Abstract

An all-fiber-optic infrared multispectral radiometer for measurements of temperature and emissivity of graybodies at near-room temperature was constructed. Different spectral regions in the radiometer were obtained by use of hollow glass waveguides (HGWs) as filters. Using HGWs instead of bulk filters was advantageous because each HGW can be used as two different spectral filters when a dual-band IR detector is used. In addition, HGWs are much cheaper than the bulk IR filters that are usually used in such applications. For one graybody with a mean emissivity of 0.71, the estimated mean errors obtained for sample temperature, ambient temperature, and sample emissivity for all measured temperatures were 0.50% (∼1.65 K), 0.48% (∼1.4 K), and 7.3% (∼0.052) respectively. For a second graybody with a mean emissivity of 0.8 the estimated mean errors were 0.35% (∼1.2 K), 0.48% (∼1.4 K), and 5.0% (∼0.04), respectively.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Eyal, A. Zur, O. Shenfeld, M. Gilo, A. Katzir, “Infrared radiometry using silver halide fibers and a cooled photonic detector,” Opt. Eng. 33, 502–509 (1994).
    [CrossRef]
  2. S. Sade, O. Eyal, V. Scharf, A. Katzir, “Fiber optic infrared radiometer for accurate temperature measurements,” Appl. Opt. 41, 908–1914 (2002).
    [CrossRef]
  3. O. Eyal, A. Katzir, “Temperature measurements utilizing two-bandpass fiber optic radiometry,” Opt. Eng. 34, 470–473 (1995).
    [CrossRef]
  4. Y. Dankner, O. Eyal, A. Katzir, “Two bandpass fiber-optic radiometry for monitoring the temperature of photoresist during dry processing,” Appl. Phys. Lett. 68, 2583–2585 (1996).
    [CrossRef]
  5. W. Small, P. M. Celliers, L. B. Da Silva, D. L. Matthews, B. A. Soltz, “Two-color mid-infrared thermometer with a hollow glass optical fiber,” Appl. Opt. 37, 6677–6683 (1998).
    [CrossRef]
  6. V. Scharf, A. Katzir, “Four-band fiber-optic radiometry for determining the true temperature of gray bodies,” Appl. Phys. Lett. 77, 2955–2957 (2000).
    [CrossRef]
  7. V. Tank, H. Dietl, “Multispectral infrared pyrometer for temperature measurement with automatic correction of the influence of emissivity,” Infrared Phys. 30, 331–342 (1990).
    [CrossRef]
  8. G. B. Hunter, C. D. Allemand, T. W. Eagar, “Prototype device for multiwavelength pyrometry,” Opt. Eng. 25, 1222–1231 (1986).
    [CrossRef]
  9. M. B. Kaplinsky, J. Li, N. J. McCaffrey, V. Patel, E. S. H. Hou, N. M. Ravindra, C. N. Manikopoulos, W. F. Kosonocky, “Recent advances in the development of a multiwavelength imaging pyrometer,” Opt. Eng. 36, 3176–3187 (1997).
    [CrossRef]
  10. S. Sade, A. Katzir, “Multiband fiber optic radiometry for measuring the temperature and emissivity of gray bodies of low or high emissivities,” Appl. Opt. (to be published).
  11. C. D. Rabii, D. J. Gibson, J. A. Harrington, “Processing and characterization of silver films used to fabricate hollow glass waveguides,” Appl. Opt. 38, 4486–4493 (1999).
    [CrossRef]
  12. J. E. Dennis, R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, 2nd ed. (Prentice-Hall, Englewood Cliffs, N.J., 1996).
    [CrossRef]
  13. V. Scharf, N. Naftali, O. Eyal, S. G. Lipson, A. Katzir, “Theoretical evaluation of a four-band fiber-optic radiometer,” Appl. Opt. 40, 104–111 (2001).
    [CrossRef]
  14. K. Chrzanowski, M. Sulim, “Measure of the influence of detector noise on temperature-measurement accuracy for multiband systems,” Appl. Opt. 37, 5051–5057 (1998).
    [CrossRef]

2002 (1)

S. Sade, O. Eyal, V. Scharf, A. Katzir, “Fiber optic infrared radiometer for accurate temperature measurements,” Appl. Opt. 41, 908–1914 (2002).
[CrossRef]

2001 (1)

2000 (1)

V. Scharf, A. Katzir, “Four-band fiber-optic radiometry for determining the true temperature of gray bodies,” Appl. Phys. Lett. 77, 2955–2957 (2000).
[CrossRef]

1999 (1)

1998 (2)

1997 (1)

M. B. Kaplinsky, J. Li, N. J. McCaffrey, V. Patel, E. S. H. Hou, N. M. Ravindra, C. N. Manikopoulos, W. F. Kosonocky, “Recent advances in the development of a multiwavelength imaging pyrometer,” Opt. Eng. 36, 3176–3187 (1997).
[CrossRef]

1996 (1)

Y. Dankner, O. Eyal, A. Katzir, “Two bandpass fiber-optic radiometry for monitoring the temperature of photoresist during dry processing,” Appl. Phys. Lett. 68, 2583–2585 (1996).
[CrossRef]

1995 (1)

O. Eyal, A. Katzir, “Temperature measurements utilizing two-bandpass fiber optic radiometry,” Opt. Eng. 34, 470–473 (1995).
[CrossRef]

1994 (1)

O. Eyal, A. Zur, O. Shenfeld, M. Gilo, A. Katzir, “Infrared radiometry using silver halide fibers and a cooled photonic detector,” Opt. Eng. 33, 502–509 (1994).
[CrossRef]

1990 (1)

V. Tank, H. Dietl, “Multispectral infrared pyrometer for temperature measurement with automatic correction of the influence of emissivity,” Infrared Phys. 30, 331–342 (1990).
[CrossRef]

1986 (1)

G. B. Hunter, C. D. Allemand, T. W. Eagar, “Prototype device for multiwavelength pyrometry,” Opt. Eng. 25, 1222–1231 (1986).
[CrossRef]

Allemand, C. D.

G. B. Hunter, C. D. Allemand, T. W. Eagar, “Prototype device for multiwavelength pyrometry,” Opt. Eng. 25, 1222–1231 (1986).
[CrossRef]

Celliers, P. M.

Chrzanowski, K.

Da Silva, L. B.

Dankner, Y.

Y. Dankner, O. Eyal, A. Katzir, “Two bandpass fiber-optic radiometry for monitoring the temperature of photoresist during dry processing,” Appl. Phys. Lett. 68, 2583–2585 (1996).
[CrossRef]

Dennis, J. E.

J. E. Dennis, R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, 2nd ed. (Prentice-Hall, Englewood Cliffs, N.J., 1996).
[CrossRef]

Dietl, H.

V. Tank, H. Dietl, “Multispectral infrared pyrometer for temperature measurement with automatic correction of the influence of emissivity,” Infrared Phys. 30, 331–342 (1990).
[CrossRef]

Eagar, T. W.

G. B. Hunter, C. D. Allemand, T. W. Eagar, “Prototype device for multiwavelength pyrometry,” Opt. Eng. 25, 1222–1231 (1986).
[CrossRef]

Eyal, O.

S. Sade, O. Eyal, V. Scharf, A. Katzir, “Fiber optic infrared radiometer for accurate temperature measurements,” Appl. Opt. 41, 908–1914 (2002).
[CrossRef]

V. Scharf, N. Naftali, O. Eyal, S. G. Lipson, A. Katzir, “Theoretical evaluation of a four-band fiber-optic radiometer,” Appl. Opt. 40, 104–111 (2001).
[CrossRef]

Y. Dankner, O. Eyal, A. Katzir, “Two bandpass fiber-optic radiometry for monitoring the temperature of photoresist during dry processing,” Appl. Phys. Lett. 68, 2583–2585 (1996).
[CrossRef]

O. Eyal, A. Katzir, “Temperature measurements utilizing two-bandpass fiber optic radiometry,” Opt. Eng. 34, 470–473 (1995).
[CrossRef]

O. Eyal, A. Zur, O. Shenfeld, M. Gilo, A. Katzir, “Infrared radiometry using silver halide fibers and a cooled photonic detector,” Opt. Eng. 33, 502–509 (1994).
[CrossRef]

Gibson, D. J.

Gilo, M.

O. Eyal, A. Zur, O. Shenfeld, M. Gilo, A. Katzir, “Infrared radiometry using silver halide fibers and a cooled photonic detector,” Opt. Eng. 33, 502–509 (1994).
[CrossRef]

Harrington, J. A.

Hou, E. S. H.

M. B. Kaplinsky, J. Li, N. J. McCaffrey, V. Patel, E. S. H. Hou, N. M. Ravindra, C. N. Manikopoulos, W. F. Kosonocky, “Recent advances in the development of a multiwavelength imaging pyrometer,” Opt. Eng. 36, 3176–3187 (1997).
[CrossRef]

Hunter, G. B.

G. B. Hunter, C. D. Allemand, T. W. Eagar, “Prototype device for multiwavelength pyrometry,” Opt. Eng. 25, 1222–1231 (1986).
[CrossRef]

Kaplinsky, M. B.

M. B. Kaplinsky, J. Li, N. J. McCaffrey, V. Patel, E. S. H. Hou, N. M. Ravindra, C. N. Manikopoulos, W. F. Kosonocky, “Recent advances in the development of a multiwavelength imaging pyrometer,” Opt. Eng. 36, 3176–3187 (1997).
[CrossRef]

Katzir, A.

S. Sade, O. Eyal, V. Scharf, A. Katzir, “Fiber optic infrared radiometer for accurate temperature measurements,” Appl. Opt. 41, 908–1914 (2002).
[CrossRef]

V. Scharf, N. Naftali, O. Eyal, S. G. Lipson, A. Katzir, “Theoretical evaluation of a four-band fiber-optic radiometer,” Appl. Opt. 40, 104–111 (2001).
[CrossRef]

V. Scharf, A. Katzir, “Four-band fiber-optic radiometry for determining the true temperature of gray bodies,” Appl. Phys. Lett. 77, 2955–2957 (2000).
[CrossRef]

Y. Dankner, O. Eyal, A. Katzir, “Two bandpass fiber-optic radiometry for monitoring the temperature of photoresist during dry processing,” Appl. Phys. Lett. 68, 2583–2585 (1996).
[CrossRef]

O. Eyal, A. Katzir, “Temperature measurements utilizing two-bandpass fiber optic radiometry,” Opt. Eng. 34, 470–473 (1995).
[CrossRef]

O. Eyal, A. Zur, O. Shenfeld, M. Gilo, A. Katzir, “Infrared radiometry using silver halide fibers and a cooled photonic detector,” Opt. Eng. 33, 502–509 (1994).
[CrossRef]

S. Sade, A. Katzir, “Multiband fiber optic radiometry for measuring the temperature and emissivity of gray bodies of low or high emissivities,” Appl. Opt. (to be published).

Kosonocky, W. F.

M. B. Kaplinsky, J. Li, N. J. McCaffrey, V. Patel, E. S. H. Hou, N. M. Ravindra, C. N. Manikopoulos, W. F. Kosonocky, “Recent advances in the development of a multiwavelength imaging pyrometer,” Opt. Eng. 36, 3176–3187 (1997).
[CrossRef]

Li, J.

M. B. Kaplinsky, J. Li, N. J. McCaffrey, V. Patel, E. S. H. Hou, N. M. Ravindra, C. N. Manikopoulos, W. F. Kosonocky, “Recent advances in the development of a multiwavelength imaging pyrometer,” Opt. Eng. 36, 3176–3187 (1997).
[CrossRef]

Lipson, S. G.

Manikopoulos, C. N.

M. B. Kaplinsky, J. Li, N. J. McCaffrey, V. Patel, E. S. H. Hou, N. M. Ravindra, C. N. Manikopoulos, W. F. Kosonocky, “Recent advances in the development of a multiwavelength imaging pyrometer,” Opt. Eng. 36, 3176–3187 (1997).
[CrossRef]

Matthews, D. L.

McCaffrey, N. J.

M. B. Kaplinsky, J. Li, N. J. McCaffrey, V. Patel, E. S. H. Hou, N. M. Ravindra, C. N. Manikopoulos, W. F. Kosonocky, “Recent advances in the development of a multiwavelength imaging pyrometer,” Opt. Eng. 36, 3176–3187 (1997).
[CrossRef]

Naftali, N.

Patel, V.

M. B. Kaplinsky, J. Li, N. J. McCaffrey, V. Patel, E. S. H. Hou, N. M. Ravindra, C. N. Manikopoulos, W. F. Kosonocky, “Recent advances in the development of a multiwavelength imaging pyrometer,” Opt. Eng. 36, 3176–3187 (1997).
[CrossRef]

Rabii, C. D.

Ravindra, N. M.

M. B. Kaplinsky, J. Li, N. J. McCaffrey, V. Patel, E. S. H. Hou, N. M. Ravindra, C. N. Manikopoulos, W. F. Kosonocky, “Recent advances in the development of a multiwavelength imaging pyrometer,” Opt. Eng. 36, 3176–3187 (1997).
[CrossRef]

Sade, S.

S. Sade, O. Eyal, V. Scharf, A. Katzir, “Fiber optic infrared radiometer for accurate temperature measurements,” Appl. Opt. 41, 908–1914 (2002).
[CrossRef]

S. Sade, A. Katzir, “Multiband fiber optic radiometry for measuring the temperature and emissivity of gray bodies of low or high emissivities,” Appl. Opt. (to be published).

Scharf, V.

S. Sade, O. Eyal, V. Scharf, A. Katzir, “Fiber optic infrared radiometer for accurate temperature measurements,” Appl. Opt. 41, 908–1914 (2002).
[CrossRef]

V. Scharf, N. Naftali, O. Eyal, S. G. Lipson, A. Katzir, “Theoretical evaluation of a four-band fiber-optic radiometer,” Appl. Opt. 40, 104–111 (2001).
[CrossRef]

V. Scharf, A. Katzir, “Four-band fiber-optic radiometry for determining the true temperature of gray bodies,” Appl. Phys. Lett. 77, 2955–2957 (2000).
[CrossRef]

Schnabel, R. B.

J. E. Dennis, R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, 2nd ed. (Prentice-Hall, Englewood Cliffs, N.J., 1996).
[CrossRef]

Shenfeld, O.

O. Eyal, A. Zur, O. Shenfeld, M. Gilo, A. Katzir, “Infrared radiometry using silver halide fibers and a cooled photonic detector,” Opt. Eng. 33, 502–509 (1994).
[CrossRef]

Small, W.

Soltz, B. A.

Sulim, M.

Tank, V.

V. Tank, H. Dietl, “Multispectral infrared pyrometer for temperature measurement with automatic correction of the influence of emissivity,” Infrared Phys. 30, 331–342 (1990).
[CrossRef]

Zur, A.

O. Eyal, A. Zur, O. Shenfeld, M. Gilo, A. Katzir, “Infrared radiometry using silver halide fibers and a cooled photonic detector,” Opt. Eng. 33, 502–509 (1994).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. Lett. (2)

Y. Dankner, O. Eyal, A. Katzir, “Two bandpass fiber-optic radiometry for monitoring the temperature of photoresist during dry processing,” Appl. Phys. Lett. 68, 2583–2585 (1996).
[CrossRef]

V. Scharf, A. Katzir, “Four-band fiber-optic radiometry for determining the true temperature of gray bodies,” Appl. Phys. Lett. 77, 2955–2957 (2000).
[CrossRef]

Infrared Phys. (1)

V. Tank, H. Dietl, “Multispectral infrared pyrometer for temperature measurement with automatic correction of the influence of emissivity,” Infrared Phys. 30, 331–342 (1990).
[CrossRef]

Opt. Eng. (4)

G. B. Hunter, C. D. Allemand, T. W. Eagar, “Prototype device for multiwavelength pyrometry,” Opt. Eng. 25, 1222–1231 (1986).
[CrossRef]

M. B. Kaplinsky, J. Li, N. J. McCaffrey, V. Patel, E. S. H. Hou, N. M. Ravindra, C. N. Manikopoulos, W. F. Kosonocky, “Recent advances in the development of a multiwavelength imaging pyrometer,” Opt. Eng. 36, 3176–3187 (1997).
[CrossRef]

O. Eyal, A. Katzir, “Temperature measurements utilizing two-bandpass fiber optic radiometry,” Opt. Eng. 34, 470–473 (1995).
[CrossRef]

O. Eyal, A. Zur, O. Shenfeld, M. Gilo, A. Katzir, “Infrared radiometry using silver halide fibers and a cooled photonic detector,” Opt. Eng. 33, 502–509 (1994).
[CrossRef]

Other (2)

S. Sade, A. Katzir, “Multiband fiber optic radiometry for measuring the temperature and emissivity of gray bodies of low or high emissivities,” Appl. Opt. (to be published).

J. E. Dennis, R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, 2nd ed. (Prentice-Hall, Englewood Cliffs, N.J., 1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

HGW with a Ag-AgI structure.

Fig. 2
Fig. 2

Typical FTIR spectra of a dielectric (silver-iodide) coated silver HGW.

Fig. 3
Fig. 3

System setup.

Fig. 4
Fig. 4

Spectral characteristics of the various components of the system: (a) normalized responsivity of the HgCdTe/InSb detector and the absolute spectral transmittance of the silver halide fiber (including Fresnel losses), (b) relative spectral transmittance of the six HGW filters.

Fig. 5
Fig. 5

Solution of the system of relations (4) for a blackbody for sets of four and five filters at all the measured temperatures. (a) Emissivity errors for the (open circles) four-filter sets and (filled circles) five-filter sets. (b) T body errors for (open circles) four-filter sets and (filled circles) five-filter sets. The T room errors for the four-filter sets are plotted by open triangles; for the five-filter sets, by filled triangles.

Fig. 6
Fig. 6

The two sets of four HGW filters selected for the measurements: (a) set used for measurements of a blackbody and one of the gray bodies and (b) set used for measurements of the second gray body.

Fig. 7
Fig. 7

Estimated errors for T body, T room, and ∊ at each measured temperature of the blackbody.

Fig. 8
Fig. 8

Estimated errors for T body, T room, and ∊ at each measured temperature of the KRS-5 gray body.

Fig. 9
Fig. 9

Estimated errors for T body, T room, and ∊ at each measured temperature of the Krylon gray body.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

dp=mλpm4a12-1,
Si=Aiλ1iλ2i fiλεWbbTbody, λ+1-εWbbTroom, λdλ+Bi.
Bi=λ1iλ2iεchWbbTch, λ+1-εchWbbTroom, λdλ,
Biλ1iλ2iWbbTroom, λdλ.
Si=Aiλ1iλ2i fiλεWbbTbody, λ-WbbTroom, λdλ+B˜i, i=1n,

Metrics