Abstract

A technique to determine the angular orientation of a molecular assembly bound to the surface of a planar optical waveguide of arbitrary structure is described. The approach is based on measuring the absorption dichroic ratio by using the waveguide evanescent fields with orthogonal polarizations (TE, TM) and the same mode order to probe two molecular assemblies, (i) a reference sample composed of an isotropic orientation distribution of dipoles and (ii) a sample of interest. The isotropic sample is used to characterize the waveguide structure, which then allows the orientation parameters of a molecular assembly under investigation to be determined from a measured dichroic ratio. The method developed here is particularly important for applications in gradient-index and multilayer planar waveguide platforms because in those cases the extension of previously reported approaches would require a full experimental characterization of the guiding structure, which would be problematic and may yield inaccurate results.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Swalen, D. L. Allara, J. D. Andrade, E. A. Chandross, S. Garoff, J. Israelachvili, T. J. McCarthy, R. Murray, R. F. Pease, J. F. Rabolt, K. J. Wynne, H. Yu, “Molecular monolayers and films,” Langmuir 3, 932–950 (1987).
    [CrossRef]
  2. M. Lösche, “Protein monolayers at interfaces,” Curr. Opin. Solid State Mater. Sci. 2, 546–556 (1997).
    [CrossRef]
  3. A. Ulman, Characterization of Organic Thin Films (Butterworth-Heinemann, Stoneham, UK, 1995).
  4. C. Nicolini, “Supramolecular architecture and molecular bioelectronics,” Thin Solid Films 285, 1–5 (1996).
    [CrossRef]
  5. B. J. Ratner, “The engineering of biomaterials exhibiting recognition and specificity,” J. Mol. Recog. 9, 617–625 (1996).
    [CrossRef]
  6. M. A. Bos, J. M. Kleijn, “Determination of the orientation distribution of adsorbed fluorophores using TIRF. 2. Measurements on porphyrin and cytochrome-c,” Biophys. J. 68, 2573–2579 (1995).
    [CrossRef] [PubMed]
  7. P. H. Axelsen, M. J. Citra, “Orientational order determination by internal reflection infrared spectroscopy,” Prog. Biophys. Mol. Biol. 66, 227–253 (1996).
    [CrossRef] [PubMed]
  8. G. J. Simpson, S. G. Westerbuhr, K. L. Rowlen, “Molecular orientation and angular distribution probed by angle-resolved absorbance and second harmonic generation,” Anal. Chem. 72, 887–898 (2000).
    [CrossRef] [PubMed]
  9. A. Tronin, J. K. Blasie, “Variable acquisition angle total internal reflection fluorescence: a new technique for orientation distribution studies of ultrathin films,” Langmuir 17, 3696–3703 (2001).
    [CrossRef]
  10. D. M. Cropek, P. W. Bohn, “Surface molecular orientations determined by electronic linear dichroism in optical waveguide structures,” J. Phys. Chem. 94, 6452–6457 (1990).
    [CrossRef]
  11. P. L. Edmiston, J. E. Lee, L. L. Wood, S. S. Saavedra, “Dipole orientation distributions in Langmuir-Blodgett films by planar waveguide linear dichroism and fluorescence anisotropy,” J. Phys. Chem. 100, 775–784 (1996).
    [CrossRef]
  12. P. L. Edmiston, J. E. Lee, S. S. Cheng, S. S. Saavedra, “Molecular orientation distributions in protein films. 1. Cytochrome c adsorbed to substrates of variable surface chemistry,” J. Am. Chem. Soc. 119, 560–570 (1997).
    [CrossRef]
  13. P. L. Edmiston, S. S. Saavedra, “Molecular orientation distributions in protein films. 4. A multilayer composed of yeast cytochrome c bound through an intermediate streptavidin layer to a planar supported phospholipid bilayer,” J. Am. Chem. Soc. 120, 1665–1671 (1998).
    [CrossRef]
  14. S. B. Mendes, S. S. Saavedra, “Comparative analysis of absorbance calculations for integrated optical waveguide configurations by use of the ray optics model and the electromagnetic wave theory,” Appl. Opt. 39, 612–621 (2000).
    [CrossRef]
  15. M. B. Pereira, F. Horowitz, “Simple polarimetric approach to direct measurement of the near-surface refractive index in graded-index films,” Appl. Opt. 42, 3268–3270 (2003).
    [CrossRef] [PubMed]
  16. H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1989).
  17. D. R. Dunphy, S. B. Mendes, S. S. Saavedra, N. R. Armstrong, “The electroactive integrated optical waveguide: ultrasensitive spectroelectrochemistry of submonolayer adsorbates,” Anal. Chem. 69, 3086–3094 (1997).
    [CrossRef] [PubMed]
  18. J. T. Bradshaw, S. B. Mendes, N. R. Armstrong, S. S. Saavedra, “Broadband coupling into a single-mode, electroactive integrated optical waveguide for spectroelectrochemical analysis of surface-confined redox couples,” Anal. Chem. 75, 1080–1088 (2003).
    [CrossRef] [PubMed]
  19. H. Kogelnik, “Theory of optical waveguides,” in Guided-Wave Optoelectronics, T. Tamir ed. (Springer-Verlag, Berlin, 1990), pp. 43–50.
  20. J. T. Bradshaw, S. B. Mendes, S. S. Saavedra, “A simplified broadband coupling approach applied to chemically robust sol-gel, planar integrated optical waveguides,” Anal. Chem. 74, 1751–1759 (2002).
    [CrossRef] [PubMed]
  21. L. Yang, S. S. Saavedra, N. R. Armstrong, J. Hayes, “Fabrication and characterization of low-loss, sol-gel planar waveguides,” Anal. Chem. 66, 1254–1263 (1994).
    [CrossRef] [PubMed]
  22. S. S. Saavedra, W. M. Reichert, “Prism coupling into polymer integrated optical waveguides with liquid superstrates,” Appl. Spectrosc. 44, 1210–1217 (1990).
    [CrossRef]
  23. L. Li, M. Xu, G. I. Stegeman, C. T. Seaton, “Fabrication of photoresist masks for submicrometer surface relief gratings,” in Integrated Optical Circuit Engineering V, M. A. Mentzer, ed., Proc. SPIE835, 72–82 (1987).
    [CrossRef]
  24. R. P. Haugland, “Fluorescent and biotinylated dextrans,” in Handbook of Fluorescent Probes and Research Products, 9th ed., J. Gregory, M. T. Z. Spence, eds. (Molecular Probes, Eugene, Ore., 2002), pp. 581–583.
  25. S. Liu, T. M. Sisson, D. F. O’Brien, “Synthesis and polymerization of heterobifunctional amphiphiles to cross-link supramolecular assemblies,” Macromolecules 34, 465–473 (2001).
    [CrossRef]
  26. E. Kalb, S. Frey, L. K. Tamm, “Formation of supported planar bilayers by fusion of vesicles to supported phospholipid monolayers,” Biochim. Biophys. Acta 1103, 307–316 (1992).
    [CrossRef] [PubMed]
  27. Vesicle fusion is a well-known self-assembly technique. On adsorption at a hydrophilic substrate-buffer interface, fluid bilayer vesicles spontaneously fuse to produce an extended, continuous lipid bilayer. See, for example, Refs. 28 and 29.
  28. E. Sackmann, “Supported membranes: scientific and practical applications,” Science 271, 43–48 (1996).
    [CrossRef] [PubMed]
  29. A. L. Plant, “Supported hybrid bilayer membranes as rugged cell membrane mimics,” Langmuir 15, 5128–5135 (1999).
    [CrossRef]
  30. I. Thormaehlen, J. Straub, U. Grigull, “Refractive index of water and its dependence on wavelength, temperature, and density,” J. Phys. Chem. Ref. Data 14, 933–945 (1985).
    [CrossRef]
  31. M. N. Timbs, N. L. Thompson, “Slow rotational mobilities of antibodies and lipids associated with substrate-supported phospholipid monolayers as measured by polarized fluorescence photobleaching recovery,” Biophys. J. 58, 413–428 (1990).
    [CrossRef] [PubMed]

2003 (2)

J. T. Bradshaw, S. B. Mendes, N. R. Armstrong, S. S. Saavedra, “Broadband coupling into a single-mode, electroactive integrated optical waveguide for spectroelectrochemical analysis of surface-confined redox couples,” Anal. Chem. 75, 1080–1088 (2003).
[CrossRef] [PubMed]

M. B. Pereira, F. Horowitz, “Simple polarimetric approach to direct measurement of the near-surface refractive index in graded-index films,” Appl. Opt. 42, 3268–3270 (2003).
[CrossRef] [PubMed]

2002 (1)

J. T. Bradshaw, S. B. Mendes, S. S. Saavedra, “A simplified broadband coupling approach applied to chemically robust sol-gel, planar integrated optical waveguides,” Anal. Chem. 74, 1751–1759 (2002).
[CrossRef] [PubMed]

2001 (2)

S. Liu, T. M. Sisson, D. F. O’Brien, “Synthesis and polymerization of heterobifunctional amphiphiles to cross-link supramolecular assemblies,” Macromolecules 34, 465–473 (2001).
[CrossRef]

A. Tronin, J. K. Blasie, “Variable acquisition angle total internal reflection fluorescence: a new technique for orientation distribution studies of ultrathin films,” Langmuir 17, 3696–3703 (2001).
[CrossRef]

2000 (2)

G. J. Simpson, S. G. Westerbuhr, K. L. Rowlen, “Molecular orientation and angular distribution probed by angle-resolved absorbance and second harmonic generation,” Anal. Chem. 72, 887–898 (2000).
[CrossRef] [PubMed]

S. B. Mendes, S. S. Saavedra, “Comparative analysis of absorbance calculations for integrated optical waveguide configurations by use of the ray optics model and the electromagnetic wave theory,” Appl. Opt. 39, 612–621 (2000).
[CrossRef]

1999 (1)

A. L. Plant, “Supported hybrid bilayer membranes as rugged cell membrane mimics,” Langmuir 15, 5128–5135 (1999).
[CrossRef]

1998 (1)

P. L. Edmiston, S. S. Saavedra, “Molecular orientation distributions in protein films. 4. A multilayer composed of yeast cytochrome c bound through an intermediate streptavidin layer to a planar supported phospholipid bilayer,” J. Am. Chem. Soc. 120, 1665–1671 (1998).
[CrossRef]

1997 (3)

D. R. Dunphy, S. B. Mendes, S. S. Saavedra, N. R. Armstrong, “The electroactive integrated optical waveguide: ultrasensitive spectroelectrochemistry of submonolayer adsorbates,” Anal. Chem. 69, 3086–3094 (1997).
[CrossRef] [PubMed]

M. Lösche, “Protein monolayers at interfaces,” Curr. Opin. Solid State Mater. Sci. 2, 546–556 (1997).
[CrossRef]

P. L. Edmiston, J. E. Lee, S. S. Cheng, S. S. Saavedra, “Molecular orientation distributions in protein films. 1. Cytochrome c adsorbed to substrates of variable surface chemistry,” J. Am. Chem. Soc. 119, 560–570 (1997).
[CrossRef]

1996 (5)

E. Sackmann, “Supported membranes: scientific and practical applications,” Science 271, 43–48 (1996).
[CrossRef] [PubMed]

C. Nicolini, “Supramolecular architecture and molecular bioelectronics,” Thin Solid Films 285, 1–5 (1996).
[CrossRef]

B. J. Ratner, “The engineering of biomaterials exhibiting recognition and specificity,” J. Mol. Recog. 9, 617–625 (1996).
[CrossRef]

P. H. Axelsen, M. J. Citra, “Orientational order determination by internal reflection infrared spectroscopy,” Prog. Biophys. Mol. Biol. 66, 227–253 (1996).
[CrossRef] [PubMed]

P. L. Edmiston, J. E. Lee, L. L. Wood, S. S. Saavedra, “Dipole orientation distributions in Langmuir-Blodgett films by planar waveguide linear dichroism and fluorescence anisotropy,” J. Phys. Chem. 100, 775–784 (1996).
[CrossRef]

1995 (1)

M. A. Bos, J. M. Kleijn, “Determination of the orientation distribution of adsorbed fluorophores using TIRF. 2. Measurements on porphyrin and cytochrome-c,” Biophys. J. 68, 2573–2579 (1995).
[CrossRef] [PubMed]

1994 (1)

L. Yang, S. S. Saavedra, N. R. Armstrong, J. Hayes, “Fabrication and characterization of low-loss, sol-gel planar waveguides,” Anal. Chem. 66, 1254–1263 (1994).
[CrossRef] [PubMed]

1992 (1)

E. Kalb, S. Frey, L. K. Tamm, “Formation of supported planar bilayers by fusion of vesicles to supported phospholipid monolayers,” Biochim. Biophys. Acta 1103, 307–316 (1992).
[CrossRef] [PubMed]

1990 (3)

D. M. Cropek, P. W. Bohn, “Surface molecular orientations determined by electronic linear dichroism in optical waveguide structures,” J. Phys. Chem. 94, 6452–6457 (1990).
[CrossRef]

M. N. Timbs, N. L. Thompson, “Slow rotational mobilities of antibodies and lipids associated with substrate-supported phospholipid monolayers as measured by polarized fluorescence photobleaching recovery,” Biophys. J. 58, 413–428 (1990).
[CrossRef] [PubMed]

S. S. Saavedra, W. M. Reichert, “Prism coupling into polymer integrated optical waveguides with liquid superstrates,” Appl. Spectrosc. 44, 1210–1217 (1990).
[CrossRef]

1987 (1)

J. D. Swalen, D. L. Allara, J. D. Andrade, E. A. Chandross, S. Garoff, J. Israelachvili, T. J. McCarthy, R. Murray, R. F. Pease, J. F. Rabolt, K. J. Wynne, H. Yu, “Molecular monolayers and films,” Langmuir 3, 932–950 (1987).
[CrossRef]

1985 (1)

I. Thormaehlen, J. Straub, U. Grigull, “Refractive index of water and its dependence on wavelength, temperature, and density,” J. Phys. Chem. Ref. Data 14, 933–945 (1985).
[CrossRef]

Allara, D. L.

J. D. Swalen, D. L. Allara, J. D. Andrade, E. A. Chandross, S. Garoff, J. Israelachvili, T. J. McCarthy, R. Murray, R. F. Pease, J. F. Rabolt, K. J. Wynne, H. Yu, “Molecular monolayers and films,” Langmuir 3, 932–950 (1987).
[CrossRef]

Andrade, J. D.

J. D. Swalen, D. L. Allara, J. D. Andrade, E. A. Chandross, S. Garoff, J. Israelachvili, T. J. McCarthy, R. Murray, R. F. Pease, J. F. Rabolt, K. J. Wynne, H. Yu, “Molecular monolayers and films,” Langmuir 3, 932–950 (1987).
[CrossRef]

Armstrong, N. R.

J. T. Bradshaw, S. B. Mendes, N. R. Armstrong, S. S. Saavedra, “Broadband coupling into a single-mode, electroactive integrated optical waveguide for spectroelectrochemical analysis of surface-confined redox couples,” Anal. Chem. 75, 1080–1088 (2003).
[CrossRef] [PubMed]

D. R. Dunphy, S. B. Mendes, S. S. Saavedra, N. R. Armstrong, “The electroactive integrated optical waveguide: ultrasensitive spectroelectrochemistry of submonolayer adsorbates,” Anal. Chem. 69, 3086–3094 (1997).
[CrossRef] [PubMed]

L. Yang, S. S. Saavedra, N. R. Armstrong, J. Hayes, “Fabrication and characterization of low-loss, sol-gel planar waveguides,” Anal. Chem. 66, 1254–1263 (1994).
[CrossRef] [PubMed]

Axelsen, P. H.

P. H. Axelsen, M. J. Citra, “Orientational order determination by internal reflection infrared spectroscopy,” Prog. Biophys. Mol. Biol. 66, 227–253 (1996).
[CrossRef] [PubMed]

Blasie, J. K.

A. Tronin, J. K. Blasie, “Variable acquisition angle total internal reflection fluorescence: a new technique for orientation distribution studies of ultrathin films,” Langmuir 17, 3696–3703 (2001).
[CrossRef]

Bohn, P. W.

D. M. Cropek, P. W. Bohn, “Surface molecular orientations determined by electronic linear dichroism in optical waveguide structures,” J. Phys. Chem. 94, 6452–6457 (1990).
[CrossRef]

Bos, M. A.

M. A. Bos, J. M. Kleijn, “Determination of the orientation distribution of adsorbed fluorophores using TIRF. 2. Measurements on porphyrin and cytochrome-c,” Biophys. J. 68, 2573–2579 (1995).
[CrossRef] [PubMed]

Bradshaw, J. T.

J. T. Bradshaw, S. B. Mendes, N. R. Armstrong, S. S. Saavedra, “Broadband coupling into a single-mode, electroactive integrated optical waveguide for spectroelectrochemical analysis of surface-confined redox couples,” Anal. Chem. 75, 1080–1088 (2003).
[CrossRef] [PubMed]

J. T. Bradshaw, S. B. Mendes, S. S. Saavedra, “A simplified broadband coupling approach applied to chemically robust sol-gel, planar integrated optical waveguides,” Anal. Chem. 74, 1751–1759 (2002).
[CrossRef] [PubMed]

Chandross, E. A.

J. D. Swalen, D. L. Allara, J. D. Andrade, E. A. Chandross, S. Garoff, J. Israelachvili, T. J. McCarthy, R. Murray, R. F. Pease, J. F. Rabolt, K. J. Wynne, H. Yu, “Molecular monolayers and films,” Langmuir 3, 932–950 (1987).
[CrossRef]

Cheng, S. S.

P. L. Edmiston, J. E. Lee, S. S. Cheng, S. S. Saavedra, “Molecular orientation distributions in protein films. 1. Cytochrome c adsorbed to substrates of variable surface chemistry,” J. Am. Chem. Soc. 119, 560–570 (1997).
[CrossRef]

Citra, M. J.

P. H. Axelsen, M. J. Citra, “Orientational order determination by internal reflection infrared spectroscopy,” Prog. Biophys. Mol. Biol. 66, 227–253 (1996).
[CrossRef] [PubMed]

Cropek, D. M.

D. M. Cropek, P. W. Bohn, “Surface molecular orientations determined by electronic linear dichroism in optical waveguide structures,” J. Phys. Chem. 94, 6452–6457 (1990).
[CrossRef]

Dunphy, D. R.

D. R. Dunphy, S. B. Mendes, S. S. Saavedra, N. R. Armstrong, “The electroactive integrated optical waveguide: ultrasensitive spectroelectrochemistry of submonolayer adsorbates,” Anal. Chem. 69, 3086–3094 (1997).
[CrossRef] [PubMed]

Edmiston, P. L.

P. L. Edmiston, S. S. Saavedra, “Molecular orientation distributions in protein films. 4. A multilayer composed of yeast cytochrome c bound through an intermediate streptavidin layer to a planar supported phospholipid bilayer,” J. Am. Chem. Soc. 120, 1665–1671 (1998).
[CrossRef]

P. L. Edmiston, J. E. Lee, S. S. Cheng, S. S. Saavedra, “Molecular orientation distributions in protein films. 1. Cytochrome c adsorbed to substrates of variable surface chemistry,” J. Am. Chem. Soc. 119, 560–570 (1997).
[CrossRef]

P. L. Edmiston, J. E. Lee, L. L. Wood, S. S. Saavedra, “Dipole orientation distributions in Langmuir-Blodgett films by planar waveguide linear dichroism and fluorescence anisotropy,” J. Phys. Chem. 100, 775–784 (1996).
[CrossRef]

Frey, S.

E. Kalb, S. Frey, L. K. Tamm, “Formation of supported planar bilayers by fusion of vesicles to supported phospholipid monolayers,” Biochim. Biophys. Acta 1103, 307–316 (1992).
[CrossRef] [PubMed]

Garoff, S.

J. D. Swalen, D. L. Allara, J. D. Andrade, E. A. Chandross, S. Garoff, J. Israelachvili, T. J. McCarthy, R. Murray, R. F. Pease, J. F. Rabolt, K. J. Wynne, H. Yu, “Molecular monolayers and films,” Langmuir 3, 932–950 (1987).
[CrossRef]

Grigull, U.

I. Thormaehlen, J. Straub, U. Grigull, “Refractive index of water and its dependence on wavelength, temperature, and density,” J. Phys. Chem. Ref. Data 14, 933–945 (1985).
[CrossRef]

Haruna, M.

H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1989).

Haugland, R. P.

R. P. Haugland, “Fluorescent and biotinylated dextrans,” in Handbook of Fluorescent Probes and Research Products, 9th ed., J. Gregory, M. T. Z. Spence, eds. (Molecular Probes, Eugene, Ore., 2002), pp. 581–583.

Hayes, J.

L. Yang, S. S. Saavedra, N. R. Armstrong, J. Hayes, “Fabrication and characterization of low-loss, sol-gel planar waveguides,” Anal. Chem. 66, 1254–1263 (1994).
[CrossRef] [PubMed]

Horowitz, F.

Israelachvili, J.

J. D. Swalen, D. L. Allara, J. D. Andrade, E. A. Chandross, S. Garoff, J. Israelachvili, T. J. McCarthy, R. Murray, R. F. Pease, J. F. Rabolt, K. J. Wynne, H. Yu, “Molecular monolayers and films,” Langmuir 3, 932–950 (1987).
[CrossRef]

Kalb, E.

E. Kalb, S. Frey, L. K. Tamm, “Formation of supported planar bilayers by fusion of vesicles to supported phospholipid monolayers,” Biochim. Biophys. Acta 1103, 307–316 (1992).
[CrossRef] [PubMed]

Kleijn, J. M.

M. A. Bos, J. M. Kleijn, “Determination of the orientation distribution of adsorbed fluorophores using TIRF. 2. Measurements on porphyrin and cytochrome-c,” Biophys. J. 68, 2573–2579 (1995).
[CrossRef] [PubMed]

Kogelnik, H.

H. Kogelnik, “Theory of optical waveguides,” in Guided-Wave Optoelectronics, T. Tamir ed. (Springer-Verlag, Berlin, 1990), pp. 43–50.

Lee, J. E.

P. L. Edmiston, J. E. Lee, S. S. Cheng, S. S. Saavedra, “Molecular orientation distributions in protein films. 1. Cytochrome c adsorbed to substrates of variable surface chemistry,” J. Am. Chem. Soc. 119, 560–570 (1997).
[CrossRef]

P. L. Edmiston, J. E. Lee, L. L. Wood, S. S. Saavedra, “Dipole orientation distributions in Langmuir-Blodgett films by planar waveguide linear dichroism and fluorescence anisotropy,” J. Phys. Chem. 100, 775–784 (1996).
[CrossRef]

Li, L.

L. Li, M. Xu, G. I. Stegeman, C. T. Seaton, “Fabrication of photoresist masks for submicrometer surface relief gratings,” in Integrated Optical Circuit Engineering V, M. A. Mentzer, ed., Proc. SPIE835, 72–82 (1987).
[CrossRef]

Liu, S.

S. Liu, T. M. Sisson, D. F. O’Brien, “Synthesis and polymerization of heterobifunctional amphiphiles to cross-link supramolecular assemblies,” Macromolecules 34, 465–473 (2001).
[CrossRef]

Lösche, M.

M. Lösche, “Protein monolayers at interfaces,” Curr. Opin. Solid State Mater. Sci. 2, 546–556 (1997).
[CrossRef]

McCarthy, T. J.

J. D. Swalen, D. L. Allara, J. D. Andrade, E. A. Chandross, S. Garoff, J. Israelachvili, T. J. McCarthy, R. Murray, R. F. Pease, J. F. Rabolt, K. J. Wynne, H. Yu, “Molecular monolayers and films,” Langmuir 3, 932–950 (1987).
[CrossRef]

Mendes, S. B.

J. T. Bradshaw, S. B. Mendes, N. R. Armstrong, S. S. Saavedra, “Broadband coupling into a single-mode, electroactive integrated optical waveguide for spectroelectrochemical analysis of surface-confined redox couples,” Anal. Chem. 75, 1080–1088 (2003).
[CrossRef] [PubMed]

J. T. Bradshaw, S. B. Mendes, S. S. Saavedra, “A simplified broadband coupling approach applied to chemically robust sol-gel, planar integrated optical waveguides,” Anal. Chem. 74, 1751–1759 (2002).
[CrossRef] [PubMed]

S. B. Mendes, S. S. Saavedra, “Comparative analysis of absorbance calculations for integrated optical waveguide configurations by use of the ray optics model and the electromagnetic wave theory,” Appl. Opt. 39, 612–621 (2000).
[CrossRef]

D. R. Dunphy, S. B. Mendes, S. S. Saavedra, N. R. Armstrong, “The electroactive integrated optical waveguide: ultrasensitive spectroelectrochemistry of submonolayer adsorbates,” Anal. Chem. 69, 3086–3094 (1997).
[CrossRef] [PubMed]

Murray, R.

J. D. Swalen, D. L. Allara, J. D. Andrade, E. A. Chandross, S. Garoff, J. Israelachvili, T. J. McCarthy, R. Murray, R. F. Pease, J. F. Rabolt, K. J. Wynne, H. Yu, “Molecular monolayers and films,” Langmuir 3, 932–950 (1987).
[CrossRef]

Nicolini, C.

C. Nicolini, “Supramolecular architecture and molecular bioelectronics,” Thin Solid Films 285, 1–5 (1996).
[CrossRef]

Nishihara, H.

H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1989).

O’Brien, D. F.

S. Liu, T. M. Sisson, D. F. O’Brien, “Synthesis and polymerization of heterobifunctional amphiphiles to cross-link supramolecular assemblies,” Macromolecules 34, 465–473 (2001).
[CrossRef]

Pease, R. F.

J. D. Swalen, D. L. Allara, J. D. Andrade, E. A. Chandross, S. Garoff, J. Israelachvili, T. J. McCarthy, R. Murray, R. F. Pease, J. F. Rabolt, K. J. Wynne, H. Yu, “Molecular monolayers and films,” Langmuir 3, 932–950 (1987).
[CrossRef]

Pereira, M. B.

Plant, A. L.

A. L. Plant, “Supported hybrid bilayer membranes as rugged cell membrane mimics,” Langmuir 15, 5128–5135 (1999).
[CrossRef]

Rabolt, J. F.

J. D. Swalen, D. L. Allara, J. D. Andrade, E. A. Chandross, S. Garoff, J. Israelachvili, T. J. McCarthy, R. Murray, R. F. Pease, J. F. Rabolt, K. J. Wynne, H. Yu, “Molecular monolayers and films,” Langmuir 3, 932–950 (1987).
[CrossRef]

Ratner, B. J.

B. J. Ratner, “The engineering of biomaterials exhibiting recognition and specificity,” J. Mol. Recog. 9, 617–625 (1996).
[CrossRef]

Reichert, W. M.

Rowlen, K. L.

G. J. Simpson, S. G. Westerbuhr, K. L. Rowlen, “Molecular orientation and angular distribution probed by angle-resolved absorbance and second harmonic generation,” Anal. Chem. 72, 887–898 (2000).
[CrossRef] [PubMed]

Saavedra, S. S.

J. T. Bradshaw, S. B. Mendes, N. R. Armstrong, S. S. Saavedra, “Broadband coupling into a single-mode, electroactive integrated optical waveguide for spectroelectrochemical analysis of surface-confined redox couples,” Anal. Chem. 75, 1080–1088 (2003).
[CrossRef] [PubMed]

J. T. Bradshaw, S. B. Mendes, S. S. Saavedra, “A simplified broadband coupling approach applied to chemically robust sol-gel, planar integrated optical waveguides,” Anal. Chem. 74, 1751–1759 (2002).
[CrossRef] [PubMed]

S. B. Mendes, S. S. Saavedra, “Comparative analysis of absorbance calculations for integrated optical waveguide configurations by use of the ray optics model and the electromagnetic wave theory,” Appl. Opt. 39, 612–621 (2000).
[CrossRef]

P. L. Edmiston, S. S. Saavedra, “Molecular orientation distributions in protein films. 4. A multilayer composed of yeast cytochrome c bound through an intermediate streptavidin layer to a planar supported phospholipid bilayer,” J. Am. Chem. Soc. 120, 1665–1671 (1998).
[CrossRef]

D. R. Dunphy, S. B. Mendes, S. S. Saavedra, N. R. Armstrong, “The electroactive integrated optical waveguide: ultrasensitive spectroelectrochemistry of submonolayer adsorbates,” Anal. Chem. 69, 3086–3094 (1997).
[CrossRef] [PubMed]

P. L. Edmiston, J. E. Lee, S. S. Cheng, S. S. Saavedra, “Molecular orientation distributions in protein films. 1. Cytochrome c adsorbed to substrates of variable surface chemistry,” J. Am. Chem. Soc. 119, 560–570 (1997).
[CrossRef]

P. L. Edmiston, J. E. Lee, L. L. Wood, S. S. Saavedra, “Dipole orientation distributions in Langmuir-Blodgett films by planar waveguide linear dichroism and fluorescence anisotropy,” J. Phys. Chem. 100, 775–784 (1996).
[CrossRef]

L. Yang, S. S. Saavedra, N. R. Armstrong, J. Hayes, “Fabrication and characterization of low-loss, sol-gel planar waveguides,” Anal. Chem. 66, 1254–1263 (1994).
[CrossRef] [PubMed]

S. S. Saavedra, W. M. Reichert, “Prism coupling into polymer integrated optical waveguides with liquid superstrates,” Appl. Spectrosc. 44, 1210–1217 (1990).
[CrossRef]

Sackmann, E.

E. Sackmann, “Supported membranes: scientific and practical applications,” Science 271, 43–48 (1996).
[CrossRef] [PubMed]

Seaton, C. T.

L. Li, M. Xu, G. I. Stegeman, C. T. Seaton, “Fabrication of photoresist masks for submicrometer surface relief gratings,” in Integrated Optical Circuit Engineering V, M. A. Mentzer, ed., Proc. SPIE835, 72–82 (1987).
[CrossRef]

Simpson, G. J.

G. J. Simpson, S. G. Westerbuhr, K. L. Rowlen, “Molecular orientation and angular distribution probed by angle-resolved absorbance and second harmonic generation,” Anal. Chem. 72, 887–898 (2000).
[CrossRef] [PubMed]

Sisson, T. M.

S. Liu, T. M. Sisson, D. F. O’Brien, “Synthesis and polymerization of heterobifunctional amphiphiles to cross-link supramolecular assemblies,” Macromolecules 34, 465–473 (2001).
[CrossRef]

Stegeman, G. I.

L. Li, M. Xu, G. I. Stegeman, C. T. Seaton, “Fabrication of photoresist masks for submicrometer surface relief gratings,” in Integrated Optical Circuit Engineering V, M. A. Mentzer, ed., Proc. SPIE835, 72–82 (1987).
[CrossRef]

Straub, J.

I. Thormaehlen, J. Straub, U. Grigull, “Refractive index of water and its dependence on wavelength, temperature, and density,” J. Phys. Chem. Ref. Data 14, 933–945 (1985).
[CrossRef]

Suhara, T.

H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1989).

Swalen, J. D.

J. D. Swalen, D. L. Allara, J. D. Andrade, E. A. Chandross, S. Garoff, J. Israelachvili, T. J. McCarthy, R. Murray, R. F. Pease, J. F. Rabolt, K. J. Wynne, H. Yu, “Molecular monolayers and films,” Langmuir 3, 932–950 (1987).
[CrossRef]

Tamm, L. K.

E. Kalb, S. Frey, L. K. Tamm, “Formation of supported planar bilayers by fusion of vesicles to supported phospholipid monolayers,” Biochim. Biophys. Acta 1103, 307–316 (1992).
[CrossRef] [PubMed]

Thompson, N. L.

M. N. Timbs, N. L. Thompson, “Slow rotational mobilities of antibodies and lipids associated with substrate-supported phospholipid monolayers as measured by polarized fluorescence photobleaching recovery,” Biophys. J. 58, 413–428 (1990).
[CrossRef] [PubMed]

Thormaehlen, I.

I. Thormaehlen, J. Straub, U. Grigull, “Refractive index of water and its dependence on wavelength, temperature, and density,” J. Phys. Chem. Ref. Data 14, 933–945 (1985).
[CrossRef]

Timbs, M. N.

M. N. Timbs, N. L. Thompson, “Slow rotational mobilities of antibodies and lipids associated with substrate-supported phospholipid monolayers as measured by polarized fluorescence photobleaching recovery,” Biophys. J. 58, 413–428 (1990).
[CrossRef] [PubMed]

Tronin, A.

A. Tronin, J. K. Blasie, “Variable acquisition angle total internal reflection fluorescence: a new technique for orientation distribution studies of ultrathin films,” Langmuir 17, 3696–3703 (2001).
[CrossRef]

Ulman, A.

A. Ulman, Characterization of Organic Thin Films (Butterworth-Heinemann, Stoneham, UK, 1995).

Westerbuhr, S. G.

G. J. Simpson, S. G. Westerbuhr, K. L. Rowlen, “Molecular orientation and angular distribution probed by angle-resolved absorbance and second harmonic generation,” Anal. Chem. 72, 887–898 (2000).
[CrossRef] [PubMed]

Wood, L. L.

P. L. Edmiston, J. E. Lee, L. L. Wood, S. S. Saavedra, “Dipole orientation distributions in Langmuir-Blodgett films by planar waveguide linear dichroism and fluorescence anisotropy,” J. Phys. Chem. 100, 775–784 (1996).
[CrossRef]

Wynne, K. J.

J. D. Swalen, D. L. Allara, J. D. Andrade, E. A. Chandross, S. Garoff, J. Israelachvili, T. J. McCarthy, R. Murray, R. F. Pease, J. F. Rabolt, K. J. Wynne, H. Yu, “Molecular monolayers and films,” Langmuir 3, 932–950 (1987).
[CrossRef]

Xu, M.

L. Li, M. Xu, G. I. Stegeman, C. T. Seaton, “Fabrication of photoresist masks for submicrometer surface relief gratings,” in Integrated Optical Circuit Engineering V, M. A. Mentzer, ed., Proc. SPIE835, 72–82 (1987).
[CrossRef]

Yang, L.

L. Yang, S. S. Saavedra, N. R. Armstrong, J. Hayes, “Fabrication and characterization of low-loss, sol-gel planar waveguides,” Anal. Chem. 66, 1254–1263 (1994).
[CrossRef] [PubMed]

Yu, H.

J. D. Swalen, D. L. Allara, J. D. Andrade, E. A. Chandross, S. Garoff, J. Israelachvili, T. J. McCarthy, R. Murray, R. F. Pease, J. F. Rabolt, K. J. Wynne, H. Yu, “Molecular monolayers and films,” Langmuir 3, 932–950 (1987).
[CrossRef]

Anal. Chem. (5)

G. J. Simpson, S. G. Westerbuhr, K. L. Rowlen, “Molecular orientation and angular distribution probed by angle-resolved absorbance and second harmonic generation,” Anal. Chem. 72, 887–898 (2000).
[CrossRef] [PubMed]

D. R. Dunphy, S. B. Mendes, S. S. Saavedra, N. R. Armstrong, “The electroactive integrated optical waveguide: ultrasensitive spectroelectrochemistry of submonolayer adsorbates,” Anal. Chem. 69, 3086–3094 (1997).
[CrossRef] [PubMed]

J. T. Bradshaw, S. B. Mendes, N. R. Armstrong, S. S. Saavedra, “Broadband coupling into a single-mode, electroactive integrated optical waveguide for spectroelectrochemical analysis of surface-confined redox couples,” Anal. Chem. 75, 1080–1088 (2003).
[CrossRef] [PubMed]

J. T. Bradshaw, S. B. Mendes, S. S. Saavedra, “A simplified broadband coupling approach applied to chemically robust sol-gel, planar integrated optical waveguides,” Anal. Chem. 74, 1751–1759 (2002).
[CrossRef] [PubMed]

L. Yang, S. S. Saavedra, N. R. Armstrong, J. Hayes, “Fabrication and characterization of low-loss, sol-gel planar waveguides,” Anal. Chem. 66, 1254–1263 (1994).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Spectrosc. (1)

Biochim. Biophys. Acta (1)

E. Kalb, S. Frey, L. K. Tamm, “Formation of supported planar bilayers by fusion of vesicles to supported phospholipid monolayers,” Biochim. Biophys. Acta 1103, 307–316 (1992).
[CrossRef] [PubMed]

Biophys. J. (2)

M. N. Timbs, N. L. Thompson, “Slow rotational mobilities of antibodies and lipids associated with substrate-supported phospholipid monolayers as measured by polarized fluorescence photobleaching recovery,” Biophys. J. 58, 413–428 (1990).
[CrossRef] [PubMed]

M. A. Bos, J. M. Kleijn, “Determination of the orientation distribution of adsorbed fluorophores using TIRF. 2. Measurements on porphyrin and cytochrome-c,” Biophys. J. 68, 2573–2579 (1995).
[CrossRef] [PubMed]

Curr. Opin. Solid State Mater. Sci. (1)

M. Lösche, “Protein monolayers at interfaces,” Curr. Opin. Solid State Mater. Sci. 2, 546–556 (1997).
[CrossRef]

J. Am. Chem. Soc. (2)

P. L. Edmiston, J. E. Lee, S. S. Cheng, S. S. Saavedra, “Molecular orientation distributions in protein films. 1. Cytochrome c adsorbed to substrates of variable surface chemistry,” J. Am. Chem. Soc. 119, 560–570 (1997).
[CrossRef]

P. L. Edmiston, S. S. Saavedra, “Molecular orientation distributions in protein films. 4. A multilayer composed of yeast cytochrome c bound through an intermediate streptavidin layer to a planar supported phospholipid bilayer,” J. Am. Chem. Soc. 120, 1665–1671 (1998).
[CrossRef]

J. Mol. Recog. (1)

B. J. Ratner, “The engineering of biomaterials exhibiting recognition and specificity,” J. Mol. Recog. 9, 617–625 (1996).
[CrossRef]

J. Phys. Chem. (2)

D. M. Cropek, P. W. Bohn, “Surface molecular orientations determined by electronic linear dichroism in optical waveguide structures,” J. Phys. Chem. 94, 6452–6457 (1990).
[CrossRef]

P. L. Edmiston, J. E. Lee, L. L. Wood, S. S. Saavedra, “Dipole orientation distributions in Langmuir-Blodgett films by planar waveguide linear dichroism and fluorescence anisotropy,” J. Phys. Chem. 100, 775–784 (1996).
[CrossRef]

J. Phys. Chem. Ref. Data (1)

I. Thormaehlen, J. Straub, U. Grigull, “Refractive index of water and its dependence on wavelength, temperature, and density,” J. Phys. Chem. Ref. Data 14, 933–945 (1985).
[CrossRef]

Langmuir (3)

A. L. Plant, “Supported hybrid bilayer membranes as rugged cell membrane mimics,” Langmuir 15, 5128–5135 (1999).
[CrossRef]

J. D. Swalen, D. L. Allara, J. D. Andrade, E. A. Chandross, S. Garoff, J. Israelachvili, T. J. McCarthy, R. Murray, R. F. Pease, J. F. Rabolt, K. J. Wynne, H. Yu, “Molecular monolayers and films,” Langmuir 3, 932–950 (1987).
[CrossRef]

A. Tronin, J. K. Blasie, “Variable acquisition angle total internal reflection fluorescence: a new technique for orientation distribution studies of ultrathin films,” Langmuir 17, 3696–3703 (2001).
[CrossRef]

Macromolecules (1)

S. Liu, T. M. Sisson, D. F. O’Brien, “Synthesis and polymerization of heterobifunctional amphiphiles to cross-link supramolecular assemblies,” Macromolecules 34, 465–473 (2001).
[CrossRef]

Prog. Biophys. Mol. Biol. (1)

P. H. Axelsen, M. J. Citra, “Orientational order determination by internal reflection infrared spectroscopy,” Prog. Biophys. Mol. Biol. 66, 227–253 (1996).
[CrossRef] [PubMed]

Science (1)

E. Sackmann, “Supported membranes: scientific and practical applications,” Science 271, 43–48 (1996).
[CrossRef] [PubMed]

Thin Solid Films (1)

C. Nicolini, “Supramolecular architecture and molecular bioelectronics,” Thin Solid Films 285, 1–5 (1996).
[CrossRef]

Other (6)

A. Ulman, Characterization of Organic Thin Films (Butterworth-Heinemann, Stoneham, UK, 1995).

H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1989).

H. Kogelnik, “Theory of optical waveguides,” in Guided-Wave Optoelectronics, T. Tamir ed. (Springer-Verlag, Berlin, 1990), pp. 43–50.

Vesicle fusion is a well-known self-assembly technique. On adsorption at a hydrophilic substrate-buffer interface, fluid bilayer vesicles spontaneously fuse to produce an extended, continuous lipid bilayer. See, for example, Refs. 28 and 29.

L. Li, M. Xu, G. I. Stegeman, C. T. Seaton, “Fabrication of photoresist masks for submicrometer surface relief gratings,” in Integrated Optical Circuit Engineering V, M. A. Mentzer, ed., Proc. SPIE835, 72–82 (1987).
[CrossRef]

R. P. Haugland, “Fluorescent and biotinylated dextrans,” in Handbook of Fluorescent Probes and Research Products, 9th ed., J. Gregory, M. T. Z. Spence, eds. (Molecular Probes, Eugene, Ore., 2002), pp. 581–583.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

General waveguide field profile. The field profile represented can be either an electric field E y (z) for TE modes, or a magnetic field H y (z) for TM modes. Note that the waveguide surface is chosen in the xy plane and that the x axis corresponds to the direction of light propagation.

Fig. 2
Fig. 2

Optical setup for performing broadband IOW-ATR spectroscopic experiments. The beam path through the optical components is as follows: L1, 48-cm effective-focal-length (efl) lens; Ir = Iris; L2, 8-cm efl lens; P, Glan-Taylor prism polarizer; Ir, iris; L3, 43-cm efl lens. The light is focused into the SF6 prism coupling corner, coupled into the solgel waveguiding layer, and outcoupled through the glass substrate by a surface-relief grating (grating period, 362 nm). The outcoupled light is collimated with 33-mm efl cylindrical lens L4 onto a CCD camera placed at the lens’s back focal plane. Incoupler-to-outcoupler distance for the experiments reported herein, 10 mm.

Fig. 3
Fig. 3

Experimental IOW-ATR spectra of a film of Rh-B dextran adsorbed onto the surface of a solgel glass waveguide: absorbance spectra for TE0 (filled squares) and TM0 (solid curve) polarization.

Fig. 4
Fig. 4

Experimental IOW-ATR spectra of DiI incorporated into a DOPC lipid bilayer deposited by vesicle fusion onto the surface of a solgel glass waveguide: absorbance spectra for TE0 (filled squares) and TM0 (solid curve) polarization.

Tables (1)

Tables Icon

Table 1 Range of Values for the Normalized Dichroic Ratio

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

Ej=Ajzexp-i 2πxλ NTE,jexpiωtŷ
Hj=Bjzexp-i 2πxλ NTM,jexpiωtŷ
Ajz=aj exp-zdTE,j,
Bjz=bj exp-zdTM,j,
di,j=λ2πNi,j2-nc21/2
Ex=-Hy/ziω=-iNTM2-nc21/2c Hy,
Ez=Hy/xiω=-NTMc Hy,
ATE  0 |μyEy|2dz=0 μy2|a|2 exp-2zdTEdz
ATM  0 |μxEx|2+|μzEz|2dz=0μx2NTM2-nc2+μz2NTM2|b|2c2exp-2zdTMdz
ρnormρsampleρiso=ATE/ATMsampleATE/ATMiso.
ρnorm=0h μy2exp-2zdTEdz0hμx2NTM2-nc2+μz2NTM2exp-2zdTMdz0hiso μiso2exp-2zdTEdz0hiso μiso22NTM2-nc2exp-2zdTMdz,
ρnorm=2NTM2-nc2×0h μy2exp-2zdTEdz0hμx2NTM2-nc2+μz2NTM2exp-2zdTMdz.
ρnorm=μy22NTM2-nc2μx2NTM2-nc2+μz2NTM2.
μx2=μy2=μin2,
μz2=μout2,
2μin2+μout2=μ2,
μin2μ2=12 sin2 θ,
μout2μ2=cos2 θ.
μin2μ2=141+cos2 θ,
μout2μ2=12 sin2 θ.
μin2μ2=12-μout22μ2=ρnormNTM22NTM2-nc2+ρnormNTM2+nc2.
ρsample=μin2nwg2-NTE2NTEnwg2-nc2NTMnwg4NTM2-nc2+nc4nwg2-NTM2nwg2nwg2-NTM2NTM2-nc2μin2+ncnl4NTM2μout2teff,TMteff,TE,

Metrics