Abstract

We demonstrate volume holographic recording in silica-nanoparticle-dispersed methacrylate photopolymers with reduced scattering loss as low as 2%. This is made possible by use of 13-nm silica nanoparticles. As a result a net diffraction efficiency near 100% is achieved for a transmission volume hologram of 45-μm thickness. Grating buildup dynamics are measured for various nanoparticle concentrations, and the effects of nanoparticle size on refractive-index modulation and polymerization shrinkage are also evaluated.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Suzuki, Y. Tomita, T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett. 81, 4121–4123 (2002).
    [CrossRef]
  2. Y. Tomita, H. Nishibiraki, “Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyrromethene dyes,” Appl. Phys. Lett. 83, 410–412 (2003).
    [CrossRef]
  3. N. Suzuki, Y. Tomita, “Diffraction properties of volume holograms recorded in SiO2 nanoparticle-dispersed methacrylate photopolymer films,” Jpn. J. Appl. Phys. 42, L927–L929 (2003).
    [CrossRef]
  4. J. Deboer, R. J. Visser, G. P. Melis, “Time-resolved determination of volume shrinkage and refractive index change of thin polymer films during photopolymerization,” Polymer 33, 1123–1126 (1992).
    [CrossRef]
  5. G. M. Karpov, V. V. Obukhovsky, T. N. Smirnova, V. V. Lemeshko, “Spatial transfer of matter as a metod of holographic recording in photoformers,” Opt. Commun. 174, 391–404 (2000).
    [CrossRef]
  6. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, “Holographic polymer dispersed liquid crystals (H-PDLC),” Annu. Rev. Mater. Sci. 30, 83–115 (2000).
    [CrossRef]
  7. T. Kojima, Y. Tomita, “Characterization of index and surface-relief gratings formed in methacrylate photopolymers,” Opt. Rev. 9, 222–226 (2002).
    [CrossRef]
  8. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957).
  9. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1998).
  10. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  11. J. E. Boyd, T. J. Trentler, K. W. Rajeev, Y. I. Vega-Cantu, V. L. Colvin, “Effect of film thickness on the performance of photopolymers as holographic recording materials,” Appl. Opt. 39, 2353–2358 (2000).
    [CrossRef]
  12. P. Cheben, M. L. Calvo, “A photopolymerizable glass with diffraction efficiency near 100% for holographic storage,” Appl. Phys. Lett. 78, 1490–1492 (2001).
    [CrossRef]
  13. M. Ortuño, S. Gallego, C. Garcia, C. Neipp, A. Beléndez, I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
    [CrossRef]
  14. O. Beyer, I. Nee, F. Havermeyer, K. Buse, “Holographic recording of Bragg gratings for wavelength division multiplexing in doped and partially polymerized poly(methyl methacrylate),” Appl. Opt. 42, 30–37 (2003).
    [CrossRef] [PubMed]

2003 (4)

Y. Tomita, H. Nishibiraki, “Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyrromethene dyes,” Appl. Phys. Lett. 83, 410–412 (2003).
[CrossRef]

N. Suzuki, Y. Tomita, “Diffraction properties of volume holograms recorded in SiO2 nanoparticle-dispersed methacrylate photopolymer films,” Jpn. J. Appl. Phys. 42, L927–L929 (2003).
[CrossRef]

M. Ortuño, S. Gallego, C. Garcia, C. Neipp, A. Beléndez, I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[CrossRef]

O. Beyer, I. Nee, F. Havermeyer, K. Buse, “Holographic recording of Bragg gratings for wavelength division multiplexing in doped and partially polymerized poly(methyl methacrylate),” Appl. Opt. 42, 30–37 (2003).
[CrossRef] [PubMed]

2002 (2)

T. Kojima, Y. Tomita, “Characterization of index and surface-relief gratings formed in methacrylate photopolymers,” Opt. Rev. 9, 222–226 (2002).
[CrossRef]

N. Suzuki, Y. Tomita, T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett. 81, 4121–4123 (2002).
[CrossRef]

2001 (1)

P. Cheben, M. L. Calvo, “A photopolymerizable glass with diffraction efficiency near 100% for holographic storage,” Appl. Phys. Lett. 78, 1490–1492 (2001).
[CrossRef]

2000 (3)

J. E. Boyd, T. J. Trentler, K. W. Rajeev, Y. I. Vega-Cantu, V. L. Colvin, “Effect of film thickness on the performance of photopolymers as holographic recording materials,” Appl. Opt. 39, 2353–2358 (2000).
[CrossRef]

G. M. Karpov, V. V. Obukhovsky, T. N. Smirnova, V. V. Lemeshko, “Spatial transfer of matter as a metod of holographic recording in photoformers,” Opt. Commun. 174, 391–404 (2000).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, “Holographic polymer dispersed liquid crystals (H-PDLC),” Annu. Rev. Mater. Sci. 30, 83–115 (2000).
[CrossRef]

1992 (1)

J. Deboer, R. J. Visser, G. P. Melis, “Time-resolved determination of volume shrinkage and refractive index change of thin polymer films during photopolymerization,” Polymer 33, 1123–1126 (1992).
[CrossRef]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Beléndez, A.

M. Ortuño, S. Gallego, C. Garcia, C. Neipp, A. Beléndez, I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[CrossRef]

Beyer, O.

Boyd, J. E.

Bunning, T. J.

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, “Holographic polymer dispersed liquid crystals (H-PDLC),” Annu. Rev. Mater. Sci. 30, 83–115 (2000).
[CrossRef]

Buse, K.

Calvo, M. L.

P. Cheben, M. L. Calvo, “A photopolymerizable glass with diffraction efficiency near 100% for holographic storage,” Appl. Phys. Lett. 78, 1490–1492 (2001).
[CrossRef]

Cheben, P.

P. Cheben, M. L. Calvo, “A photopolymerizable glass with diffraction efficiency near 100% for holographic storage,” Appl. Phys. Lett. 78, 1490–1492 (2001).
[CrossRef]

Colvin, V. L.

Deboer, J.

J. Deboer, R. J. Visser, G. P. Melis, “Time-resolved determination of volume shrinkage and refractive index change of thin polymer films during photopolymerization,” Polymer 33, 1123–1126 (1992).
[CrossRef]

Gallego, S.

M. Ortuño, S. Gallego, C. Garcia, C. Neipp, A. Beléndez, I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[CrossRef]

Garcia, C.

M. Ortuño, S. Gallego, C. Garcia, C. Neipp, A. Beléndez, I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[CrossRef]

Havermeyer, F.

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1998).

Karpov, G. M.

G. M. Karpov, V. V. Obukhovsky, T. N. Smirnova, V. V. Lemeshko, “Spatial transfer of matter as a metod of holographic recording in photoformers,” Opt. Commun. 174, 391–404 (2000).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Kojima, T.

T. Kojima, Y. Tomita, “Characterization of index and surface-relief gratings formed in methacrylate photopolymers,” Opt. Rev. 9, 222–226 (2002).
[CrossRef]

N. Suzuki, Y. Tomita, T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett. 81, 4121–4123 (2002).
[CrossRef]

Lemeshko, V. V.

G. M. Karpov, V. V. Obukhovsky, T. N. Smirnova, V. V. Lemeshko, “Spatial transfer of matter as a metod of holographic recording in photoformers,” Opt. Commun. 174, 391–404 (2000).
[CrossRef]

Melis, G. P.

J. Deboer, R. J. Visser, G. P. Melis, “Time-resolved determination of volume shrinkage and refractive index change of thin polymer films during photopolymerization,” Polymer 33, 1123–1126 (1992).
[CrossRef]

Natarajan, L. V.

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, “Holographic polymer dispersed liquid crystals (H-PDLC),” Annu. Rev. Mater. Sci. 30, 83–115 (2000).
[CrossRef]

Nee, I.

Neipp, C.

M. Ortuño, S. Gallego, C. Garcia, C. Neipp, A. Beléndez, I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[CrossRef]

Nishibiraki, H.

Y. Tomita, H. Nishibiraki, “Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyrromethene dyes,” Appl. Phys. Lett. 83, 410–412 (2003).
[CrossRef]

Obukhovsky, V. V.

G. M. Karpov, V. V. Obukhovsky, T. N. Smirnova, V. V. Lemeshko, “Spatial transfer of matter as a metod of holographic recording in photoformers,” Opt. Commun. 174, 391–404 (2000).
[CrossRef]

Ortuño, M.

M. Ortuño, S. Gallego, C. Garcia, C. Neipp, A. Beléndez, I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[CrossRef]

Pascual, I.

M. Ortuño, S. Gallego, C. Garcia, C. Neipp, A. Beléndez, I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[CrossRef]

Rajeev, K. W.

Smirnova, T. N.

G. M. Karpov, V. V. Obukhovsky, T. N. Smirnova, V. V. Lemeshko, “Spatial transfer of matter as a metod of holographic recording in photoformers,” Opt. Commun. 174, 391–404 (2000).
[CrossRef]

Sutherland, R. L.

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, “Holographic polymer dispersed liquid crystals (H-PDLC),” Annu. Rev. Mater. Sci. 30, 83–115 (2000).
[CrossRef]

Suzuki, N.

N. Suzuki, Y. Tomita, “Diffraction properties of volume holograms recorded in SiO2 nanoparticle-dispersed methacrylate photopolymer films,” Jpn. J. Appl. Phys. 42, L927–L929 (2003).
[CrossRef]

N. Suzuki, Y. Tomita, T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett. 81, 4121–4123 (2002).
[CrossRef]

Tomita, Y.

Y. Tomita, H. Nishibiraki, “Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyrromethene dyes,” Appl. Phys. Lett. 83, 410–412 (2003).
[CrossRef]

N. Suzuki, Y. Tomita, “Diffraction properties of volume holograms recorded in SiO2 nanoparticle-dispersed methacrylate photopolymer films,” Jpn. J. Appl. Phys. 42, L927–L929 (2003).
[CrossRef]

N. Suzuki, Y. Tomita, T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett. 81, 4121–4123 (2002).
[CrossRef]

T. Kojima, Y. Tomita, “Characterization of index and surface-relief gratings formed in methacrylate photopolymers,” Opt. Rev. 9, 222–226 (2002).
[CrossRef]

Tondiglia, V. P.

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, “Holographic polymer dispersed liquid crystals (H-PDLC),” Annu. Rev. Mater. Sci. 30, 83–115 (2000).
[CrossRef]

Trentler, T. J.

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957).

Vega-Cantu, Y. I.

Visser, R. J.

J. Deboer, R. J. Visser, G. P. Melis, “Time-resolved determination of volume shrinkage and refractive index change of thin polymer films during photopolymerization,” Polymer 33, 1123–1126 (1992).
[CrossRef]

Annu. Rev. Mater. Sci. (1)

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, “Holographic polymer dispersed liquid crystals (H-PDLC),” Annu. Rev. Mater. Sci. 30, 83–115 (2000).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

M. Ortuño, S. Gallego, C. Garcia, C. Neipp, A. Beléndez, I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[CrossRef]

Appl. Phys. Lett. (3)

P. Cheben, M. L. Calvo, “A photopolymerizable glass with diffraction efficiency near 100% for holographic storage,” Appl. Phys. Lett. 78, 1490–1492 (2001).
[CrossRef]

N. Suzuki, Y. Tomita, T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett. 81, 4121–4123 (2002).
[CrossRef]

Y. Tomita, H. Nishibiraki, “Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyrromethene dyes,” Appl. Phys. Lett. 83, 410–412 (2003).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Jpn. J. Appl. Phys. (1)

N. Suzuki, Y. Tomita, “Diffraction properties of volume holograms recorded in SiO2 nanoparticle-dispersed methacrylate photopolymer films,” Jpn. J. Appl. Phys. 42, L927–L929 (2003).
[CrossRef]

Opt. Commun. (1)

G. M. Karpov, V. V. Obukhovsky, T. N. Smirnova, V. V. Lemeshko, “Spatial transfer of matter as a metod of holographic recording in photoformers,” Opt. Commun. 174, 391–404 (2000).
[CrossRef]

Opt. Rev. (1)

T. Kojima, Y. Tomita, “Characterization of index and surface-relief gratings formed in methacrylate photopolymers,” Opt. Rev. 9, 222–226 (2002).
[CrossRef]

Polymer (1)

J. Deboer, R. J. Visser, G. P. Melis, “Time-resolved determination of volume shrinkage and refractive index change of thin polymer films during photopolymerization,” Polymer 33, 1123–1126 (1992).
[CrossRef]

Other (2)

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957).

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Spectral absorption coefficients for 13- and 36-nm samples of 34 vol. % nanoparticle concentrations. The dotted curve is the least-square is fit to the data for the 36-nm sample with the Rayleigh scattering formula.

Fig. 2
Fig. 2

Temporal evolution of (a) the net diffraction efficiency η and (b) the corresponding refractive-index change Δn for 13-nm samples of various nanoparticle concentrations.

Fig. 3
Fig. 3

Grating-spacing dependence of saturated Δn for 13-nm samples having various concentrations (×, 5 vol. %; ●, 11 vol.%; ○, 34 vol.%; ◇, 43 vol.%) of silica nanoparticles. In this measurement a total writing intensity of 100 mW/cm2 was used.

Fig. 4
Fig. 4

Film thickness dependencies of (a) scattering loss and (b) Δn for 13-nm (○) and 36-nm (●) samples of 34 vol. %. In this measurement a grating spacing of 1.0 μm and a total writing intensity of 100 mW/cm2 were used.

Fig. 5
Fig. 5

(a) Recording dynamics of η for a 90-μm thick 13-nm sample of 34 vol. % nanoparticle concentration. In this measurement a grating spacing of 1.0 μm and a total writing intensity of 100 mW/cm2 were used. In the inset the corresponding Δn as a function of exposure time is shown. (b) Saturated η as a function of Bragg-angle detuning Δθ B within the sample. The solid curve corresponds to the least-squares fit of the data to Kogelnik’s formula.

Tables (1)

Tables Icon

Table 1 Effect of Nanoparticle Size and Concentration on Polymerization Shrinkage in Silica Nanoparticle-Dispersed Methacrylate Photopolymer Samplesa

Metrics