Abstract

Performances are presented of three classes of imaging slit spectrometers for extended sources with aberration-corrected gratings. A general analytical expression for minimizing off-axis grating aberrations is obtained, and it is demonstrated that these aberrations are minimized when the spectrometer is operated at a magnification higher than unity. Classical designs with toroidal uniform-line-spaced (TULS) or spherical varied-line-space (SVLS) gratings are compared with a new class of designs that utilize toroidal varied-line-space (TVLS) gratings. Although TULS and SVLS designs with two stigmatic points can be designed to operate at near-unity magnification with excellent on-axis spectral and spatial resolutions, they cannot be made to satisfy the general off-axis condition, and so their off-axis performances are not optimum. On the contrary TVLS designs with two stigmatic points can be operated at almost any magnification, thus satisfying the off-axis condition perfectly. Such designs are suitable for imaging spectrometer observations that require an extended field of view.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Wolfe, Introduction to Imaging Spectrometers (SPIE Optical Engineering Press, Bellingham, Wash., 1997).
    [CrossRef]
  2. J. A. R. Samson, D. L. Ederer, Vacuum Ultraviolet Spectroscopy II (Academic, San Diego, Calif., 1998).
  3. H. Haber, “The torus grating,” J. Opt. Soc. Am. 40, 153–166 (1950).
    [CrossRef]
  4. T. Harada, T. Kita, “Mechanically ruled aberration-corrected concave gratings,” Appl. Opt. 19, 3987–3993 (1980).
    [CrossRef] [PubMed]
  5. T. Harada, T. Kita, S. Bowyer, M. Hurwitz, “Design of spherical varied line-space gratings for a high-resolution EUV spectrometer,” in International Conference on the Application and Theory of Periodic Structures, J. M. Lerner, W. R. McKinney, eds., Proc. SPIE1545, 2–10 (1991).
    [CrossRef]
  6. T. Harada, H. Sakuma, K. Takanashi, T. Watanabe, H. Hara, T. Kita, “Design of a high-resolution extreme-ultraviolet imaging spectrometer with aberration-corrected concave gratings,” Appl. Opt. 37, 6803–6810 (1998).
    [CrossRef]
  7. C. Pernechele, G. Naletto, P. Nicolosi, G. Tondello, S. Fineschi, M. Romoli, G. Noci, D. Spadaro, J. L. Kohl, “Optical performances of the UVCS/SOHO spectrometer,” Appl. Opt. 36, 813–826 (1997).
    [CrossRef] [PubMed]
  8. P. Villoresi, P. Nicolosi, M. G. Pelizzo, “Design and experimental characterization of a high-resolution instrument for measuring the extreme-UV absorption of laser plasmas,” Appl. Opt. 39, 85–93 (2000).
    [CrossRef]
  9. T. Onaka, “Aberration-corrected concave grating for the Mid-Infrared Spectrometer aboard the Infrared Telescope in Space,” Appl. Opt. 34, 659–666 (1995).
    [CrossRef] [PubMed]
  10. T. Harada, H. Sakuma, T. Kita, M. Nakamura, “Design of EUV spectrometer with stigmatic image focusing using spherical varied line-space gratings,” in X-Ray and Ultraviolet Spectroscopy and Polarimetry, S. Fineschi, ed., Proc. SPIE2283, 180–188 (1994).
    [CrossRef]
  11. R. J. Thomas, “Toroidal varied line-space (TVLS) gratings,” in Innovative Telescopes and Instrumentation for Solar Astrophysics, S. L. Keil, V. Avakyan, eds., Proc. SPIE4853, 411–418 (2002).
    [CrossRef]
  12. T. Namioka, “Theory of concave grating,” J. Opt. Soc. Am. 49, 446–460 (1959).
    [CrossRef]

2000 (1)

1998 (1)

1997 (1)

1995 (1)

1980 (1)

1959 (1)

1950 (1)

Bowyer, S.

T. Harada, T. Kita, S. Bowyer, M. Hurwitz, “Design of spherical varied line-space gratings for a high-resolution EUV spectrometer,” in International Conference on the Application and Theory of Periodic Structures, J. M. Lerner, W. R. McKinney, eds., Proc. SPIE1545, 2–10 (1991).
[CrossRef]

Ederer, D. L.

J. A. R. Samson, D. L. Ederer, Vacuum Ultraviolet Spectroscopy II (Academic, San Diego, Calif., 1998).

Fineschi, S.

Haber, H.

Hara, H.

Harada, T.

T. Harada, H. Sakuma, K. Takanashi, T. Watanabe, H. Hara, T. Kita, “Design of a high-resolution extreme-ultraviolet imaging spectrometer with aberration-corrected concave gratings,” Appl. Opt. 37, 6803–6810 (1998).
[CrossRef]

T. Harada, T. Kita, “Mechanically ruled aberration-corrected concave gratings,” Appl. Opt. 19, 3987–3993 (1980).
[CrossRef] [PubMed]

T. Harada, T. Kita, S. Bowyer, M. Hurwitz, “Design of spherical varied line-space gratings for a high-resolution EUV spectrometer,” in International Conference on the Application and Theory of Periodic Structures, J. M. Lerner, W. R. McKinney, eds., Proc. SPIE1545, 2–10 (1991).
[CrossRef]

T. Harada, H. Sakuma, T. Kita, M. Nakamura, “Design of EUV spectrometer with stigmatic image focusing using spherical varied line-space gratings,” in X-Ray and Ultraviolet Spectroscopy and Polarimetry, S. Fineschi, ed., Proc. SPIE2283, 180–188 (1994).
[CrossRef]

Hurwitz, M.

T. Harada, T. Kita, S. Bowyer, M. Hurwitz, “Design of spherical varied line-space gratings for a high-resolution EUV spectrometer,” in International Conference on the Application and Theory of Periodic Structures, J. M. Lerner, W. R. McKinney, eds., Proc. SPIE1545, 2–10 (1991).
[CrossRef]

Kita, T.

T. Harada, H. Sakuma, K. Takanashi, T. Watanabe, H. Hara, T. Kita, “Design of a high-resolution extreme-ultraviolet imaging spectrometer with aberration-corrected concave gratings,” Appl. Opt. 37, 6803–6810 (1998).
[CrossRef]

T. Harada, T. Kita, “Mechanically ruled aberration-corrected concave gratings,” Appl. Opt. 19, 3987–3993 (1980).
[CrossRef] [PubMed]

T. Harada, T. Kita, S. Bowyer, M. Hurwitz, “Design of spherical varied line-space gratings for a high-resolution EUV spectrometer,” in International Conference on the Application and Theory of Periodic Structures, J. M. Lerner, W. R. McKinney, eds., Proc. SPIE1545, 2–10 (1991).
[CrossRef]

T. Harada, H. Sakuma, T. Kita, M. Nakamura, “Design of EUV spectrometer with stigmatic image focusing using spherical varied line-space gratings,” in X-Ray and Ultraviolet Spectroscopy and Polarimetry, S. Fineschi, ed., Proc. SPIE2283, 180–188 (1994).
[CrossRef]

Kohl, J. L.

Nakamura, M.

T. Harada, H. Sakuma, T. Kita, M. Nakamura, “Design of EUV spectrometer with stigmatic image focusing using spherical varied line-space gratings,” in X-Ray and Ultraviolet Spectroscopy and Polarimetry, S. Fineschi, ed., Proc. SPIE2283, 180–188 (1994).
[CrossRef]

Naletto, G.

Namioka, T.

Nicolosi, P.

Noci, G.

Onaka, T.

Pelizzo, M. G.

Pernechele, C.

Romoli, M.

Sakuma, H.

T. Harada, H. Sakuma, K. Takanashi, T. Watanabe, H. Hara, T. Kita, “Design of a high-resolution extreme-ultraviolet imaging spectrometer with aberration-corrected concave gratings,” Appl. Opt. 37, 6803–6810 (1998).
[CrossRef]

T. Harada, H. Sakuma, T. Kita, M. Nakamura, “Design of EUV spectrometer with stigmatic image focusing using spherical varied line-space gratings,” in X-Ray and Ultraviolet Spectroscopy and Polarimetry, S. Fineschi, ed., Proc. SPIE2283, 180–188 (1994).
[CrossRef]

Samson, J. A. R.

J. A. R. Samson, D. L. Ederer, Vacuum Ultraviolet Spectroscopy II (Academic, San Diego, Calif., 1998).

Spadaro, D.

Takanashi, K.

Thomas, R. J.

R. J. Thomas, “Toroidal varied line-space (TVLS) gratings,” in Innovative Telescopes and Instrumentation for Solar Astrophysics, S. L. Keil, V. Avakyan, eds., Proc. SPIE4853, 411–418 (2002).
[CrossRef]

Tondello, G.

Villoresi, P.

Watanabe, T.

Wolfe, W. L.

W. L. Wolfe, Introduction to Imaging Spectrometers (SPIE Optical Engineering Press, Bellingham, Wash., 1997).
[CrossRef]

Appl. Opt. (5)

J. Opt. Soc. Am. (2)

Other (5)

W. L. Wolfe, Introduction to Imaging Spectrometers (SPIE Optical Engineering Press, Bellingham, Wash., 1997).
[CrossRef]

J. A. R. Samson, D. L. Ederer, Vacuum Ultraviolet Spectroscopy II (Academic, San Diego, Calif., 1998).

T. Harada, T. Kita, S. Bowyer, M. Hurwitz, “Design of spherical varied line-space gratings for a high-resolution EUV spectrometer,” in International Conference on the Application and Theory of Periodic Structures, J. M. Lerner, W. R. McKinney, eds., Proc. SPIE1545, 2–10 (1991).
[CrossRef]

T. Harada, H. Sakuma, T. Kita, M. Nakamura, “Design of EUV spectrometer with stigmatic image focusing using spherical varied line-space gratings,” in X-Ray and Ultraviolet Spectroscopy and Polarimetry, S. Fineschi, ed., Proc. SPIE2283, 180–188 (1994).
[CrossRef]

R. J. Thomas, “Toroidal varied line-space (TVLS) gratings,” in Innovative Telescopes and Instrumentation for Solar Astrophysics, S. L. Keil, V. Avakyan, eds., Proc. SPIE4853, 411–418 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the optical layout of a concave grating.

Fig. 2
Fig. 2

Schematic of the TULS design for the 115–155-nm region. The two detectors have been placed to acquire the 115–130- and 140–155-nm spectral regions.

Fig. 3
Fig. 3

FWHM aberration of the TULS design. The detector pixel size is 15 μm. The subtended angle α–β at the central wavelength is 14.1°.

Fig. 4
Fig. 4

Schematic of the SVLS design for the 115–155-nm region.

Fig. 5
Fig. 5

FWHM aberration of the SVLS design. The detector pixel size is 15 μm. The subtended angle α–β at the central wavelength is 5.8°.

Fig. 6
Fig. 6

Schematic drawing of the TVLS design for the 115–155-nm region.

Fig. 7
Fig. 7

FWHM aberration of the TVLS design. The detector pixel size is 15 μm. The subtended angle α–β at the central wavelength is -4.7°.

Tables (4)

Tables Icon

Table 1 General Characteristics of the EUV Spectrometer

Tables Icon

Table 2 Characteristics of the TULS Spectrometer

Tables Icon

Table 3 Characteristics of the SVLS Spectrometer

Tables Icon

Table 4 Characteristics of the TVLS Spectrometer

Equations (41)

Equations on this page are rendered with MathJax. Learn more.

σy=σ0+σ1y+σ2y2+σ3y3,
F=rA+rB+i,j yizjFij=rA+rB+i,j yizjCij+mλσ0Mij,
C10=-sin α1-zA22rA2-sin β1-zB22rB2,
C01=-zArA-zBrB,
C20=12cos2 αrA+cos2 βrB-cos α+cos βR+zA22rA2sin2 αrA-cos2 αrA+cos α2R+zB22rB2sin2 βrB-cos2 βrB+cos β2R,
C02=121rA+1rB-cos α+cos βρ-zA24rA23rA-cos αρ-zB24rB23rB-cos βρ,
C11=-sin α zArA2-sin β zBrB2,
C30=12sin αrAcos2 αrA-cos αR+12sin βrBcos2 βrB-cos βR,
C40=sin2 α2rA2cos2 αrA-cos αR+18R21rA-cos αR-18rA2cos2 αrA-cos αR2+sin2 β2rB2cos2 βrB-cos βR+18R21rB-cos βR-18rB2cos2 βrB-cos βR2.
M10=1, Mij=0 for i, j1, 0,
M10=1, M20=σ1/2σ0, M30=σ2/3σ0, M40=σ3/4σ0.
zArA=-zBrB
sin α+sin β1-zA22rA2=mλσ0
F20=12cos2 αrA+cos2 βrB-cos α+cos βR+mλσ1+zA22rA2sin2 αrA-cos2 αrA+sin2 βrB-cos2 βrB+cos α+cos β2R,
F02=121rA+1rB-cos α+cos βρ-zA24rA23rA-3rB-cos α+cos βρ,
F11=-zArAsin αrA-sin βrB.
sin βsin α=rBrA=M,
cos2 αrA+cos2 βrBh-cos α+cos βR=0 spectral focal curve,
1rA+1rBv-cos α+cos βρ=0 spatial focal curve,
rA=R cos α, rBh=R cos β,
ρ=R cos α cos β1=R cos α cos β2,
β1=-β2=a sinmσ0λ1-λ22,
α=a sinmσ0λ1+λ22=a sinmσ0λc,
R=rAMccos α+cos βcMc cos2 α+cos2 βc,
ρ=cos2 β11R-cos α+cos β1rA-1=cos2 β21R-cos α+cos β2rA-1.
cos2 αrA+cos2 βrBh-cos α+cos βR+mλσ1=0 spectral focal curve,
1rA+1rBv-cos α+cos βR=0 spatial focal curve.
rA=Rcos α, rBv=Rcos β,
sin β1-sin β2cos α sin2 α+sin α+sin β1cos β2 sin2 β2-sin α+sin β2cos β1 sin2 β1=0.
cos α+cos β1sin α+sin β11+McMcsin2 β1cos α+cos βc-cos α+cos β1-cos α+cos β2sin α+sin β21+McMcsin2 β2cos α+cos βc-cos α+cos β2=0,
R=rAcos α+cos βcMc1+Mc,
α=a sinmλcσ01+Mc.
cos2 αrA+cos2 βrBh-cos α+cos βR+mλσ1=0 spectral focal curve,
1rA+1rBv-cos α+cos βρ=0 spatial focal curve.
ρ=rAcos α+cos βcMc1+Mc.
R=λ1cos α+cos β2-λ2cos α+cos β1λ1K2-λ2K1,
σ1=1mK2cos α+cos β1-K1cos α+cos β2λ1cos α+cos β2-λ2cos α+cos β1,
K1=cos2 αrA+cos2 β1cos α+cos β1ρ-1rA,
K2=cos2 αrA+cos2 β2cos α+cos β2ρ-1rA.
σ2=-32mλCsin α cos αrAcos αrA-1R+sin βC cos βCrBhcos βCrBh-1R,
σ3=-12mλC4 sin2 α cos αrA2cos αrA-1R-cos2 αrAcos αrA-1R2+1R21rA-cos αR+4 sin2 βC cos βCrBh2cos βCrBh-1R-cos2 βCrBhcos βCrBh-1R2+1R21rBh-cos βCR.

Metrics