional gas-phase temperature-measurements using fluorescence lifetime imaging,” Appl. Spectrosc. 50, 1112–1116 (1996).
    [CrossRef]
  15. A. Periasamy, P. Wodnicki, X. F. Wang, S. Kwon, G. Gordon, B. Herman, “Time-resolved fluorescence lifetime imaging microscopy using a picosecond pulsed tunable dye laser system,” Rev. Sci. Instrum. 67, 3722–3731 (1996).
    [CrossRef]
  16. R. Cubeddu, A. Pifferi, A. Torricelli, G. Valentini, F. Rinaldi, E. Sorbellini, “Fluorescence lifetime imaging: an application to the detection of skin tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 923–929 (1999).
    [CrossRef]
  17. P. J. Tadrous, J. Siegel, P. M. W. French, S. Shousha, E. Lalani, G. W. H. Stamp, “Fluorescence lifetime imaging of unstained tissues: early results in human breast cancer,” J. Pathol. 199, 309–317 (2003).
    [CrossRef] [PubMed]
  18. G. Valentini, C. D’Andrea, D. Comelli, A. Pifferi, P. Taroni, A. Torricelli, R. Cubeddu, C. Battaglia, C. Consolandi, G. Salani, “Time-resolved DNA-microarray reading by an intensified CCD for ultimate sensitivity,” Opt. Lett. 25, 1648–1650 (2000).
    [CrossRef]
  19. E. Waddell, Y. Wang, W. Stryiewski, S. McWhorter, A. C. Henry, D. Evans, R. L. McCarley, S. A. Soper, “High-resolution near-infrared imaging of DNA microarrays with time-resolved acquisition of fluorescence lifetimes,” Anal. Chem. 72, 5907–5917 (2000).
    [CrossRef]
  20. K. C. B. Lee, J. Siegel, S. E. D. Webb, S. Leveque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81, 1265–1274 (2001).
    [CrossRef] [PubMed]
  21. R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D 35, R61–R76 (2002).
    [CrossRef]
  22. W. K. Pratt, Digital Image Processing (Wiley, New York, 1978), pp. 32–33.
  23. R. Cubeddu, G. Valentini, P. Taroni, D. Comelli, L. Toniolo, “Analisi di opera d’arte mediante l’utilizzo della spettroscopia di fluorescenza per immagini,” Italian PatentMI2002A001361 (20June2002); PCT patent pending PCT/EP03/063433.

2003 (2)

C. Balas, V. Papadakis, N. Papadakis, A. Papadakis, E. Vazgiouraki, G. Themelis, “A novel hyper-spectral imaging apparatus for the non-destructive analysis of objects of artistic and historic value,” J. Cult. Heritage 4, 330s–337s (2003).
[CrossRef]

P. J. Tadrous, J. Siegel, P. M. W. French, S. Shousha, E. Lalani, G. W. H. Stamp, “Fluorescence lifetime imaging of unstained tissues: early results in human breast cancer,” J. Pathol. 199, 309–317 (2003).
[CrossRef] [PubMed]

2002 (1)

R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D 35, R61–R76 (2002).
[CrossRef]

2001 (6)

P. Weibring, T. Johansson, H. Edner, S. Svanberg, B. Sundner, V. Raimondi, G. Cecchi, L. Pantani, “Fluorescence lidar imaging of historical monuments,” Appl. Opt. 40, 6111–6120 (2001).
[CrossRef]

D. Anglos, “Laser-induced breakdown spectroscopy in art and archaeology,” Appl. Spectrosc. 55, 186A–205A (2001).
[CrossRef]

F. Casadio, L. Toniolo, “The analysis of polychrome works of art: 40 years of infrared spectroscopic investigations,” J. Cult. Heritage 2, 71–78 (2001).
[CrossRef]

K. Melessanaki, V. Papadakis, C. Balas, D. Anglos, “Laser induced breakdown spectroscopy and hyper-spectral imaging analysis of pigments on an illuminated manuscript,” Spectrochim. Acta B 56, 2337–2346 (2001).
[CrossRef]

M. Bacci, M. Fabbri, M. Picollo, S. Porcinai, “Non-invasive fibre optic Fourier transform-infrared reflectance spectroscopy on painted layers,” Anal. Chim. Acta 446, 15–21 (2001).
[CrossRef]

K. C. B. Lee, J. Siegel, S. E. D. Webb, S. Leveque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81, 1265–1274 (2001).
[CrossRef] [PubMed]

2000 (6)

P. Castellani, E. Esposito, N. Paone, E. P. Tomasini, “Non-invasive measurements of damage of frescoes paintings and icon by laser scanning vibrometer: experimental results on artificial samples and real works of art,” Measurements 28, 33–45 (2000).

F. Pedersini, A. Sarti, S. Tubaro, “Automatic monitoring and 3D reconstruction applied to cultural heritage,” J. Cult. Heritage 1, 301–313 (2000).
[CrossRef]

G. Valentini, C. D’Andrea, D. Comelli, A. Pifferi, P. Taroni, A. Torricelli, R. Cubeddu, C. Battaglia, C. Consolandi, G. Salani, “Time-resolved DNA-microarray reading by an intensified CCD for ultimate sensitivity,” Opt. Lett. 25, 1648–1650 (2000).
[CrossRef]

S. Daniilia, S. Sotiropoulou, D. Bikiaris, C. Salpistis, G. Karagiannis, Y. Chryssoulakis, B. A. Price, J. H. Carlson, “Panselinos’ Byzantine wall paintings in the Protaton Church, Mount Athos, Greece: a technical examination,” J. Cult. Heritage 1, 91–110 (2000).
[CrossRef]

S. Sotiropoulou, Y. Chryssoulakis, “An optimisation study of colour measurements on digitised slides of painted works of art,” J. Soc. Dyers Colour. 116, 23–31 (2000).

E. Waddell, Y. Wang, W. Stryiewski, S. McWhorter, A. C. Henry, D. Evans, R. L. McCarley, S. A. Soper, “High-resolution near-infrared imaging of DNA microarrays with time-resolved acquisition of fluorescence lifetimes,” Anal. Chem. 72, 5907–5917 (2000).
[CrossRef]

1999 (1)

R. Cubeddu, A. Pifferi, A. Torricelli, G. Valentini, F. Rinaldi, E. Sorbellini, “Fluorescence lifetime imaging: an application to the detection of skin tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 923–929 (1999).
[CrossRef]

1998 (1)

C. Fiorini, A. Longoni, “Application of a new noncryogenic x-ray detector in portable instruments for archaeometric analyses,” Rev. Sci. Instrum. 69, 1523–1528 (1998).
[CrossRef]

1996 (2)

A. Periasamy, P. Wodnicki, X. F. Wang, S. Kwon, G. Gordon, B. Herman, “Time-resolved fluorescence lifetime imaging microscopy using a picosecond pulsed tunable dye laser system,” Rev. Sci. Instrum. 67, 3722–3731 (1996).
[CrossRef]

T. Ni, L. A. Melton, “2-Dimensional gas-phase temperature-measurements using fluorescence lifetime imaging,” Appl. Spectrosc. 50, 1112–1116 (1996).
[CrossRef]

Anglos, D.

K. Melessanaki, V. Papadakis, C. Balas, D. Anglos, “Laser induced breakdown spectroscopy and hyper-spectral imaging analysis of pigments on an illuminated manuscript,” Spectrochim. Acta B 56, 2337–2346 (2001).
[CrossRef]

D. Anglos, “Laser-induced breakdown spectroscopy in art and archaeology,” Appl. Spectrosc. 55, 186A–205A (2001).
[CrossRef]

Bacci, M.

M. Bacci, M. Fabbri, M. Picollo, S. Porcinai, “Non-invasive fibre optic Fourier transform-infrared reflectance spectroscopy on painted layers,” Anal. Chim. Acta 446, 15–21 (2001).
[CrossRef]

Baer, N. S.

N. S. Baer, R. Snethlage, Saving our Architectural Heritage: the Conservation of Historic Stone Structures, report of the Dahlem workshop (Wiley, Berlin, 1997).

Balas, C.

C. Balas, V. Papadakis, N. Papadakis, A. Papadakis, E. Vazgiouraki, G. Themelis, “A novel hyper-spectral imaging apparatus for the non-destructive analysis of objects of artistic and historic value,” J. Cult. Heritage 4, 330s–337s (2003).
[CrossRef]

K. Melessanaki, V. Papadakis, C. Balas, D. Anglos, “Laser induced breakdown spectroscopy and hyper-spectral imaging analysis of pigments on an illuminated manuscript,” Spectrochim. Acta B 56, 2337–2346 (2001).
[CrossRef]

Battaglia, C.

Bikiaris, D.

S. Daniilia, S. Sotiropoulou, D. Bikiaris, C. Salpistis, G. Karagiannis, Y. Chryssoulakis, B. A. Price, J. H. Carlson, “Panselinos’ Byzantine wall paintings in the Protaton Church, Mount Athos, Greece: a technical examination,” J. Cult. Heritage 1, 91–110 (2000).
[CrossRef]

Carlson, J. H.

S. Daniilia, S. Sotiropoulou, D. Bikiaris, C. Salpistis, G. Karagiannis, Y. Chryssoulakis, B. A. Price, J. H. Carlson, “Panselinos’ Byzantine wall paintings in the Protaton Church, Mount Athos, Greece: a technical examination,” J. Cult. Heritage 1, 91–110 (2000).
[CrossRef]

Casadio, F.

F. Casadio, L. Toniolo, “The analysis of polychrome works of art: 40 years of infrared spectroscopic investigations,” J. Cult. Heritage 2, 71–78 (2001).
[CrossRef]

Castellani, P.

P. Castellani, E. Esposito, N. Paone, E. P. Tomasini, “Non-invasive measurements of damage of frescoes paintings and icon by laser scanning vibrometer: experimental results on artificial samples and real works of art,” Measurements 28, 33–45 (2000).

Cecchi, G.

Chryssoulakis, Y.

S. Sotiropoulou, Y. Chryssoulakis, “An optimisation study of colour measurements on digitised slides of painted works of art,” J. Soc. Dyers Colour. 116, 23–31 (2000).

S. Daniilia, S. Sotiropoulou, D. Bikiaris, C. Salpistis, G. Karagiannis, Y. Chryssoulakis, B. A. Price, J. H. Carlson, “Panselinos’ Byzantine wall paintings in the Protaton Church, Mount Athos, Greece: a technical examination,” J. Cult. Heritage 1, 91–110 (2000).
[CrossRef]

Cole, M. J.

K. C. B. Lee, J. Siegel, S. E. D. Webb, S. Leveque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81, 1265–1274 (2001).
[CrossRef] [PubMed]

Comelli, D.

R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D 35, R61–R76 (2002).
[CrossRef]

G. Valentini, C. D’Andrea, D. Comelli, A. Pifferi, P. Taroni, A. Torricelli, R. Cubeddu, C. Battaglia, C. Consolandi, G. Salani, “Time-resolved DNA-microarray reading by an intensified CCD for ultimate sensitivity,” Opt. Lett. 25, 1648–1650 (2000).
[CrossRef]

R. Cubeddu, G. Valentini, P. Taroni, D. Comelli, L. Toniolo, “Analisi di opera d’arte mediante l’utilizzo della spettroscopia di fluorescenza per immagini,” Italian PatentMI2002A001361 (20June2002); PCT patent pending PCT/EP03/063433.

Consolandi, C.

Cubeddu, R.

R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D 35, R61–R76 (2002).
[CrossRef]

G. Valentini, C. D’Andrea, D. Comelli, A. Pifferi, P. Taroni, A. Torricelli, R. Cubeddu, C. Battaglia, C. Consolandi, G. Salani, “Time-resolved DNA-microarray reading by an intensified CCD for ultimate sensitivity,” Opt. Lett. 25, 1648–1650 (2000).
[CrossRef]

R. Cubeddu, A. Pifferi, A. Torricelli, G. Valentini, F. Rinaldi, E. Sorbellini, “Fluorescence lifetime imaging: an application to the detection of skin tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 923–929 (1999).
[CrossRef]

R. Cubeddu, G. Valentini, P. Taroni, D. Comelli, L. Toniolo, “Analisi di opera d’arte mediante l’utilizzo della spettroscopia di fluorescenza per immagini,” Italian PatentMI2002A001361 (20June2002); PCT patent pending PCT/EP03/063433.

D’Andrea, C.

Daniilia, S.

S. Daniilia, S. Sotiropoulou, D. Bikiaris, C. Salpistis, G. Karagiannis, Y. Chryssoulakis, B. A. Price, J. H. Carlson, “Panselinos’ Byzantine wall paintings in the Protaton Church, Mount Athos, Greece: a technical examination,” J. Cult. Heritage 1, 91–110 (2000).
[CrossRef]

Dowling, K.

K. C. B. Lee, J. Siegel, S. E. D. Webb, S. Leveque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81, 1265–1274 (2001).
[CrossRef] [PubMed]

Edner, H.

Esposito, E.

P. Castellani, E. Esposito, N. Paone, E. P. Tomasini, “Non-invasive measurements of damage of frescoes paintings and icon by laser scanning vibrometer: experimental results on artificial samples and real works of art,” Measurements 28, 33–45 (2000).

Evans, D.

E. Waddell, Y. Wang, W. Stryiewski, S. McWhorter, A. C. Henry, D. Evans, R. L. McCarley, S. A. Soper, “High-resolution near-infrared imaging of DNA microarrays with time-resolved acquisition of fluorescence lifetimes,” Anal. Chem. 72, 5907–5917 (2000).
[CrossRef]

Fabbri, M.

M. Bacci, M. Fabbri, M. Picollo, S. Porcinai, “Non-invasive fibre optic Fourier transform-infrared reflectance spectroscopy on painted layers,” Anal. Chim. Acta 446, 15–21 (2001).
[CrossRef]

Fiorini, C.

C. Fiorini, A. Longoni, “Application of a new noncryogenic x-ray detector in portable instruments for archaeometric analyses,” Rev. Sci. Instrum. 69, 1523–1528 (1998).
[CrossRef]

French, P. M. W.

P. J. Tadrous, J. Siegel, P. M. W. French, S. Shousha, E. Lalani, G. W. H. Stamp, “Fluorescence lifetime imaging of unstained tissues: early results in human breast cancer,” J. Pathol. 199, 309–317 (2003).
[CrossRef] [PubMed]

K. C. B. Lee, J. Siegel, S. E. D. Webb, S. Leveque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81, 1265–1274 (2001).
[CrossRef] [PubMed]

Gordon, G.

A. Periasamy, P. Wodnicki, X. F. Wang, S. Kwon, G. Gordon, B. Herman, “Time-resolved fluorescence lifetime imaging microscopy using a picosecond pulsed tunable dye laser system,” Rev. Sci. Instrum. 67, 3722–3731 (1996).
[CrossRef]

Henry, A. C.

E. Waddell, Y. Wang, W. Stryiewski, S. McWhorter, A. C. Henry, D. Evans, R. L. McCarley, S. A. Soper, “High-resolution near-infrared imaging of DNA microarrays with time-resolved acquisition of fluorescence lifetimes,” Anal. Chem. 72, 5907–5917 (2000).
[CrossRef]

Herman, B.

A. Periasamy, P. Wodnicki, X. F. Wang, S. Kwon, G. Gordon, B. Herman, “Time-resolved fluorescence lifetime imaging microscopy using a picosecond pulsed tunable dye laser system,” Rev. Sci. Instrum. 67, 3722–3731 (1996).
[CrossRef]

Johansson, T.

Jones, R.

K. C. B. Lee, J. Siegel, S. E. D. Webb, S. Leveque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81, 1265–1274 (2001).
[CrossRef] [PubMed]

Karagiannis, G.

S. Daniilia, S. Sotiropoulou, D. Bikiaris, C. Salpistis, G. Karagiannis, Y. Chryssoulakis, B. A. Price, J. H. Carlson, “Panselinos’ Byzantine wall paintings in the Protaton Church, Mount Athos, Greece: a technical examination,” J. Cult. Heritage 1, 91–110 (2000).
[CrossRef]

Kwon, S.

A. Periasamy, P. Wodnicki, X. F. Wang, S. Kwon, G. Gordon, B. Herman, “Time-resolved fluorescence lifetime imaging microscopy using a picosecond pulsed tunable dye laser system,” Rev. Sci. Instrum. 67, 3722–3731 (1996).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed. (Kluwer Academic, New York, 1999).
[CrossRef]

Lalani, E.

P. J. Tadrous, J. Siegel, P. M. W. French, S. Shousha, E. Lalani, G. W. H. Stamp, “Fluorescence lifetime imaging of unstained tissues: early results in human breast cancer,” J. Pathol. 199, 309–317 (2003).
[CrossRef] [PubMed]

Lee, K. C. B.

K. C. B. Lee, J. Siegel, S. E. D. Webb, S. Leveque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81, 1265–1274 (2001).
[CrossRef] [PubMed]

Leveque-Fort, S.

K. C. B. Lee, J. Siegel, S. E. D. Webb, S. Leveque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81, 1265–1274 (2001).
[CrossRef] [PubMed]

Lever, M. J.

K. C. B. Lee, J. Siegel, S. E. D. Webb, S. Leveque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81, 1265–1274 (2001).
[CrossRef] [PubMed]

Longoni, A.

C. Fiorini, A. Longoni, “Application of a new noncryogenic x-ray detector in portable instruments for archaeometric analyses,” Rev. Sci. Instrum. 69, 1523–1528 (1998).
[CrossRef]

McCarley, R. L.

E. Waddell, Y. Wang, W. Stryiewski, S. McWhorter, A. C. Henry, D. Evans, R. L. McCarley, S. A. Soper, “High-resolution near-infrared imaging of DNA microarrays with time-resolved acquisition of fluorescence lifetimes,” Anal. Chem. 72, 5907–5917 (2000).
[CrossRef]

McWhorter, S.

E. Waddell, Y. Wang, W. Stryiewski, S. McWhorter, A. C. Henry, D. Evans, R. L. McCarley, S. A. Soper, “High-resolution near-infrared imaging of DNA microarrays with time-resolved acquisition of fluorescence lifetimes,” Anal. Chem. 72, 5907–5917 (2000).
[CrossRef]

Melessanaki, K.

K. Melessanaki, V. Papadakis, C. Balas, D. Anglos, “Laser induced breakdown spectroscopy and hyper-spectral imaging analysis of pigments on an illuminated manuscript,” Spectrochim. Acta B 56, 2337–2346 (2001).
[CrossRef]

Melton, L. A.

Ni, T.

Pantani, L.

Paone, N.

P. Castellani, E. Esposito, N. Paone, E. P. Tomasini, “Non-invasive measurements of damage of frescoes paintings and icon by laser scanning vibrometer: experimental results on artificial samples and real works of art,” Measurements 28, 33–45 (2000).

Papadakis, A.

C. Balas, V. Papadakis, N. Papadakis, A. Papadakis, E. Vazgiouraki, G. Themelis, “A novel hyper-spectral imaging apparatus for the non-destructive analysis of objects of artistic and historic value,” J. Cult. Heritage 4, 330s–337s (2003).
[CrossRef]

Papadakis, N.

C. Balas, V. Papadakis, N. Papadakis, A. Papadakis, E. Vazgiouraki, G. Themelis, “A novel hyper-spectral imaging apparatus for the non-destructive analysis of objects of artistic and historic value,” J. Cult. Heritage 4, 330s–337s (2003).
[CrossRef]

Papadakis, V.

C. Balas, V. Papadakis, N. Papadakis, A. Papadakis, E. Vazgiouraki, G. Themelis, “A novel hyper-spectral imaging apparatus for the non-destructive analysis of objects of artistic and historic value,” J. Cult. Heritage 4, 330s–337s (2003).
[CrossRef]

K. Melessanaki, V. Papadakis, C. Balas, D. Anglos, “Laser induced breakdown spectroscopy and hyper-spectral imaging analysis of pigments on an illuminated manuscript,” Spectrochim. Acta B 56, 2337–2346 (2001).
[CrossRef]

Pedersini, F.

F. Pedersini, A. Sarti, S. Tubaro, “Automatic monitoring and 3D reconstruction applied to cultural heritage,” J. Cult. Heritage 1, 301–313 (2000).
[CrossRef]

Periasamy, A.

A. Periasamy, P. Wodnicki, X. F. Wang, S. Kwon, G. Gordon, B. Herman, “Time-resolved fluorescence lifetime imaging microscopy using a picosecond pulsed tunable dye laser system,” Rev. Sci. Instrum. 67, 3722–3731 (1996).
[CrossRef]

Picollo, M.

M. Bacci, M. Fabbri, M. Picollo, S. Porcinai, “Non-invasive fibre optic Fourier transform-infrared reflectance spectroscopy on painted layers,” Anal. Chim. Acta 446, 15–21 (2001).
[CrossRef]

Pifferi, A.

G. Valentini, C. D’Andrea, D. Comelli, A. Pifferi, P. Taroni, A. Torricelli, R. Cubeddu, C. Battaglia, C. Consolandi, G. Salani, “Time-resolved DNA-microarray reading by an intensified CCD for ultimate sensitivity,” Opt. Lett. 25, 1648–1650 (2000).
[CrossRef]

R. Cubeddu, A. Pifferi, A. Torricelli, G. Valentini, F. Rinaldi, E. Sorbellini, “Fluorescence lifetime imaging: an application to the detection of skin tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 923–929 (1999).
[CrossRef]

Porcinai, S.

M. Bacci, M. Fabbri, M. Picollo, S. Porcinai, “Non-invasive fibre optic Fourier transform-infrared reflectance spectroscopy on painted layers,” Anal. Chim. Acta 446, 15–21 (2001).
[CrossRef]

Pratt, W. K.

W. K. Pratt, Digital Image Processing (Wiley, New York, 1978), pp. 32–33.

Price, B. A.

S. Daniilia, S. Sotiropoulou, D. Bikiaris, C. Salpistis, G. Karagiannis, Y. Chryssoulakis, B. A. Price, J. H. Carlson, “Panselinos’ Byzantine wall paintings in the Protaton Church, Mount Athos, Greece: a technical examination,” J. Cult. Heritage 1, 91–110 (2000).
[CrossRef]

Raimondi, V.

Rinaldi, F.

R. Cubeddu, A. Pifferi, A. Torricelli, G. Valentini, F. Rinaldi, E. Sorbellini, “Fluorescence lifetime imaging: an application to the detection of skin tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 923–929 (1999).
[CrossRef]

Salani, G.

Salpistis, C.

S. Daniilia, S. Sotiropoulou, D. Bikiaris, C. Salpistis, G. Karagiannis, Y. Chryssoulakis, B. A. Price, J. H. Carlson, “Panselinos’ Byzantine wall paintings in the Protaton Church, Mount Athos, Greece: a technical examination,” J. Cult. Heritage 1, 91–110 (2000).
[CrossRef]

Sarti, A.

F. Pedersini, A. Sarti, S. Tubaro, “Automatic monitoring and 3D reconstruction applied to cultural heritage,” J. Cult. Heritage 1, 301–313 (2000).
[CrossRef]

Shousha, S.

P. J. Tadrous, J. Siegel, P. M. W. French, S. Shousha, E. Lalani, G. W. H. Stamp, “Fluorescence lifetime imaging of unstained tissues: early results in human breast cancer,” J. Pathol. 199, 309–317 (2003).
[CrossRef] [PubMed]

Siegel, J.

P. J. Tadrous, J. Siegel, P. M. W. French, S. Shousha, E. Lalani, G. W. H. Stamp, “Fluorescence lifetime imaging of unstained tissues: early results in human breast cancer,” J. Pathol. 199, 309–317 (2003).
[CrossRef] [PubMed]

K. C. B. Lee, J. Siegel, S. E. D. Webb, S. Leveque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81, 1265–1274 (2001).
[CrossRef] [PubMed]

Snethlage, R.

N. S. Baer, R. Snethlage, Saving our Architectural Heritage: the Conservation of Historic Stone Structures, report of the Dahlem workshop (Wiley, Berlin, 1997).

Soper, S. A.

E. Waddell, Y. Wang, W. Stryiewski, S. McWhorter, A. C. Henry, D. Evans, R. L. McCarley, S. A. Soper, “High-resolution near-infrared imaging of DNA microarrays with time-resolved acquisition of fluorescence lifetimes,” Anal. Chem. 72, 5907–5917 (2000).
[CrossRef]

Sorbellini, E.

R. Cubeddu, A. Pifferi, A. Torricelli, G. Valentini, F. Rinaldi, E. Sorbellini, “Fluorescence lifetime imaging: an application to the detection of skin tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 923–929 (1999).
[CrossRef]

Sotiropoulou, S.

S. Sotiropoulou, Y. Chryssoulakis, “An optimisation study of colour measurements on digitised slides of painted works of art,” J. Soc. Dyers Colour. 116, 23–31 (2000).

S. Daniilia, S. Sotiropoulou, D. Bikiaris, C. Salpistis, G. Karagiannis, Y. Chryssoulakis, B. A. Price, J. H. Carlson, “Panselinos’ Byzantine wall paintings in the Protaton Church, Mount Athos, Greece: a technical examination,” J. Cult. Heritage 1, 91–110 (2000).
[CrossRef]

Stamp, G. W. H.

P. J. Tadrous, J. Siegel, P. M. W. French, S. Shousha, E. Lalani, G. W. H. Stamp, “Fluorescence lifetime imaging of unstained tissues: early results in human breast cancer,” J. Pathol. 199, 309–317 (2003).
[CrossRef] [PubMed]

Stryiewski, W.

E. Waddell, Y. Wang, W. Stryiewski, S. McWhorter, A. C. Henry, D. Evans, R. L. McCarley, S. A. Soper, “High-resolution near-infrared imaging of DNA microarrays with time-resolved acquisition of fluorescence lifetimes,” Anal. Chem. 72, 5907–5917 (2000).
[CrossRef]

Sundner, B.

Svanberg, S.

Tadrous, P. J.

P. J. Tadrous, J. Siegel, P. M. W. French, S. Shousha, E. Lalani, G. W. H. Stamp, “Fluorescence lifetime imaging of unstained tissues: early results in human breast cancer,” J. Pathol. 199, 309–317 (2003).
[CrossRef] [PubMed]

Taroni, P.

R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D 35, R61–R76 (2002).
[CrossRef]

G. Valentini, C. D’Andrea, D. Comelli, A. Pifferi, P. Taroni, A. Torricelli, R. Cubeddu, C. Battaglia, C. Consolandi, G. Salani, “Time-resolved DNA-microarray reading by an intensified CCD for ultimate sensitivity,” Opt. Lett. 25, 1648–1650 (2000).
[CrossRef]

R. Cubeddu, G. Valentini, P. Taroni, D. Comelli, L. Toniolo, “Analisi di opera d’arte mediante l’utilizzo della spettroscopia di fluorescenza per immagini,” Italian PatentMI2002A001361 (20June2002); PCT patent pending PCT/EP03/063433.

Themelis, G.

C. Balas, V. Papadakis, N. Papadakis, A. Papadakis, E. Vazgiouraki, G. Themelis, “A novel hyper-spectral imaging apparatus for the non-destructive analysis of objects of artistic and historic value,” J. Cult. Heritage 4, 330s–337s (2003).
[CrossRef]

Tomasini, E. P.

P. Castellani, E. Esposito, N. Paone, E. P. Tomasini, “Non-invasive measurements of damage of frescoes paintings and icon by laser scanning vibrometer: experimental results on artificial samples and real works of art,” Measurements 28, 33–45 (2000).

Toniolo, L.

F. Casadio, L. Toniolo, “The analysis of polychrome works of art: 40 years of infrared spectroscopic investigations,” J. Cult. Heritage 2, 71–78 (2001).
[CrossRef]

R. Cubeddu, G. Valentini, P. Taroni, D. Comelli, L. Toniolo, “Analisi di opera d’arte mediante l’utilizzo della spettroscopia di fluorescenza per immagini,” Italian PatentMI2002A001361 (20June2002); PCT patent pending PCT/EP03/063433.

Torricelli, A.

G. Valentini, C. D’Andrea, D. Comelli, A. Pifferi, P. Taroni, A. Torricelli, R. Cubeddu, C. Battaglia, C. Consolandi, G. Salani, “Time-resolved DNA-microarray reading by an intensified CCD for ultimate sensitivity,” Opt. Lett. 25, 1648–1650 (2000).
[CrossRef]

R. Cubeddu, A. Pifferi, A. Torricelli, G. Valentini, F. Rinaldi, E. Sorbellini, “Fluorescence lifetime imaging: an application to the detection of skin tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 923–929 (1999).
[CrossRef]

Tubaro, S.

F. Pedersini, A. Sarti, S. Tubaro, “Automatic monitoring and 3D reconstruction applied to cultural heritage,” J. Cult. Heritage 1, 301–313 (2000).
[CrossRef]

Valentini, G.

R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D 35, R61–R76 (2002).
[CrossRef]

G. Valentini, C. D’Andrea, D. Comelli, A. Pifferi, P. Taroni, A. Torricelli, R. Cubeddu, C. Battaglia, C. Consolandi, G. Salani, “Time-resolved DNA-microarray reading by an intensified CCD for ultimate sensitivity,” Opt. Lett. 25, 1648–1650 (2000).
[CrossRef]

R. Cubeddu, A. Pifferi, A. Torricelli, G. Valentini, F. Rinaldi, E. Sorbellini, “Fluorescence lifetime imaging: an application to the detection of skin tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 923–929 (1999).
[CrossRef]

R. Cubeddu, G. Valentini, P. Taroni, D. Comelli, L. Toniolo, “Analisi di opera d’arte mediante l’utilizzo della spettroscopia di fluorescenza per immagini,” Italian PatentMI2002A001361 (20June2002); PCT patent pending PCT/EP03/063433.

Vazgiouraki, E.

C. Balas, V. Papadakis, N. Papadakis, A. Papadakis, E. Vazgiouraki, G. Themelis, “A novel hyper-spectral imaging apparatus for the non-destructive analysis of objects of artistic and historic value,” J. Cult. Heritage 4, 330s–337s (2003).
[CrossRef]

Waddell, E.

E. Waddell, Y. Wang, W. Stryiewski, S. McWhorter, A. C. Henry, D. Evans, R. L. McCarley, S. A. Soper, “High-resolution near-infrared imaging of DNA microarrays with time-resolved acquisition of fluorescence lifetimes,” Anal. Chem. 72, 5907–5917 (2000).
[CrossRef]

Wang, X. F.

A. Periasamy, P. Wodnicki, X. F. Wang, S. Kwon, G. Gordon, B. Herman, “Time-resolved fluorescence lifetime imaging microscopy using a picosecond pulsed tunable dye laser system,” Rev. Sci. Instrum. 67, 3722–3731 (1996).
[CrossRef]

Wang, Y.

E. Waddell, Y. Wang, W. Stryiewski, S. McWhorter, A. C. Henry, D. Evans, R. L. McCarley, S. A. Soper, “High-resolution near-infrared imaging of DNA microarrays with time-resolved acquisition of fluorescence lifetimes,” Anal. Chem. 72, 5907–5917 (2000).
[CrossRef]

Webb, S. E. D.

K. C. B. Lee, J. Siegel, S. E. D. Webb, S. Leveque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81, 1265–1274 (2001).
[CrossRef] [PubMed]

Weibring, P.

Wodnicki, P.

A. Periasamy, P. Wodnicki, X. F. Wang, S. Kwon, G. Gordon, B. Herman, “Time-resolved fluorescence lifetime imaging microscopy using a picosecond pulsed tunable dye laser system,” Rev. Sci. Instrum. 67, 3722–3731 (1996).
[CrossRef]

Anal. Chem. (1)

E. Waddell, Y. Wang, W. Stryiewski, S. McWhorter, A. C. Henry, D. Evans, R. L. McCarley, S. A. Soper, “High-resolution near-infrared imaging of DNA microarrays with time-resolved acquisition of fluorescence lifetimes,” Anal. Chem. 72, 5907–5917 (2000).
[CrossRef]

Anal. Chim. Acta (1)

M. Bacci, M. Fabbri, M. Picollo, S. Porcinai, “Non-invasive fibre optic Fourier transform-infrared reflectance spectroscopy on painted layers,” Anal. Chim. Acta 446, 15–21 (2001).
[CrossRef]

Appl. Opt. (1)

Appl. Spectrosc. (2)

Biophys. J. (1)

K. C. B. Lee, J. Siegel, S. E. D. Webb, S. Leveque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” Biophys. J. 81, 1265–1274 (2001).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Cubeddu, A. Pifferi, A. Torricelli, G. Valentini, F. Rinaldi, E. Sorbellini, “Fluorescence lifetime imaging: an application to the detection of skin tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 923–929 (1999).
[CrossRef]

J. Cult. Heritage (4)

C. Balas, V. Papadakis, N. Papadakis, A. Papadakis, E. Vazgiouraki, G. Themelis, “A novel hyper-spectral imaging apparatus for the non-destructive analysis of objects of artistic and historic value,” J. Cult. Heritage 4, 330s–337s (2003).
[CrossRef]

F. Casadio, L. Toniolo, “The analysis of polychrome works of art: 40 years of infrared spectroscopic investigations,” J. Cult. Heritage 2, 71–78 (2001).
[CrossRef]

S. Daniilia, S. Sotiropoulou, D. Bikiaris, C. Salpistis, G. Karagiannis, Y. Chryssoulakis, B. A. Price, J. H. Carlson, “Panselinos’ Byzantine wall paintings in the Protaton Church, Mount Athos, Greece: a technical examination,” J. Cult. Heritage 1, 91–110 (2000).
[CrossRef]

F. Pedersini, A. Sarti, S. Tubaro, “Automatic monitoring and 3D reconstruction applied to cultural heritage,” J. Cult. Heritage 1, 301–313 (2000).
[CrossRef]

J. Pathol. (1)

P. J. Tadrous, J. Siegel, P. M. W. French, S. Shousha, E. Lalani, G. W. H. Stamp, “Fluorescence lifetime imaging of unstained tissues: early results in human breast cancer,” J. Pathol. 199, 309–317 (2003).
[CrossRef] [PubMed]

J. Phys. D (1)

R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D 35, R61–R76 (2002).
[CrossRef]

J. Soc. Dyers Colour. (1)

S. Sotiropoulou, Y. Chryssoulakis, “An optimisation study of colour measurements on digitised slides of painted works of art,” J. Soc. Dyers Colour. 116, 23–31 (2000).

Measurements (1)

P. Castellani, E. Esposito, N. Paone, E. P. Tomasini, “Non-invasive measurements of damage of frescoes paintings and icon by laser scanning vibrometer: experimental results on artificial samples and real works of art,” Measurements 28, 33–45 (2000).

Opt. Lett. (1)

Rev. Sci. Instrum. (2)

C. Fiorini, A. Longoni, “Application of a new noncryogenic x-ray detector in portable instruments for archaeometric analyses,” Rev. Sci. Instrum. 69, 1523–1528 (1998).
[CrossRef]

A. Periasamy, P. Wodnicki, X. F. Wang, S. Kwon, G. Gordon, B. Herman, “Time-resolved fluorescence lifetime imaging microscopy using a picosecond pulsed tunable dye laser system,” Rev. Sci. Instrum. 67, 3722–3731 (1996).
[CrossRef]

Spectrochim. Acta B (1)

K. Melessanaki, V. Papadakis, C. Balas, D. Anglos, “Laser induced breakdown spectroscopy and hyper-spectral imaging analysis of pigments on an illuminated manuscript,” Spectrochim. Acta B 56, 2337–2346 (2001).
[CrossRef]

Other (4)

N. S. Baer, R. Snethlage, Saving our Architectural Heritage: the Conservation of Historic Stone Structures, report of the Dahlem workshop (Wiley, Berlin, 1997).

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed. (Kluwer Academic, New York, 1999).
[CrossRef]

W. K. Pratt, Digital Image Processing (Wiley, New York, 1978), pp. 32–33.

R. Cubeddu, G. Valentini, P. Taroni, D. Comelli, L. Toniolo, “Analisi di opera d’arte mediante l’utilizzo della spettroscopia di fluorescenza per immagini,” Italian PatentMI2002A001361 (20June2002); PCT patent pending PCT/EP03/063433.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Basic schematic of the fluorescence experimental setup: LASERs, pulsed N2 lasers; BS, beam splitter; L, focusing lens; F1, silica fiber; F2, silica fiber bundle, ICCD, time-gated intensified camera; TRs, optical trigger circuits; DGs, delay generators; S, sample; PC, personal computer.

Fig. 2
Fig. 2

Picture of a damaged painted surface.

Fig. 3
Fig. 3

FLIM analysis of the painted surface of Fig. 2: (a) fluorescence amplitude map, (b) fluorescence lifetime map, (c) HSV map.

Fig. 4
Fig. 4

OMA plots of the plaster and of a circular spot: (a) Normalized fluorescence amplitude; each amplitude spectrum has been normalized to its peak value. (b) Fluorescence lifetime; the mean lifetime in the spectral region of the emission peak is indicated.

Fig. 5
Fig. 5

FTIR plaster spectra: (a) plaster fragment in a KBr pellet [calcite, gypsum, silicates, poly(vinyl acetate)]; (b) insoluble residue after 0.3 M of HCl has been applied to a diamond cell [calcium caseinate, poly(vinyl acetate)].

Fig. 6
Fig. 6

Normalized fluorescence spectra of the three samples, gypsum (G), calcium caseinate (CC), and poly(vinyl acetate) (PVA). Each amplitude spectrum has been normalized to its peak value.

Fig. 7
Fig. 7

Picture of the Child Jesus’ halo.

Fig. 8
Fig. 8

FLIM analysis of the painted surface of Fig. 7: (a) fluorescence-amplitude map, (b) fluorescence-lifetime map, (c) HSV map.

Fig. 9
Fig. 9

OMA plots of two different haloes: (a) Normalized fluorescence amplitude; each amplitude spectrum has been normalized to its peak value. (b) Fluorescence lifetime.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ft=A exp-t/τ,
Hd=C dd+w ftdt=CAτexp-dτ-exp-d+wτ=CAτ1-exp-wτexp-dτ,
τ=-N k dk2-k dk2N kdk ln Hdk-k dkkln Hdk,
A=k HdkHdkτexpdkτ1-exp-wτ-1.

Metrics