Abstract

The surface plasmon resonance (SPR) effect on noble-metal surfaces has been explored by several investigators for the development of chemical and biological sensors as well as for the design of optical devices for other applications. The effect can be observed by use of prism couplers, diffraction gratings, and specially configured optical fibers. In an attempt to seek a new configuration that minimizes costs of fabricating media that support SPR in conjunction with designing a new format suitable for large-scale chemical and biological sensing, I have investigated the feasibility of using a commercially available, gold-type, recordable compact disk for observation of the SPR phenomenon. Experimental and theoretical results of this investigation are reported.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Kretschmann, “Determination of optical constants of metals through the stimulation of surface plasma oscillations,” Z. Phys. 241, 313–324 (1971).
    [CrossRef]
  2. M. T. Flanagan, R. H. Pantell, “Surface plasmon resonance and immunosensors,” Electron. Lett. 20, 968–970 (1984).
    [CrossRef]
  3. E. Fontana, R. H. Pantell, S. Strober, “Surface plasmon immunoassay,” Appl. Opt. 29, 4694–4704 (1990).
    [CrossRef] [PubMed]
  4. I. Pockrand, H. Raether, “Surface plasma-oscillations in silver films with wavy surface profiles—quantitative experimental study,” Opt. Commun. 18, 395–399 (1976).
    [CrossRef]
  5. S. H. Zaidi, M. Yousaf, S. R. J. Brueck, “Grating coupling to surface plasma waves. I. First-order coupling,” J. Opt. Soc. Am. 8, 770–779 (1991).
    [CrossRef]
  6. M. J. Jory, P. S. Vukusic, J. R. Sambles, “Development of a prototype gas sensor using surface-plasmon resonance on gratings,” Sens. Actuators B 17, 203–209 (1994).
    [CrossRef]
  7. R. C. Jorgenson, S. S. Yee, “A fiber-optic sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213–220 (1993).
    [CrossRef]
  8. L. DeMaria, M. Martinelli, G. Vegetti, “Fiberoptic sensor-based on surface-plasmon interrogation,” Sens. Actuators B 12, 221–223 (1993).
    [CrossRef]
  9. E. Fontana, J. O. Maciel Neto, “Optimization of Au, Cu, Ag and Al films for the development of SPR-based sensors,” in Proceedings of the 9th Brazilian Microwave and Optoelectronics Symposium, A. Gomes Neto, ed. (Sociedade Brasileira de Microondos e Optoeletrônica, João Pessoa, Brazil, 2000), pp. 60–64.
  10. C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, New York, 1996), Chap. 10, pp. 269–304.
  11. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
    [CrossRef]
  12. S. Sjolander, C. Urbanicczky, “Integrated fluid handling system for biomolecular interaction analysis,” Anal. Chem. 63, 2336–2345 (1991).
  13. E. Fontana, R. H. Pantell, “Characterization of multilayer rough surfaces by use of surface-plasmon spectroscopy,” Phys. Rev. B 37, 3164–3182 (1988).
    [CrossRef]
  14. B. Rothenhäusler, W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615–617 (1988).
    [CrossRef]
  15. W. Johnstone, G. Stewart, T. Hart, B. Culshaw, “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol. 8, 538–544 (1990).
    [CrossRef]
  16. K. C. Pohlmann, Principles of Digital Audio (McGraw-Hill, New York, 2000), Chap. 9, pp. 243–301.
  17. P. M. Vandenberg, J. T. Fokkema, “Rayleigh hypothesis in the theory of reflection by a grating,” J. Opt. Soc. Am. 69, 27–31 (1979).
    [CrossRef]
  18. J. P. Hugonin, R. Petit, M. Cadilhac, “Plane wave expansion used to describe the field diffracted by a grating,” J. Opt. Soc. Am. 71, 593–598 (1981).
    [CrossRef]
  19. J. H. Weaver, “Optical properties of metals,” in Handbook of Chemistry and Physics, 71st ed., D. R. Kudem, ed. (CRC Press, Boston, Mass., 1991), pp. 1287–1302.
  20. W. P. Chen, J. M. Chen, “Use of surface plasma waves for determination of the thickness and optical constants of thin metallic films,” J. Opt. Soc. Am. 71, 189–191 (1981).
    [CrossRef]
  21. G. B. Arkfen, H.-J. Weber, Mathematical Methods for Physicists, 5th ed. (Harcourt/Academic, New York, 2000), Chap. 11.
  22. N. P. K. Cotter, T. W. Preist, R. Sambles, “Scattering-matrix approach to multilayer diffraction,” J. Opt. Soc. Am. A 12, 1097–1103 (1995).
    [CrossRef]

1995 (1)

1994 (1)

M. J. Jory, P. S. Vukusic, J. R. Sambles, “Development of a prototype gas sensor using surface-plasmon resonance on gratings,” Sens. Actuators B 17, 203–209 (1994).
[CrossRef]

1993 (2)

R. C. Jorgenson, S. S. Yee, “A fiber-optic sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213–220 (1993).
[CrossRef]

L. DeMaria, M. Martinelli, G. Vegetti, “Fiberoptic sensor-based on surface-plasmon interrogation,” Sens. Actuators B 12, 221–223 (1993).
[CrossRef]

1991 (2)

S. H. Zaidi, M. Yousaf, S. R. J. Brueck, “Grating coupling to surface plasma waves. I. First-order coupling,” J. Opt. Soc. Am. 8, 770–779 (1991).
[CrossRef]

S. Sjolander, C. Urbanicczky, “Integrated fluid handling system for biomolecular interaction analysis,” Anal. Chem. 63, 2336–2345 (1991).

1990 (2)

E. Fontana, R. H. Pantell, S. Strober, “Surface plasmon immunoassay,” Appl. Opt. 29, 4694–4704 (1990).
[CrossRef] [PubMed]

W. Johnstone, G. Stewart, T. Hart, B. Culshaw, “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol. 8, 538–544 (1990).
[CrossRef]

1988 (2)

E. Fontana, R. H. Pantell, “Characterization of multilayer rough surfaces by use of surface-plasmon spectroscopy,” Phys. Rev. B 37, 3164–3182 (1988).
[CrossRef]

B. Rothenhäusler, W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615–617 (1988).
[CrossRef]

1984 (1)

M. T. Flanagan, R. H. Pantell, “Surface plasmon resonance and immunosensors,” Electron. Lett. 20, 968–970 (1984).
[CrossRef]

1981 (2)

1979 (1)

1976 (1)

I. Pockrand, H. Raether, “Surface plasma-oscillations in silver films with wavy surface profiles—quantitative experimental study,” Opt. Commun. 18, 395–399 (1976).
[CrossRef]

1971 (1)

E. Kretschmann, “Determination of optical constants of metals through the stimulation of surface plasma oscillations,” Z. Phys. 241, 313–324 (1971).
[CrossRef]

1968 (1)

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[CrossRef]

Arkfen, G. B.

G. B. Arkfen, H.-J. Weber, Mathematical Methods for Physicists, 5th ed. (Harcourt/Academic, New York, 2000), Chap. 11.

Brueck, S. R. J.

S. H. Zaidi, M. Yousaf, S. R. J. Brueck, “Grating coupling to surface plasma waves. I. First-order coupling,” J. Opt. Soc. Am. 8, 770–779 (1991).
[CrossRef]

Cadilhac, M.

Chen, J. M.

Chen, W. P.

Cotter, N. P. K.

Culshaw, B.

W. Johnstone, G. Stewart, T. Hart, B. Culshaw, “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol. 8, 538–544 (1990).
[CrossRef]

DeMaria, L.

L. DeMaria, M. Martinelli, G. Vegetti, “Fiberoptic sensor-based on surface-plasmon interrogation,” Sens. Actuators B 12, 221–223 (1993).
[CrossRef]

Flanagan, M. T.

M. T. Flanagan, R. H. Pantell, “Surface plasmon resonance and immunosensors,” Electron. Lett. 20, 968–970 (1984).
[CrossRef]

Fokkema, J. T.

Fontana, E.

E. Fontana, R. H. Pantell, S. Strober, “Surface plasmon immunoassay,” Appl. Opt. 29, 4694–4704 (1990).
[CrossRef] [PubMed]

E. Fontana, R. H. Pantell, “Characterization of multilayer rough surfaces by use of surface-plasmon spectroscopy,” Phys. Rev. B 37, 3164–3182 (1988).
[CrossRef]

E. Fontana, J. O. Maciel Neto, “Optimization of Au, Cu, Ag and Al films for the development of SPR-based sensors,” in Proceedings of the 9th Brazilian Microwave and Optoelectronics Symposium, A. Gomes Neto, ed. (Sociedade Brasileira de Microondos e Optoeletrônica, João Pessoa, Brazil, 2000), pp. 60–64.

Hart, T.

W. Johnstone, G. Stewart, T. Hart, B. Culshaw, “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol. 8, 538–544 (1990).
[CrossRef]

Hugonin, J. P.

Johnstone, W.

W. Johnstone, G. Stewart, T. Hart, B. Culshaw, “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol. 8, 538–544 (1990).
[CrossRef]

Jorgenson, R. C.

R. C. Jorgenson, S. S. Yee, “A fiber-optic sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213–220 (1993).
[CrossRef]

Jory, M. J.

M. J. Jory, P. S. Vukusic, J. R. Sambles, “Development of a prototype gas sensor using surface-plasmon resonance on gratings,” Sens. Actuators B 17, 203–209 (1994).
[CrossRef]

Kittel, C.

C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, New York, 1996), Chap. 10, pp. 269–304.

Knoll, W.

B. Rothenhäusler, W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615–617 (1988).
[CrossRef]

Kretschmann, E.

E. Kretschmann, “Determination of optical constants of metals through the stimulation of surface plasma oscillations,” Z. Phys. 241, 313–324 (1971).
[CrossRef]

Maciel Neto, J. O.

E. Fontana, J. O. Maciel Neto, “Optimization of Au, Cu, Ag and Al films for the development of SPR-based sensors,” in Proceedings of the 9th Brazilian Microwave and Optoelectronics Symposium, A. Gomes Neto, ed. (Sociedade Brasileira de Microondos e Optoeletrônica, João Pessoa, Brazil, 2000), pp. 60–64.

Martinelli, M.

L. DeMaria, M. Martinelli, G. Vegetti, “Fiberoptic sensor-based on surface-plasmon interrogation,” Sens. Actuators B 12, 221–223 (1993).
[CrossRef]

Otto, A.

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[CrossRef]

Pantell, R. H.

E. Fontana, R. H. Pantell, S. Strober, “Surface plasmon immunoassay,” Appl. Opt. 29, 4694–4704 (1990).
[CrossRef] [PubMed]

E. Fontana, R. H. Pantell, “Characterization of multilayer rough surfaces by use of surface-plasmon spectroscopy,” Phys. Rev. B 37, 3164–3182 (1988).
[CrossRef]

M. T. Flanagan, R. H. Pantell, “Surface plasmon resonance and immunosensors,” Electron. Lett. 20, 968–970 (1984).
[CrossRef]

Petit, R.

Pockrand, I.

I. Pockrand, H. Raether, “Surface plasma-oscillations in silver films with wavy surface profiles—quantitative experimental study,” Opt. Commun. 18, 395–399 (1976).
[CrossRef]

Pohlmann, K. C.

K. C. Pohlmann, Principles of Digital Audio (McGraw-Hill, New York, 2000), Chap. 9, pp. 243–301.

Preist, T. W.

Raether, H.

I. Pockrand, H. Raether, “Surface plasma-oscillations in silver films with wavy surface profiles—quantitative experimental study,” Opt. Commun. 18, 395–399 (1976).
[CrossRef]

Rothenhäusler, B.

B. Rothenhäusler, W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615–617 (1988).
[CrossRef]

Sambles, J. R.

M. J. Jory, P. S. Vukusic, J. R. Sambles, “Development of a prototype gas sensor using surface-plasmon resonance on gratings,” Sens. Actuators B 17, 203–209 (1994).
[CrossRef]

Sambles, R.

Sjolander, S.

S. Sjolander, C. Urbanicczky, “Integrated fluid handling system for biomolecular interaction analysis,” Anal. Chem. 63, 2336–2345 (1991).

Stewart, G.

W. Johnstone, G. Stewart, T. Hart, B. Culshaw, “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol. 8, 538–544 (1990).
[CrossRef]

Strober, S.

Urbanicczky, C.

S. Sjolander, C. Urbanicczky, “Integrated fluid handling system for biomolecular interaction analysis,” Anal. Chem. 63, 2336–2345 (1991).

Vandenberg, P. M.

Vegetti, G.

L. DeMaria, M. Martinelli, G. Vegetti, “Fiberoptic sensor-based on surface-plasmon interrogation,” Sens. Actuators B 12, 221–223 (1993).
[CrossRef]

Vukusic, P. S.

M. J. Jory, P. S. Vukusic, J. R. Sambles, “Development of a prototype gas sensor using surface-plasmon resonance on gratings,” Sens. Actuators B 17, 203–209 (1994).
[CrossRef]

Weaver, J. H.

J. H. Weaver, “Optical properties of metals,” in Handbook of Chemistry and Physics, 71st ed., D. R. Kudem, ed. (CRC Press, Boston, Mass., 1991), pp. 1287–1302.

Weber, H.-J.

G. B. Arkfen, H.-J. Weber, Mathematical Methods for Physicists, 5th ed. (Harcourt/Academic, New York, 2000), Chap. 11.

Yee, S. S.

R. C. Jorgenson, S. S. Yee, “A fiber-optic sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213–220 (1993).
[CrossRef]

Yousaf, M.

S. H. Zaidi, M. Yousaf, S. R. J. Brueck, “Grating coupling to surface plasma waves. I. First-order coupling,” J. Opt. Soc. Am. 8, 770–779 (1991).
[CrossRef]

Zaidi, S. H.

S. H. Zaidi, M. Yousaf, S. R. J. Brueck, “Grating coupling to surface plasma waves. I. First-order coupling,” J. Opt. Soc. Am. 8, 770–779 (1991).
[CrossRef]

Anal. Chem. (1)

S. Sjolander, C. Urbanicczky, “Integrated fluid handling system for biomolecular interaction analysis,” Anal. Chem. 63, 2336–2345 (1991).

Appl. Opt. (1)

Electron. Lett. (1)

M. T. Flanagan, R. H. Pantell, “Surface plasmon resonance and immunosensors,” Electron. Lett. 20, 968–970 (1984).
[CrossRef]

J. Lightwave Technol. (1)

W. Johnstone, G. Stewart, T. Hart, B. Culshaw, “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol. 8, 538–544 (1990).
[CrossRef]

J. Opt. Soc. Am. (4)

J. Opt. Soc. Am. A (1)

Nature (1)

B. Rothenhäusler, W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615–617 (1988).
[CrossRef]

Opt. Commun. (1)

I. Pockrand, H. Raether, “Surface plasma-oscillations in silver films with wavy surface profiles—quantitative experimental study,” Opt. Commun. 18, 395–399 (1976).
[CrossRef]

Phys. Rev. B (1)

E. Fontana, R. H. Pantell, “Characterization of multilayer rough surfaces by use of surface-plasmon spectroscopy,” Phys. Rev. B 37, 3164–3182 (1988).
[CrossRef]

Sens. Actuators B (3)

M. J. Jory, P. S. Vukusic, J. R. Sambles, “Development of a prototype gas sensor using surface-plasmon resonance on gratings,” Sens. Actuators B 17, 203–209 (1994).
[CrossRef]

R. C. Jorgenson, S. S. Yee, “A fiber-optic sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213–220 (1993).
[CrossRef]

L. DeMaria, M. Martinelli, G. Vegetti, “Fiberoptic sensor-based on surface-plasmon interrogation,” Sens. Actuators B 12, 221–223 (1993).
[CrossRef]

Z. Phys. (2)

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[CrossRef]

E. Kretschmann, “Determination of optical constants of metals through the stimulation of surface plasma oscillations,” Z. Phys. 241, 313–324 (1971).
[CrossRef]

Other (5)

K. C. Pohlmann, Principles of Digital Audio (McGraw-Hill, New York, 2000), Chap. 9, pp. 243–301.

E. Fontana, J. O. Maciel Neto, “Optimization of Au, Cu, Ag and Al films for the development of SPR-based sensors,” in Proceedings of the 9th Brazilian Microwave and Optoelectronics Symposium, A. Gomes Neto, ed. (Sociedade Brasileira de Microondos e Optoeletrônica, João Pessoa, Brazil, 2000), pp. 60–64.

C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, New York, 1996), Chap. 10, pp. 269–304.

J. H. Weaver, “Optical properties of metals,” in Handbook of Chemistry and Physics, 71st ed., D. R. Kudem, ed. (CRC Press, Boston, Mass., 1991), pp. 1287–1302.

G. B. Arkfen, H.-J. Weber, Mathematical Methods for Physicists, 5th ed. (Harcourt/Academic, New York, 2000), Chap. 11.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Simplified sketch of the transverse distribution of power density associated with the SP oscillation.

Fig. 2
Fig. 2

Metal grating configuration for observation of the SPR effect.

Fig. 3
Fig. 3

Simplified sketch of the multilayer structure of a blank CD-R.

Fig. 4
Fig. 4

Experimental arrangement for measurement of the diffraction-order intensities reflected from a gold-type CD-R.

Fig. 5
Fig. 5

Experimental reflectance curves associated with the diffraction orders of a gold-type CD-R. Curves are plotted against incidence angle θ shown in Fig. 4.

Fig. 6
Fig. 6

Experimental and theoretical curves for the specular reflectance of a gold-type CD-R. The theoretical curve was obtained for the calculated sinusoidal grating parameters listed in Table 1.

Fig. 7
Fig. 7

Geometry for determination of the reflectance of a grating.

Tables (3)

Tables Icon

Table 1 CD-R Specifications and Calculated Parameters from a Four-Parameter Fitting Procedure of the Main SPR of Fig. 5

Tables Icon

Table 2 SPR Minima Extracted from Fig. 5 and Theoretical Prediction from the Calculated Parameters of Table 1

Tables Icon

Table 3 Estimated SPR Minima for the SP Mode Driven by the Input Beam at the Metal-Dye Interfacea

Equations (41)

Equations on this page are rendered with MathJax. Learn more.

ε<-1
kSP=kSP+jkSP,
kSP=k0εε+11/2,
kSP=kSP ε2εε+1,
sx=h sinkgx,
kg=2π/Λ,
km=kx+mkg,
kx=k0 sin θ.
±kSP=km,
θSPm=sin-1±εε+11/2-m λΛ,
mkgk1-k12k1Jmk1h =ltklm-lkgkl-ql2εql Jm-lqlh+rkl-1m-lm-lkgkl-pl2pl×Jm-lplh,
Jmk1h=ltklJm-lqlh--1m-lrklJm-lplh,
θSP1m=sin-1±εn2ε+n21/2-m λΛ,
Ei=ωμ0k02k1, 0, -kxexp-jkxx+k1z,
Hi=0, 1, 0exp-jkxx+k1z,
Er=ωμ0k02k rk-p, 0, -kexp-jkx-pz,
Hr=k rk0, 1, 0exp-jkx-pz.
Et=ωμ0εk02k tkq, 0, -kexp-jkz+qz,
Ht=k tk0, 1, 0exp-jkx+qz,
N×ΔE=0,
N×ΔH=0,
N=h sinkgx-z|z=sx,
N=hkg coskgx, 0, -1.
hkgkx coskgx-k1exp-jkxx+k1sx =1εk tkhkgk coskgx-q×exp-jkx+qsx-k rkp+hkgk coskgxexp-jkx-psx.
exp-ja sinu=n=-n=+ Jnaexp-jnu
hkgkx coskgx-k1exp-jkxx×m=- Jmk1hexp-jmkgx =1εkn=-+ tkhkgk coskgx-qJnqh×exp-jk+nkgx-kn=-+ rkp+hkgk coskgx-1nJnph×exp-jk+nkgx
kkl=kx+lkg,
A=B-C,
A=hkgkx coskgx-k1m Jmk1h×exp-jmkgx,
B=1εl,n tklhkgkl coskgx-qlJnqlh×exp-jl+nkgx,
C=l,n rklpl+hkgkl coskgx×-1nJnplhexp-jl+nkgx.
coskgx=expjkgx+exp-jkgx2
Jm+1u+Jm-1u2=mu Jmu,
A=mmkgkx-k12k1Jmk1h×exp-jmkgx,
B=1εl,n tklnkgkl-ql2ql Jnqlh×exp-jl+nkgx,
C=-l,n rkl-1nJnplhnkgkl-pl2pl×exp-jl+nkgx.
mk1-k12k1Jmk1h =ltklm-lkgkl-ql2εqlJm-lqlh+rkl-1m-lm-lkgkl-pl2pl×Jm-lplh.
Jmk1h=ltklJm-lqlh--1m-lrklJm-lplh.
kx2+k12=k02,
kl2+pl2=k02,
kl2+ql2=εk02.

Metrics