Abstract

We demonstrate an optical-gradient bottom antireflective coating (BARC) film, which can be easily prepared by treating a silicon nitride film with oxygen plasma. The oxygen composition is gradually decreased inside the silicon nitride film. The optical constants of the silicon nitride film are also changed gradually. A reflectance of less than 1% for various highly reflective substrates with high thickness-controlled tolerance has been achieved. The optical-gradient film is also shown to have high thermal stability during the postexposure bake procedure. Results indicate that the optical-gradient-type BARC is suitable in both ArF and F2 excimer lasers for sub-70-nm lithography applications.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Semiconductor Industry AssociationInternational Technology Roadmap for Semiconductors2001 ed. (Semiconductor for Industry Association, San Jose, Calif., 2001), http://public.itrs.net/Files/2001ITRS .
  2. R. A. Cirelli, G. R. Weber, A. Kornblit, R. M. Baker, F. P. Klemens, J. Demarco, “A multi-layer inorganic antireflective system for use in 248 nm deep ultraviolet lithography,” J. Vac. Sci. Technol. B 14, 4229–4233 (1996).
    [CrossRef]
  3. L. A. Wang, H. L. Chen, “Multi-layer hexamethyldisiloxane film as bottom antireflective coating for ArF lithography,” J. Vac. Sci. Technol. B 17, 2772–2775 (1999).
    [CrossRef]
  4. T. P. Ong, B. Roman, “CVD SiNx Anti-reflective coating for sub-0.5 micrometer lithography,” in 1995 IEEE Symposium on VLSI Technology: Digest of Technical Papers (Institute of Electrical and Electronics Engineers, New York, 1995), p. 73.
    [CrossRef]
  5. Y. Trouiller, N. Buffet, T. Mourier, Y. Gobil, P. Schiavone, Y. Quere, “Inorganic bottom ARC SiOxNy for interconnection levels on 0.18-μm technology,” in Advances in Resist Technology and Processing XV, W. Conley, ed., Proc. SPIE3333, 324–333 (1998).
  6. C. H. Lin, L. A. Wang, “Feasibility of utilizing hexamethyldisiloxane film as a bottom antireflective coating for 157 nm lithography,” J. Vac. Sci. Technol. B 19, 2357–2361 (2001).
    [CrossRef]
  7. Y. Sato, Y. Onishi, Y. Nakano, S. Hayase, “Spun-on carbon antireflective layer with etch resistance for deep and vacuum ultraviolet lithography processes,” J. Vac. Sci. Technol. B 19, 2385–2388 (2001).
    [CrossRef]
  8. L. Ward, The Optical Constants of Bulk Materials and Films (Institute of Physics, Bristol, 1994), Chap. 8.
  9. Y. Kawai, A. Tanaka, T. Matsuda, “The effect of an organic base in chemically amplified resist on patterning characteristics using KrF lithography,” Jpn. J. Appl. Phys. 33, 7023–7027 (1994).
    [CrossRef]
  10. T. C. Paulick, “Inversion of normal-incidence (R, T) measurements to obtain n + ik for thin films,” Appl. Opt. 25, 562 (1986).
    [CrossRef]
  11. A. R. Forouhi, I. Bloomer, “Optical properties of crystalline semiconductors and dielectrics,” Phys. Rev. B 38, 1865–1874 (1988).
    [CrossRef]
  12. V. Liberman, T. M. Bloomstein, M. Rothschild, “Determination of optical properties of thin films and surfaces in 157-nm lithography,” in Metrology, Inspection, and Process Control for Lithography XIV, N. T. Sullivan, ed., Proc. SPIE3998, 480–490 (2000).
    [CrossRef]
  13. H. A. Macleod, Thin Film Optical Filters (Macmillan, New York, 1986), Chap. 2.
    [CrossRef]
  14. J. Chastain, R. C. King, Handbook of X-ray Photoelectron Spectroscopy (Physical Electronics, Perkin-Elmer, Eden Praire, Minn., 1995).
  15. G. Latha, N. Rajendran, S. Rajeswari, J. Mater. Eng. Perform. 6, 743–748 (1997).
    [CrossRef]

2001 (2)

C. H. Lin, L. A. Wang, “Feasibility of utilizing hexamethyldisiloxane film as a bottom antireflective coating for 157 nm lithography,” J. Vac. Sci. Technol. B 19, 2357–2361 (2001).
[CrossRef]

Y. Sato, Y. Onishi, Y. Nakano, S. Hayase, “Spun-on carbon antireflective layer with etch resistance for deep and vacuum ultraviolet lithography processes,” J. Vac. Sci. Technol. B 19, 2385–2388 (2001).
[CrossRef]

1999 (1)

L. A. Wang, H. L. Chen, “Multi-layer hexamethyldisiloxane film as bottom antireflective coating for ArF lithography,” J. Vac. Sci. Technol. B 17, 2772–2775 (1999).
[CrossRef]

1997 (1)

G. Latha, N. Rajendran, S. Rajeswari, J. Mater. Eng. Perform. 6, 743–748 (1997).
[CrossRef]

1996 (1)

R. A. Cirelli, G. R. Weber, A. Kornblit, R. M. Baker, F. P. Klemens, J. Demarco, “A multi-layer inorganic antireflective system for use in 248 nm deep ultraviolet lithography,” J. Vac. Sci. Technol. B 14, 4229–4233 (1996).
[CrossRef]

1994 (1)

Y. Kawai, A. Tanaka, T. Matsuda, “The effect of an organic base in chemically amplified resist on patterning characteristics using KrF lithography,” Jpn. J. Appl. Phys. 33, 7023–7027 (1994).
[CrossRef]

1988 (1)

A. R. Forouhi, I. Bloomer, “Optical properties of crystalline semiconductors and dielectrics,” Phys. Rev. B 38, 1865–1874 (1988).
[CrossRef]

1986 (1)

Baker, R. M.

R. A. Cirelli, G. R. Weber, A. Kornblit, R. M. Baker, F. P. Klemens, J. Demarco, “A multi-layer inorganic antireflective system for use in 248 nm deep ultraviolet lithography,” J. Vac. Sci. Technol. B 14, 4229–4233 (1996).
[CrossRef]

Bloomer, I.

A. R. Forouhi, I. Bloomer, “Optical properties of crystalline semiconductors and dielectrics,” Phys. Rev. B 38, 1865–1874 (1988).
[CrossRef]

Bloomstein, T. M.

V. Liberman, T. M. Bloomstein, M. Rothschild, “Determination of optical properties of thin films and surfaces in 157-nm lithography,” in Metrology, Inspection, and Process Control for Lithography XIV, N. T. Sullivan, ed., Proc. SPIE3998, 480–490 (2000).
[CrossRef]

Buffet, N.

Y. Trouiller, N. Buffet, T. Mourier, Y. Gobil, P. Schiavone, Y. Quere, “Inorganic bottom ARC SiOxNy for interconnection levels on 0.18-μm technology,” in Advances in Resist Technology and Processing XV, W. Conley, ed., Proc. SPIE3333, 324–333 (1998).

Chastain, J.

J. Chastain, R. C. King, Handbook of X-ray Photoelectron Spectroscopy (Physical Electronics, Perkin-Elmer, Eden Praire, Minn., 1995).

Chen, H. L.

L. A. Wang, H. L. Chen, “Multi-layer hexamethyldisiloxane film as bottom antireflective coating for ArF lithography,” J. Vac. Sci. Technol. B 17, 2772–2775 (1999).
[CrossRef]

Cirelli, R. A.

R. A. Cirelli, G. R. Weber, A. Kornblit, R. M. Baker, F. P. Klemens, J. Demarco, “A multi-layer inorganic antireflective system for use in 248 nm deep ultraviolet lithography,” J. Vac. Sci. Technol. B 14, 4229–4233 (1996).
[CrossRef]

Demarco, J.

R. A. Cirelli, G. R. Weber, A. Kornblit, R. M. Baker, F. P. Klemens, J. Demarco, “A multi-layer inorganic antireflective system for use in 248 nm deep ultraviolet lithography,” J. Vac. Sci. Technol. B 14, 4229–4233 (1996).
[CrossRef]

Forouhi, A. R.

A. R. Forouhi, I. Bloomer, “Optical properties of crystalline semiconductors and dielectrics,” Phys. Rev. B 38, 1865–1874 (1988).
[CrossRef]

Gobil, Y.

Y. Trouiller, N. Buffet, T. Mourier, Y. Gobil, P. Schiavone, Y. Quere, “Inorganic bottom ARC SiOxNy for interconnection levels on 0.18-μm technology,” in Advances in Resist Technology and Processing XV, W. Conley, ed., Proc. SPIE3333, 324–333 (1998).

Hayase, S.

Y. Sato, Y. Onishi, Y. Nakano, S. Hayase, “Spun-on carbon antireflective layer with etch resistance for deep and vacuum ultraviolet lithography processes,” J. Vac. Sci. Technol. B 19, 2385–2388 (2001).
[CrossRef]

Kawai, Y.

Y. Kawai, A. Tanaka, T. Matsuda, “The effect of an organic base in chemically amplified resist on patterning characteristics using KrF lithography,” Jpn. J. Appl. Phys. 33, 7023–7027 (1994).
[CrossRef]

King, R. C.

J. Chastain, R. C. King, Handbook of X-ray Photoelectron Spectroscopy (Physical Electronics, Perkin-Elmer, Eden Praire, Minn., 1995).

Klemens, F. P.

R. A. Cirelli, G. R. Weber, A. Kornblit, R. M. Baker, F. P. Klemens, J. Demarco, “A multi-layer inorganic antireflective system for use in 248 nm deep ultraviolet lithography,” J. Vac. Sci. Technol. B 14, 4229–4233 (1996).
[CrossRef]

Kornblit, A.

R. A. Cirelli, G. R. Weber, A. Kornblit, R. M. Baker, F. P. Klemens, J. Demarco, “A multi-layer inorganic antireflective system for use in 248 nm deep ultraviolet lithography,” J. Vac. Sci. Technol. B 14, 4229–4233 (1996).
[CrossRef]

Latha, G.

G. Latha, N. Rajendran, S. Rajeswari, J. Mater. Eng. Perform. 6, 743–748 (1997).
[CrossRef]

Liberman, V.

V. Liberman, T. M. Bloomstein, M. Rothschild, “Determination of optical properties of thin films and surfaces in 157-nm lithography,” in Metrology, Inspection, and Process Control for Lithography XIV, N. T. Sullivan, ed., Proc. SPIE3998, 480–490 (2000).
[CrossRef]

Lin, C. H.

C. H. Lin, L. A. Wang, “Feasibility of utilizing hexamethyldisiloxane film as a bottom antireflective coating for 157 nm lithography,” J. Vac. Sci. Technol. B 19, 2357–2361 (2001).
[CrossRef]

Macleod, H. A.

H. A. Macleod, Thin Film Optical Filters (Macmillan, New York, 1986), Chap. 2.
[CrossRef]

Matsuda, T.

Y. Kawai, A. Tanaka, T. Matsuda, “The effect of an organic base in chemically amplified resist on patterning characteristics using KrF lithography,” Jpn. J. Appl. Phys. 33, 7023–7027 (1994).
[CrossRef]

Mourier, T.

Y. Trouiller, N. Buffet, T. Mourier, Y. Gobil, P. Schiavone, Y. Quere, “Inorganic bottom ARC SiOxNy for interconnection levels on 0.18-μm technology,” in Advances in Resist Technology and Processing XV, W. Conley, ed., Proc. SPIE3333, 324–333 (1998).

Nakano, Y.

Y. Sato, Y. Onishi, Y. Nakano, S. Hayase, “Spun-on carbon antireflective layer with etch resistance for deep and vacuum ultraviolet lithography processes,” J. Vac. Sci. Technol. B 19, 2385–2388 (2001).
[CrossRef]

Ong, T. P.

T. P. Ong, B. Roman, “CVD SiNx Anti-reflective coating for sub-0.5 micrometer lithography,” in 1995 IEEE Symposium on VLSI Technology: Digest of Technical Papers (Institute of Electrical and Electronics Engineers, New York, 1995), p. 73.
[CrossRef]

Onishi, Y.

Y. Sato, Y. Onishi, Y. Nakano, S. Hayase, “Spun-on carbon antireflective layer with etch resistance for deep and vacuum ultraviolet lithography processes,” J. Vac. Sci. Technol. B 19, 2385–2388 (2001).
[CrossRef]

Paulick, T. C.

Quere, Y.

Y. Trouiller, N. Buffet, T. Mourier, Y. Gobil, P. Schiavone, Y. Quere, “Inorganic bottom ARC SiOxNy for interconnection levels on 0.18-μm technology,” in Advances in Resist Technology and Processing XV, W. Conley, ed., Proc. SPIE3333, 324–333 (1998).

Rajendran, N.

G. Latha, N. Rajendran, S. Rajeswari, J. Mater. Eng. Perform. 6, 743–748 (1997).
[CrossRef]

Rajeswari, S.

G. Latha, N. Rajendran, S. Rajeswari, J. Mater. Eng. Perform. 6, 743–748 (1997).
[CrossRef]

Roman, B.

T. P. Ong, B. Roman, “CVD SiNx Anti-reflective coating for sub-0.5 micrometer lithography,” in 1995 IEEE Symposium on VLSI Technology: Digest of Technical Papers (Institute of Electrical and Electronics Engineers, New York, 1995), p. 73.
[CrossRef]

Rothschild, M.

V. Liberman, T. M. Bloomstein, M. Rothschild, “Determination of optical properties of thin films and surfaces in 157-nm lithography,” in Metrology, Inspection, and Process Control for Lithography XIV, N. T. Sullivan, ed., Proc. SPIE3998, 480–490 (2000).
[CrossRef]

Sato, Y.

Y. Sato, Y. Onishi, Y. Nakano, S. Hayase, “Spun-on carbon antireflective layer with etch resistance for deep and vacuum ultraviolet lithography processes,” J. Vac. Sci. Technol. B 19, 2385–2388 (2001).
[CrossRef]

Schiavone, P.

Y. Trouiller, N. Buffet, T. Mourier, Y. Gobil, P. Schiavone, Y. Quere, “Inorganic bottom ARC SiOxNy for interconnection levels on 0.18-μm technology,” in Advances in Resist Technology and Processing XV, W. Conley, ed., Proc. SPIE3333, 324–333 (1998).

Tanaka, A.

Y. Kawai, A. Tanaka, T. Matsuda, “The effect of an organic base in chemically amplified resist on patterning characteristics using KrF lithography,” Jpn. J. Appl. Phys. 33, 7023–7027 (1994).
[CrossRef]

Trouiller, Y.

Y. Trouiller, N. Buffet, T. Mourier, Y. Gobil, P. Schiavone, Y. Quere, “Inorganic bottom ARC SiOxNy for interconnection levels on 0.18-μm technology,” in Advances in Resist Technology and Processing XV, W. Conley, ed., Proc. SPIE3333, 324–333 (1998).

Wang, L. A.

C. H. Lin, L. A. Wang, “Feasibility of utilizing hexamethyldisiloxane film as a bottom antireflective coating for 157 nm lithography,” J. Vac. Sci. Technol. B 19, 2357–2361 (2001).
[CrossRef]

L. A. Wang, H. L. Chen, “Multi-layer hexamethyldisiloxane film as bottom antireflective coating for ArF lithography,” J. Vac. Sci. Technol. B 17, 2772–2775 (1999).
[CrossRef]

Ward, L.

L. Ward, The Optical Constants of Bulk Materials and Films (Institute of Physics, Bristol, 1994), Chap. 8.

Weber, G. R.

R. A. Cirelli, G. R. Weber, A. Kornblit, R. M. Baker, F. P. Klemens, J. Demarco, “A multi-layer inorganic antireflective system for use in 248 nm deep ultraviolet lithography,” J. Vac. Sci. Technol. B 14, 4229–4233 (1996).
[CrossRef]

Appl. Opt. (1)

J. Mater. Eng. Perform. (1)

G. Latha, N. Rajendran, S. Rajeswari, J. Mater. Eng. Perform. 6, 743–748 (1997).
[CrossRef]

J. Vac. Sci. Technol. B (4)

C. H. Lin, L. A. Wang, “Feasibility of utilizing hexamethyldisiloxane film as a bottom antireflective coating for 157 nm lithography,” J. Vac. Sci. Technol. B 19, 2357–2361 (2001).
[CrossRef]

Y. Sato, Y. Onishi, Y. Nakano, S. Hayase, “Spun-on carbon antireflective layer with etch resistance for deep and vacuum ultraviolet lithography processes,” J. Vac. Sci. Technol. B 19, 2385–2388 (2001).
[CrossRef]

R. A. Cirelli, G. R. Weber, A. Kornblit, R. M. Baker, F. P. Klemens, J. Demarco, “A multi-layer inorganic antireflective system for use in 248 nm deep ultraviolet lithography,” J. Vac. Sci. Technol. B 14, 4229–4233 (1996).
[CrossRef]

L. A. Wang, H. L. Chen, “Multi-layer hexamethyldisiloxane film as bottom antireflective coating for ArF lithography,” J. Vac. Sci. Technol. B 17, 2772–2775 (1999).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Kawai, A. Tanaka, T. Matsuda, “The effect of an organic base in chemically amplified resist on patterning characteristics using KrF lithography,” Jpn. J. Appl. Phys. 33, 7023–7027 (1994).
[CrossRef]

Phys. Rev. B (1)

A. R. Forouhi, I. Bloomer, “Optical properties of crystalline semiconductors and dielectrics,” Phys. Rev. B 38, 1865–1874 (1988).
[CrossRef]

Other (7)

V. Liberman, T. M. Bloomstein, M. Rothschild, “Determination of optical properties of thin films and surfaces in 157-nm lithography,” in Metrology, Inspection, and Process Control for Lithography XIV, N. T. Sullivan, ed., Proc. SPIE3998, 480–490 (2000).
[CrossRef]

H. A. Macleod, Thin Film Optical Filters (Macmillan, New York, 1986), Chap. 2.
[CrossRef]

J. Chastain, R. C. King, Handbook of X-ray Photoelectron Spectroscopy (Physical Electronics, Perkin-Elmer, Eden Praire, Minn., 1995).

T. P. Ong, B. Roman, “CVD SiNx Anti-reflective coating for sub-0.5 micrometer lithography,” in 1995 IEEE Symposium on VLSI Technology: Digest of Technical Papers (Institute of Electrical and Electronics Engineers, New York, 1995), p. 73.
[CrossRef]

Y. Trouiller, N. Buffet, T. Mourier, Y. Gobil, P. Schiavone, Y. Quere, “Inorganic bottom ARC SiOxNy for interconnection levels on 0.18-μm technology,” in Advances in Resist Technology and Processing XV, W. Conley, ed., Proc. SPIE3333, 324–333 (1998).

L. Ward, The Optical Constants of Bulk Materials and Films (Institute of Physics, Bristol, 1994), Chap. 8.

Semiconductor Industry AssociationInternational Technology Roadmap for Semiconductors2001 ed. (Semiconductor for Industry Association, San Jose, Calif., 2001), http://public.itrs.net/Files/2001ITRS .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of an optical-gradient-type antireflective coating, which is formed by plasma treatment.

Fig. 2
Fig. 2

(a) Si 2p and (b) N 1s photoelectron spectra of the silicon nitride film after oxygen plasma treatment.

Fig. 3
Fig. 3

Depth profile of the silicon nitride film after oxygen plasma treatment.

Fig. 4
Fig. 4

Reflection spectra of a silicon substrate coated by a silicon nitride film before and after plasma treatment.

Fig. 5
Fig. 5

Reflectance swing curves of resist coated on a silicon substrate with a gradient-type BARC structure at 157 nm.

Fig. 6
Fig. 6

Reflectance swing curves of resist coated on a tantalum nitride substrate with single-layer and gradient-type BARC structures at 157 nm.

Fig. 7
Fig. 7

NH3 desorption curves showing dependence of capped silicon dioxide films on thickness.

Fig. 8
Fig. 8

NH3 desorption curves showing dependence of the oxygen plasma treatment procedure on time.

Fig. 9
Fig. 9

Thickness tolerance analysis of a single-layer and an optical-gradient-type BARC structure.

Tables (1)

Tables Icon

Table 1 Single-Layer and Gradient-Type BARC Structures for Various Highly Reflective Substrates

Metrics