Abstract

We describe an all-fiber ytterbium-doped laser followed by a double-stage ytterbium-doped double-clad fiber amplifier of 10-W output power for helium pumping. Different cavity designs are investigated with the goal of achieving high-power multimode emission at 1083 nm, wavelength tunability over the helium absorption bands, and linewidth envelope control over the range 1–3 GHz. We point out the domains with unstable output power and discuss their origin.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Leduc, P. J. Nacher, G. Tastevin, “Magnetic resonance imaging using polarized noble gases,” Laser Phys. 8, 799–802 (1998).
  2. J. M. Daniels, L. D. Schearer, M. Leduc, P.-J. Nacher, “Polarizing 3He nuclei with neodymium La1-xNdxMgAlO19 lasers,” J. Opt. Soc. Am. B 2, 1133–1135 (1987).
    [Crossref]
  3. S. V. Chernikov, J. R. Taylor, N. S. Platonov, V. P. Gapontsev, P. J. Nacher, G. Tastevin, M. Leduc, M. J. Barlow, “1083 nm ytterbium doped fibre amplifier for optical pumping of helium,” Electron. Lett. 33, 787–789 (1997).
    [Crossref]
  4. L. Reekie, R. J. Mears, S. B. Poole, D. N. Payne, “Tunable single-mode fiber lasers,” IEEE J. Lightwave Technol. LT-4, 956–960 (1986).
    [Crossref]
  5. E. Snitzer, H. Po, F. Hakimi, R. Tuminelli, B. C. McCollum, “Double clad, offset core Nd fiber laser,” in Optical Fiber Sensors, Vol. 2 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper PD5-1, pp. 533–537.
  6. E. Desurvire, Erbium-doped fiber amplifiers—Principles and Applications (Wiley Interscience, New York, 1994).
  7. D. J. Ripin, L. Goldberg, “High efficiency side-coupling of light into optical fibres using imbedded v-grooves,” Electron. Lett. 31, 2204–2205 (1995).
    [Crossref]
  8. D. B. Mortimore, “Fiber loop reflectors,” J. Lightwave Technol. 6, 1217–1222 (1988).
    [Crossref]
  9. P. Besnard, F. Ginovart, P. Le Boudec, F. Sanchez, G. Stéphan, “Experimental and theoretical study of bifurcation diagrams of a dual-wavelength erbium doped fiber laser,” Opt. Commun. 205, 187–195 (2002), and references therein.
    [Crossref]
  10. D. Marcuse, “Pulsing behavior of a three-level laser with saturable absorber,” IEEE J. Quantum Electron. 29, 2390–2396 (1993).
    [Crossref]
  11. A. Hideur, T. Chartier, M. Brunel, M. Salhi, C. Ozkul, F. Sanchez, “Mode-locked, Q-switch and CW operation of an Yb-doped double-clad fiber ring laser,” Opt. Commun. 198, 141–146 (2001).
    [Crossref]
  12. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

2002 (1)

P. Besnard, F. Ginovart, P. Le Boudec, F. Sanchez, G. Stéphan, “Experimental and theoretical study of bifurcation diagrams of a dual-wavelength erbium doped fiber laser,” Opt. Commun. 205, 187–195 (2002), and references therein.
[Crossref]

2001 (1)

A. Hideur, T. Chartier, M. Brunel, M. Salhi, C. Ozkul, F. Sanchez, “Mode-locked, Q-switch and CW operation of an Yb-doped double-clad fiber ring laser,” Opt. Commun. 198, 141–146 (2001).
[Crossref]

1998 (1)

M. Leduc, P. J. Nacher, G. Tastevin, “Magnetic resonance imaging using polarized noble gases,” Laser Phys. 8, 799–802 (1998).

1997 (1)

S. V. Chernikov, J. R. Taylor, N. S. Platonov, V. P. Gapontsev, P. J. Nacher, G. Tastevin, M. Leduc, M. J. Barlow, “1083 nm ytterbium doped fibre amplifier for optical pumping of helium,” Electron. Lett. 33, 787–789 (1997).
[Crossref]

1995 (1)

D. J. Ripin, L. Goldberg, “High efficiency side-coupling of light into optical fibres using imbedded v-grooves,” Electron. Lett. 31, 2204–2205 (1995).
[Crossref]

1993 (1)

D. Marcuse, “Pulsing behavior of a three-level laser with saturable absorber,” IEEE J. Quantum Electron. 29, 2390–2396 (1993).
[Crossref]

1988 (1)

D. B. Mortimore, “Fiber loop reflectors,” J. Lightwave Technol. 6, 1217–1222 (1988).
[Crossref]

1987 (1)

1986 (1)

L. Reekie, R. J. Mears, S. B. Poole, D. N. Payne, “Tunable single-mode fiber lasers,” IEEE J. Lightwave Technol. LT-4, 956–960 (1986).
[Crossref]

Barlow, M. J.

S. V. Chernikov, J. R. Taylor, N. S. Platonov, V. P. Gapontsev, P. J. Nacher, G. Tastevin, M. Leduc, M. J. Barlow, “1083 nm ytterbium doped fibre amplifier for optical pumping of helium,” Electron. Lett. 33, 787–789 (1997).
[Crossref]

Besnard, P.

P. Besnard, F. Ginovart, P. Le Boudec, F. Sanchez, G. Stéphan, “Experimental and theoretical study of bifurcation diagrams of a dual-wavelength erbium doped fiber laser,” Opt. Commun. 205, 187–195 (2002), and references therein.
[Crossref]

Brunel, M.

A. Hideur, T. Chartier, M. Brunel, M. Salhi, C. Ozkul, F. Sanchez, “Mode-locked, Q-switch and CW operation of an Yb-doped double-clad fiber ring laser,” Opt. Commun. 198, 141–146 (2001).
[Crossref]

Chartier, T.

A. Hideur, T. Chartier, M. Brunel, M. Salhi, C. Ozkul, F. Sanchez, “Mode-locked, Q-switch and CW operation of an Yb-doped double-clad fiber ring laser,” Opt. Commun. 198, 141–146 (2001).
[Crossref]

Chernikov, S. V.

S. V. Chernikov, J. R. Taylor, N. S. Platonov, V. P. Gapontsev, P. J. Nacher, G. Tastevin, M. Leduc, M. J. Barlow, “1083 nm ytterbium doped fibre amplifier for optical pumping of helium,” Electron. Lett. 33, 787–789 (1997).
[Crossref]

Daniels, J. M.

Desurvire, E.

E. Desurvire, Erbium-doped fiber amplifiers—Principles and Applications (Wiley Interscience, New York, 1994).

Gapontsev, V. P.

S. V. Chernikov, J. R. Taylor, N. S. Platonov, V. P. Gapontsev, P. J. Nacher, G. Tastevin, M. Leduc, M. J. Barlow, “1083 nm ytterbium doped fibre amplifier for optical pumping of helium,” Electron. Lett. 33, 787–789 (1997).
[Crossref]

Ginovart, F.

P. Besnard, F. Ginovart, P. Le Boudec, F. Sanchez, G. Stéphan, “Experimental and theoretical study of bifurcation diagrams of a dual-wavelength erbium doped fiber laser,” Opt. Commun. 205, 187–195 (2002), and references therein.
[Crossref]

Goldberg, L.

D. J. Ripin, L. Goldberg, “High efficiency side-coupling of light into optical fibres using imbedded v-grooves,” Electron. Lett. 31, 2204–2205 (1995).
[Crossref]

Hakimi, F.

E. Snitzer, H. Po, F. Hakimi, R. Tuminelli, B. C. McCollum, “Double clad, offset core Nd fiber laser,” in Optical Fiber Sensors, Vol. 2 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper PD5-1, pp. 533–537.

Hideur, A.

A. Hideur, T. Chartier, M. Brunel, M. Salhi, C. Ozkul, F. Sanchez, “Mode-locked, Q-switch and CW operation of an Yb-doped double-clad fiber ring laser,” Opt. Commun. 198, 141–146 (2001).
[Crossref]

Le Boudec, P.

P. Besnard, F. Ginovart, P. Le Boudec, F. Sanchez, G. Stéphan, “Experimental and theoretical study of bifurcation diagrams of a dual-wavelength erbium doped fiber laser,” Opt. Commun. 205, 187–195 (2002), and references therein.
[Crossref]

Leduc, M.

M. Leduc, P. J. Nacher, G. Tastevin, “Magnetic resonance imaging using polarized noble gases,” Laser Phys. 8, 799–802 (1998).

S. V. Chernikov, J. R. Taylor, N. S. Platonov, V. P. Gapontsev, P. J. Nacher, G. Tastevin, M. Leduc, M. J. Barlow, “1083 nm ytterbium doped fibre amplifier for optical pumping of helium,” Electron. Lett. 33, 787–789 (1997).
[Crossref]

J. M. Daniels, L. D. Schearer, M. Leduc, P.-J. Nacher, “Polarizing 3He nuclei with neodymium La1-xNdxMgAlO19 lasers,” J. Opt. Soc. Am. B 2, 1133–1135 (1987).
[Crossref]

Marcuse, D.

D. Marcuse, “Pulsing behavior of a three-level laser with saturable absorber,” IEEE J. Quantum Electron. 29, 2390–2396 (1993).
[Crossref]

McCollum, B. C.

E. Snitzer, H. Po, F. Hakimi, R. Tuminelli, B. C. McCollum, “Double clad, offset core Nd fiber laser,” in Optical Fiber Sensors, Vol. 2 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper PD5-1, pp. 533–537.

Mears, R. J.

L. Reekie, R. J. Mears, S. B. Poole, D. N. Payne, “Tunable single-mode fiber lasers,” IEEE J. Lightwave Technol. LT-4, 956–960 (1986).
[Crossref]

Mortimore, D. B.

D. B. Mortimore, “Fiber loop reflectors,” J. Lightwave Technol. 6, 1217–1222 (1988).
[Crossref]

Nacher, P. J.

M. Leduc, P. J. Nacher, G. Tastevin, “Magnetic resonance imaging using polarized noble gases,” Laser Phys. 8, 799–802 (1998).

S. V. Chernikov, J. R. Taylor, N. S. Platonov, V. P. Gapontsev, P. J. Nacher, G. Tastevin, M. Leduc, M. J. Barlow, “1083 nm ytterbium doped fibre amplifier for optical pumping of helium,” Electron. Lett. 33, 787–789 (1997).
[Crossref]

Nacher, P.-J.

Ozkul, C.

A. Hideur, T. Chartier, M. Brunel, M. Salhi, C. Ozkul, F. Sanchez, “Mode-locked, Q-switch and CW operation of an Yb-doped double-clad fiber ring laser,” Opt. Commun. 198, 141–146 (2001).
[Crossref]

Payne, D. N.

L. Reekie, R. J. Mears, S. B. Poole, D. N. Payne, “Tunable single-mode fiber lasers,” IEEE J. Lightwave Technol. LT-4, 956–960 (1986).
[Crossref]

Platonov, N. S.

S. V. Chernikov, J. R. Taylor, N. S. Platonov, V. P. Gapontsev, P. J. Nacher, G. Tastevin, M. Leduc, M. J. Barlow, “1083 nm ytterbium doped fibre amplifier for optical pumping of helium,” Electron. Lett. 33, 787–789 (1997).
[Crossref]

Po, H.

E. Snitzer, H. Po, F. Hakimi, R. Tuminelli, B. C. McCollum, “Double clad, offset core Nd fiber laser,” in Optical Fiber Sensors, Vol. 2 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper PD5-1, pp. 533–537.

Poole, S. B.

L. Reekie, R. J. Mears, S. B. Poole, D. N. Payne, “Tunable single-mode fiber lasers,” IEEE J. Lightwave Technol. LT-4, 956–960 (1986).
[Crossref]

Reekie, L.

L. Reekie, R. J. Mears, S. B. Poole, D. N. Payne, “Tunable single-mode fiber lasers,” IEEE J. Lightwave Technol. LT-4, 956–960 (1986).
[Crossref]

Ripin, D. J.

D. J. Ripin, L. Goldberg, “High efficiency side-coupling of light into optical fibres using imbedded v-grooves,” Electron. Lett. 31, 2204–2205 (1995).
[Crossref]

Salhi, M.

A. Hideur, T. Chartier, M. Brunel, M. Salhi, C. Ozkul, F. Sanchez, “Mode-locked, Q-switch and CW operation of an Yb-doped double-clad fiber ring laser,” Opt. Commun. 198, 141–146 (2001).
[Crossref]

Sanchez, F.

P. Besnard, F. Ginovart, P. Le Boudec, F. Sanchez, G. Stéphan, “Experimental and theoretical study of bifurcation diagrams of a dual-wavelength erbium doped fiber laser,” Opt. Commun. 205, 187–195 (2002), and references therein.
[Crossref]

A. Hideur, T. Chartier, M. Brunel, M. Salhi, C. Ozkul, F. Sanchez, “Mode-locked, Q-switch and CW operation of an Yb-doped double-clad fiber ring laser,” Opt. Commun. 198, 141–146 (2001).
[Crossref]

Schearer, L. D.

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

Snitzer, E.

E. Snitzer, H. Po, F. Hakimi, R. Tuminelli, B. C. McCollum, “Double clad, offset core Nd fiber laser,” in Optical Fiber Sensors, Vol. 2 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper PD5-1, pp. 533–537.

Stéphan, G.

P. Besnard, F. Ginovart, P. Le Boudec, F. Sanchez, G. Stéphan, “Experimental and theoretical study of bifurcation diagrams of a dual-wavelength erbium doped fiber laser,” Opt. Commun. 205, 187–195 (2002), and references therein.
[Crossref]

Tastevin, G.

M. Leduc, P. J. Nacher, G. Tastevin, “Magnetic resonance imaging using polarized noble gases,” Laser Phys. 8, 799–802 (1998).

S. V. Chernikov, J. R. Taylor, N. S. Platonov, V. P. Gapontsev, P. J. Nacher, G. Tastevin, M. Leduc, M. J. Barlow, “1083 nm ytterbium doped fibre amplifier for optical pumping of helium,” Electron. Lett. 33, 787–789 (1997).
[Crossref]

Taylor, J. R.

S. V. Chernikov, J. R. Taylor, N. S. Platonov, V. P. Gapontsev, P. J. Nacher, G. Tastevin, M. Leduc, M. J. Barlow, “1083 nm ytterbium doped fibre amplifier for optical pumping of helium,” Electron. Lett. 33, 787–789 (1997).
[Crossref]

Tuminelli, R.

E. Snitzer, H. Po, F. Hakimi, R. Tuminelli, B. C. McCollum, “Double clad, offset core Nd fiber laser,” in Optical Fiber Sensors, Vol. 2 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper PD5-1, pp. 533–537.

Electron. Lett. (2)

S. V. Chernikov, J. R. Taylor, N. S. Platonov, V. P. Gapontsev, P. J. Nacher, G. Tastevin, M. Leduc, M. J. Barlow, “1083 nm ytterbium doped fibre amplifier for optical pumping of helium,” Electron. Lett. 33, 787–789 (1997).
[Crossref]

D. J. Ripin, L. Goldberg, “High efficiency side-coupling of light into optical fibres using imbedded v-grooves,” Electron. Lett. 31, 2204–2205 (1995).
[Crossref]

IEEE J. Lightwave Technol. (1)

L. Reekie, R. J. Mears, S. B. Poole, D. N. Payne, “Tunable single-mode fiber lasers,” IEEE J. Lightwave Technol. LT-4, 956–960 (1986).
[Crossref]

IEEE J. Quantum Electron. (1)

D. Marcuse, “Pulsing behavior of a three-level laser with saturable absorber,” IEEE J. Quantum Electron. 29, 2390–2396 (1993).
[Crossref]

J. Lightwave Technol. (1)

D. B. Mortimore, “Fiber loop reflectors,” J. Lightwave Technol. 6, 1217–1222 (1988).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. (1)

M. Leduc, P. J. Nacher, G. Tastevin, “Magnetic resonance imaging using polarized noble gases,” Laser Phys. 8, 799–802 (1998).

Opt. Commun. (2)

P. Besnard, F. Ginovart, P. Le Boudec, F. Sanchez, G. Stéphan, “Experimental and theoretical study of bifurcation diagrams of a dual-wavelength erbium doped fiber laser,” Opt. Commun. 205, 187–195 (2002), and references therein.
[Crossref]

A. Hideur, T. Chartier, M. Brunel, M. Salhi, C. Ozkul, F. Sanchez, “Mode-locked, Q-switch and CW operation of an Yb-doped double-clad fiber ring laser,” Opt. Commun. 198, 141–146 (2001).
[Crossref]

Other (3)

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

E. Snitzer, H. Po, F. Hakimi, R. Tuminelli, B. C. McCollum, “Double clad, offset core Nd fiber laser,” in Optical Fiber Sensors, Vol. 2 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper PD5-1, pp. 533–537.

E. Desurvire, Erbium-doped fiber amplifiers—Principles and Applications (Wiley Interscience, New York, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Helium atom absorption spectrum: fine (4He isotope) and hyperfine (3He isotope) structure of the 1083-nm transition. Lines indicate the position and relative intensity of the different atomic transitions. Curves correspond to the absorption profile of a gas at room temperature, where some transitions are not resolved because of the Doppler broadening.

Fig. 2
Fig. 2

Absorption and emission cross sections of Ge:Al:Si ytterbium-doped fiber.

Fig. 3
Fig. 3

V-groove side pumping (VSP) arrangement. Left, longitudinal view; right, transversal.

Fig. 4
Fig. 4

Proposed laser architecture: the linear broadband-HR-narrowband-LR, or MR FBG, cavity. A, B, C, and D are the splice positions. HR, high reflective; LR, low reflective; MR, medium reflective.

Fig. 5
Fig. 5

1083-nm output power versus injected pump power. The threshold and the efficiency (ratio of signal power to injected pump power) are indicated on the right.

Fig. 6
Fig. 6

Evolution of the laser envelope FWHM versus the pump power for different combinations of reflectivity and FBG bandwidth. We also give the evolution for 1.8-dB losses and for the loop-mirror configuration. A, B, C, and D denote the small break positions. The saturation domain is within the hatched rectangle.

Fig. 7
Fig. 7

Evolution of the laser envelope shape versus the pump power (50, 100, 400, and 900 mW).

Fig. 8
Fig. 8

1083-nm fiber laser arrangement with 10 W of output power (two cascaded 5-W saturated boosters), 1–3-GHz multimode envelopee, and greater than 80-GHz tunability.

Fig. 9
Fig. 9

Output spectrum and wavelength tunability of the proposed master oscillator power fiber amplifier configuration.

Fig. 10
Fig. 10

Three different operation regimes of the 1083 nm laser: (a) time and (b) frequency domain (resolution bandwidth 100 kHz or 1 MHz, sweep rate 20 ms).

Fig. 11
Fig. 11

Operation domains (1, stable and continuous; 2, intermittent; 3, unstable and spiking), delimited by two boundaries, in relation to the single-pass losses and injected pump power, for the MR 50-pm FBG.

Fig. 12
Fig. 12

(a) Spiking domain: typical oscillations in the microsecond range. (b) Detail of one pulse.

Metrics