Abstract

A polarimetric Fabry-Perot fiber laser sensor for fluid pressure up to 100 MPa is investigated. The fluid acts on one of two elliptical-core fiber sections in the laser cavity, producing a shift in the differential phase of the two orthogonal polarization modes and thus a variation in the beat frequencies of the corresponding longitudinal laser modes. The second fiber section, with a 90° offset in the core orientation, compensates for temperature-induced phase shifts. The dispersion in the birefringent fiber Bragg grating reflectors is employed to remove the near degeneracy of the polarization mode beat frequencies of a given order and to improve substantially the resolution of the sensor to a few parts in 106 of the free spectral range. Further investigations address the effect of the fluid on the integrity of the fiber, the influence of various fiber coatings on the sensor response, and the intrinsic stability of erbium-doped and undoped sensing fibers under fluid pressure.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. B. Hocker, “Fiber-optic sensing of pressure and temperature,” Appl. Opt. 18, 1445–1448 (1979).
    [CrossRef] [PubMed]
  2. W. J. Bock, A. W. Domanski, T. R. Wolinski, “Influence of high hydrostatic pressure on beat length in highly birefringent single-mode bowtie fibers,” Appl. Opt. 29, 3484–3488 (1990).
    [CrossRef] [PubMed]
  3. W. J. Bock, T. R. Wolinski, “Hydrostatic pressure effects on mode propagation in highly birefringent two-mode optical fibers,” Opt. Lett. 15, 1434–1436 (1990).
    [CrossRef] [PubMed]
  4. J. R. Clowes, S. Syngellakis, M. N. Zervas, “Pressure sensitivity of side-hole optical fiber sensors,” IEEE Photon. Technol. Lett. 10, 857–859 (1998).
    [CrossRef]
  5. A. Wang, S. He, X. Fang, X. Jin, L. Lin, “Optical fiber pressure sensor based on photoelasticity and its application,” J. Lightwave Technol. 10, 1466–1472 (1992).
    [CrossRef]
  6. Y. J. Rao, D. A. Jackson, “Prototype fiber-optic-based pressure probe with built-in temperature compensation with signal recovery by coherence reading,” Appl. Opt. 32, 7110–7113 (1993).
    [CrossRef] [PubMed]
  7. A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Lightwave Technol. 19, 1495–1501 (2001).
    [CrossRef]
  8. M. G. Xu, L. Reekie, Y. T. Chow, J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett. 29, 398–399 (1993).
    [CrossRef]
  9. A. D. Kersey, “Optical fiber sensors for permanent downwell monitoring applications in the oil and gas industry,” IEICE Trans. Electron. E83-C(3), 400–404 (2000).
  10. Ph. M. Nellen, P. Mauron, A. Frank, U. Sennhauser, K. Bohnert, P. Pequignot, P. Bodor, H. Brändle, “Reliability of fiber Bragg grating based sensors for downhole applications,” Sens. Actuators A 103, 364–376 (2003).
    [CrossRef]
  11. H. K. Kim, S. K. Kim, H. G. Park, B. Y. Kim, “Polarimetric fiber laser sensors,” Opt. Lett. 18, 317–319 (1993).
    [CrossRef] [PubMed]
  12. H. K. Kim, S. K. Kim, B. Y. Kim, “Polarization control of polarimetric fiber-laser sensors,” Opt. Lett. 18, 1465–1467 (1993).
    [CrossRef] [PubMed]
  13. G. A. Ball, G. Meltz, W. W. Morey, “Polarimetric heterodyning Bragg-grating fiber-laser sensor,” Opt. Lett. 18, 1976–1978 (1993).
    [CrossRef] [PubMed]
  14. J. P. Dakin, C. A. Wade, “Compensated polarimetric sensor using polarisation-maintaining fibre in a differential configuration,” Electron. Lett. 20, 51–53 (1984).
    [CrossRef]
  15. A. Kumar, R. K. Varshney, “Propagation characteristics of highly elliptical-core optical wave guides: a perturbation approach,” Opt. Quantum Electron. 16, 349–354 (1984).
    [CrossRef]
  16. W. Urbanczyk, T. Martynkien, W. J. Bock, “Dispersion effects in elliptical-core highly birefringent fibers,” Appl. Opt. 40, 1911–1920 (2001).
    [CrossRef]
  17. K. Haroud, K. Bohnert, A. Frank, H. Brändle, “Dispersion effects in a highly birefringent fiber laser sensor with fiber Bragg grating reflectors,” Opt. Lett. 27, 897–899 (2002).
    [CrossRef]
  18. A. Carballar, M. A. Muriel, “Phase reconstruction from reflectivity in fiber Bragg gratings,” J. Lightwave Technol. 15, 1314–1322 (1997).
    [CrossRef]
  19. J. R. Clowes, J. McInnes, M. N. Zervas, D. N. Payne, “Effects of high temperature and pressure on silica optical fiber sensors,” IEEE Photon. Technol. Lett. 10, 403–405 (1998).
    [CrossRef]
  20. J. Clowes, J. Edwards, I. Grudinin, E. L. E. Kluth, M. P. Varnham, M. N. Zervas, C. M. Crawley, R. L. Kutlik, “Low drift fibre optic pressure sensor for oil field downhole monitoring,” Electron. Lett. 35, 926–927 (1999).
    [CrossRef]

2003 (1)

Ph. M. Nellen, P. Mauron, A. Frank, U. Sennhauser, K. Bohnert, P. Pequignot, P. Bodor, H. Brändle, “Reliability of fiber Bragg grating based sensors for downhole applications,” Sens. Actuators A 103, 364–376 (2003).
[CrossRef]

2002 (1)

2001 (2)

2000 (1)

A. D. Kersey, “Optical fiber sensors for permanent downwell monitoring applications in the oil and gas industry,” IEICE Trans. Electron. E83-C(3), 400–404 (2000).

1999 (1)

J. Clowes, J. Edwards, I. Grudinin, E. L. E. Kluth, M. P. Varnham, M. N. Zervas, C. M. Crawley, R. L. Kutlik, “Low drift fibre optic pressure sensor for oil field downhole monitoring,” Electron. Lett. 35, 926–927 (1999).
[CrossRef]

1998 (2)

J. R. Clowes, S. Syngellakis, M. N. Zervas, “Pressure sensitivity of side-hole optical fiber sensors,” IEEE Photon. Technol. Lett. 10, 857–859 (1998).
[CrossRef]

J. R. Clowes, J. McInnes, M. N. Zervas, D. N. Payne, “Effects of high temperature and pressure on silica optical fiber sensors,” IEEE Photon. Technol. Lett. 10, 403–405 (1998).
[CrossRef]

1997 (1)

A. Carballar, M. A. Muriel, “Phase reconstruction from reflectivity in fiber Bragg gratings,” J. Lightwave Technol. 15, 1314–1322 (1997).
[CrossRef]

1993 (5)

1992 (1)

A. Wang, S. He, X. Fang, X. Jin, L. Lin, “Optical fiber pressure sensor based on photoelasticity and its application,” J. Lightwave Technol. 10, 1466–1472 (1992).
[CrossRef]

1990 (2)

1984 (2)

J. P. Dakin, C. A. Wade, “Compensated polarimetric sensor using polarisation-maintaining fibre in a differential configuration,” Electron. Lett. 20, 51–53 (1984).
[CrossRef]

A. Kumar, R. K. Varshney, “Propagation characteristics of highly elliptical-core optical wave guides: a perturbation approach,” Opt. Quantum Electron. 16, 349–354 (1984).
[CrossRef]

1979 (1)

Ball, G. A.

Bock, W. J.

Bodor, P.

Ph. M. Nellen, P. Mauron, A. Frank, U. Sennhauser, K. Bohnert, P. Pequignot, P. Bodor, H. Brändle, “Reliability of fiber Bragg grating based sensors for downhole applications,” Sens. Actuators A 103, 364–376 (2003).
[CrossRef]

Bohnert, K.

Ph. M. Nellen, P. Mauron, A. Frank, U. Sennhauser, K. Bohnert, P. Pequignot, P. Bodor, H. Brändle, “Reliability of fiber Bragg grating based sensors for downhole applications,” Sens. Actuators A 103, 364–376 (2003).
[CrossRef]

K. Haroud, K. Bohnert, A. Frank, H. Brändle, “Dispersion effects in a highly birefringent fiber laser sensor with fiber Bragg grating reflectors,” Opt. Lett. 27, 897–899 (2002).
[CrossRef]

Brändle, H.

Ph. M. Nellen, P. Mauron, A. Frank, U. Sennhauser, K. Bohnert, P. Pequignot, P. Bodor, H. Brändle, “Reliability of fiber Bragg grating based sensors for downhole applications,” Sens. Actuators A 103, 364–376 (2003).
[CrossRef]

K. Haroud, K. Bohnert, A. Frank, H. Brändle, “Dispersion effects in a highly birefringent fiber laser sensor with fiber Bragg grating reflectors,” Opt. Lett. 27, 897–899 (2002).
[CrossRef]

Carballar, A.

A. Carballar, M. A. Muriel, “Phase reconstruction from reflectivity in fiber Bragg gratings,” J. Lightwave Technol. 15, 1314–1322 (1997).
[CrossRef]

Chow, Y. T.

M. G. Xu, L. Reekie, Y. T. Chow, J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett. 29, 398–399 (1993).
[CrossRef]

Clowes, J.

J. Clowes, J. Edwards, I. Grudinin, E. L. E. Kluth, M. P. Varnham, M. N. Zervas, C. M. Crawley, R. L. Kutlik, “Low drift fibre optic pressure sensor for oil field downhole monitoring,” Electron. Lett. 35, 926–927 (1999).
[CrossRef]

Clowes, J. R.

J. R. Clowes, S. Syngellakis, M. N. Zervas, “Pressure sensitivity of side-hole optical fiber sensors,” IEEE Photon. Technol. Lett. 10, 857–859 (1998).
[CrossRef]

J. R. Clowes, J. McInnes, M. N. Zervas, D. N. Payne, “Effects of high temperature and pressure on silica optical fiber sensors,” IEEE Photon. Technol. Lett. 10, 403–405 (1998).
[CrossRef]

Crawley, C. M.

J. Clowes, J. Edwards, I. Grudinin, E. L. E. Kluth, M. P. Varnham, M. N. Zervas, C. M. Crawley, R. L. Kutlik, “Low drift fibre optic pressure sensor for oil field downhole monitoring,” Electron. Lett. 35, 926–927 (1999).
[CrossRef]

Dakin, J. P.

M. G. Xu, L. Reekie, Y. T. Chow, J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett. 29, 398–399 (1993).
[CrossRef]

J. P. Dakin, C. A. Wade, “Compensated polarimetric sensor using polarisation-maintaining fibre in a differential configuration,” Electron. Lett. 20, 51–53 (1984).
[CrossRef]

Domanski, A. W.

Edwards, J.

J. Clowes, J. Edwards, I. Grudinin, E. L. E. Kluth, M. P. Varnham, M. N. Zervas, C. M. Crawley, R. L. Kutlik, “Low drift fibre optic pressure sensor for oil field downhole monitoring,” Electron. Lett. 35, 926–927 (1999).
[CrossRef]

Fang, X.

A. Wang, S. He, X. Fang, X. Jin, L. Lin, “Optical fiber pressure sensor based on photoelasticity and its application,” J. Lightwave Technol. 10, 1466–1472 (1992).
[CrossRef]

Frank, A.

Ph. M. Nellen, P. Mauron, A. Frank, U. Sennhauser, K. Bohnert, P. Pequignot, P. Bodor, H. Brändle, “Reliability of fiber Bragg grating based sensors for downhole applications,” Sens. Actuators A 103, 364–376 (2003).
[CrossRef]

K. Haroud, K. Bohnert, A. Frank, H. Brändle, “Dispersion effects in a highly birefringent fiber laser sensor with fiber Bragg grating reflectors,” Opt. Lett. 27, 897–899 (2002).
[CrossRef]

Grudinin, I.

J. Clowes, J. Edwards, I. Grudinin, E. L. E. Kluth, M. P. Varnham, M. N. Zervas, C. M. Crawley, R. L. Kutlik, “Low drift fibre optic pressure sensor for oil field downhole monitoring,” Electron. Lett. 35, 926–927 (1999).
[CrossRef]

Haroud, K.

He, S.

A. Wang, S. He, X. Fang, X. Jin, L. Lin, “Optical fiber pressure sensor based on photoelasticity and its application,” J. Lightwave Technol. 10, 1466–1472 (1992).
[CrossRef]

Hocker, G. B.

Jackson, D. A.

Jin, X.

A. Wang, S. He, X. Fang, X. Jin, L. Lin, “Optical fiber pressure sensor based on photoelasticity and its application,” J. Lightwave Technol. 10, 1466–1472 (1992).
[CrossRef]

Kersey, A. D.

A. D. Kersey, “Optical fiber sensors for permanent downwell monitoring applications in the oil and gas industry,” IEICE Trans. Electron. E83-C(3), 400–404 (2000).

Kim, B. Y.

Kim, H. K.

Kim, S. K.

Kluth, E. L. E.

J. Clowes, J. Edwards, I. Grudinin, E. L. E. Kluth, M. P. Varnham, M. N. Zervas, C. M. Crawley, R. L. Kutlik, “Low drift fibre optic pressure sensor for oil field downhole monitoring,” Electron. Lett. 35, 926–927 (1999).
[CrossRef]

Kumar, A.

A. Kumar, R. K. Varshney, “Propagation characteristics of highly elliptical-core optical wave guides: a perturbation approach,” Opt. Quantum Electron. 16, 349–354 (1984).
[CrossRef]

Kutlik, R. L.

J. Clowes, J. Edwards, I. Grudinin, E. L. E. Kluth, M. P. Varnham, M. N. Zervas, C. M. Crawley, R. L. Kutlik, “Low drift fibre optic pressure sensor for oil field downhole monitoring,” Electron. Lett. 35, 926–927 (1999).
[CrossRef]

Lin, L.

A. Wang, S. He, X. Fang, X. Jin, L. Lin, “Optical fiber pressure sensor based on photoelasticity and its application,” J. Lightwave Technol. 10, 1466–1472 (1992).
[CrossRef]

Martynkien, T.

Mauron, P.

Ph. M. Nellen, P. Mauron, A. Frank, U. Sennhauser, K. Bohnert, P. Pequignot, P. Bodor, H. Brändle, “Reliability of fiber Bragg grating based sensors for downhole applications,” Sens. Actuators A 103, 364–376 (2003).
[CrossRef]

May, R. G.

McInnes, J.

J. R. Clowes, J. McInnes, M. N. Zervas, D. N. Payne, “Effects of high temperature and pressure on silica optical fiber sensors,” IEEE Photon. Technol. Lett. 10, 403–405 (1998).
[CrossRef]

Meltz, G.

Morey, W. W.

Muriel, M. A.

A. Carballar, M. A. Muriel, “Phase reconstruction from reflectivity in fiber Bragg gratings,” J. Lightwave Technol. 15, 1314–1322 (1997).
[CrossRef]

Nellen, Ph. M.

Ph. M. Nellen, P. Mauron, A. Frank, U. Sennhauser, K. Bohnert, P. Pequignot, P. Bodor, H. Brändle, “Reliability of fiber Bragg grating based sensors for downhole applications,” Sens. Actuators A 103, 364–376 (2003).
[CrossRef]

Park, H. G.

Payne, D. N.

J. R. Clowes, J. McInnes, M. N. Zervas, D. N. Payne, “Effects of high temperature and pressure on silica optical fiber sensors,” IEEE Photon. Technol. Lett. 10, 403–405 (1998).
[CrossRef]

Pequignot, P.

Ph. M. Nellen, P. Mauron, A. Frank, U. Sennhauser, K. Bohnert, P. Pequignot, P. Bodor, H. Brändle, “Reliability of fiber Bragg grating based sensors for downhole applications,” Sens. Actuators A 103, 364–376 (2003).
[CrossRef]

Rao, Y. J.

Reekie, L.

M. G. Xu, L. Reekie, Y. T. Chow, J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett. 29, 398–399 (1993).
[CrossRef]

Sennhauser, U.

Ph. M. Nellen, P. Mauron, A. Frank, U. Sennhauser, K. Bohnert, P. Pequignot, P. Bodor, H. Brändle, “Reliability of fiber Bragg grating based sensors for downhole applications,” Sens. Actuators A 103, 364–376 (2003).
[CrossRef]

Syngellakis, S.

J. R. Clowes, S. Syngellakis, M. N. Zervas, “Pressure sensitivity of side-hole optical fiber sensors,” IEEE Photon. Technol. Lett. 10, 857–859 (1998).
[CrossRef]

Urbanczyk, W.

Varnham, M. P.

J. Clowes, J. Edwards, I. Grudinin, E. L. E. Kluth, M. P. Varnham, M. N. Zervas, C. M. Crawley, R. L. Kutlik, “Low drift fibre optic pressure sensor for oil field downhole monitoring,” Electron. Lett. 35, 926–927 (1999).
[CrossRef]

Varshney, R. K.

A. Kumar, R. K. Varshney, “Propagation characteristics of highly elliptical-core optical wave guides: a perturbation approach,” Opt. Quantum Electron. 16, 349–354 (1984).
[CrossRef]

Wade, C. A.

J. P. Dakin, C. A. Wade, “Compensated polarimetric sensor using polarisation-maintaining fibre in a differential configuration,” Electron. Lett. 20, 51–53 (1984).
[CrossRef]

Wang, A.

A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Lightwave Technol. 19, 1495–1501 (2001).
[CrossRef]

A. Wang, S. He, X. Fang, X. Jin, L. Lin, “Optical fiber pressure sensor based on photoelasticity and its application,” J. Lightwave Technol. 10, 1466–1472 (1992).
[CrossRef]

Wang, J.

Wang, Z.

Wolinski, T. R.

Xiao, H.

Xu, M. G.

M. G. Xu, L. Reekie, Y. T. Chow, J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett. 29, 398–399 (1993).
[CrossRef]

Zervas, M. N.

J. Clowes, J. Edwards, I. Grudinin, E. L. E. Kluth, M. P. Varnham, M. N. Zervas, C. M. Crawley, R. L. Kutlik, “Low drift fibre optic pressure sensor for oil field downhole monitoring,” Electron. Lett. 35, 926–927 (1999).
[CrossRef]

J. R. Clowes, S. Syngellakis, M. N. Zervas, “Pressure sensitivity of side-hole optical fiber sensors,” IEEE Photon. Technol. Lett. 10, 857–859 (1998).
[CrossRef]

J. R. Clowes, J. McInnes, M. N. Zervas, D. N. Payne, “Effects of high temperature and pressure on silica optical fiber sensors,” IEEE Photon. Technol. Lett. 10, 403–405 (1998).
[CrossRef]

Zhao, W.

Appl. Opt. (4)

Electron. Lett. (3)

J. Clowes, J. Edwards, I. Grudinin, E. L. E. Kluth, M. P. Varnham, M. N. Zervas, C. M. Crawley, R. L. Kutlik, “Low drift fibre optic pressure sensor for oil field downhole monitoring,” Electron. Lett. 35, 926–927 (1999).
[CrossRef]

M. G. Xu, L. Reekie, Y. T. Chow, J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett. 29, 398–399 (1993).
[CrossRef]

J. P. Dakin, C. A. Wade, “Compensated polarimetric sensor using polarisation-maintaining fibre in a differential configuration,” Electron. Lett. 20, 51–53 (1984).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

J. R. Clowes, J. McInnes, M. N. Zervas, D. N. Payne, “Effects of high temperature and pressure on silica optical fiber sensors,” IEEE Photon. Technol. Lett. 10, 403–405 (1998).
[CrossRef]

J. R. Clowes, S. Syngellakis, M. N. Zervas, “Pressure sensitivity of side-hole optical fiber sensors,” IEEE Photon. Technol. Lett. 10, 857–859 (1998).
[CrossRef]

IEICE Trans. Electron. (1)

A. D. Kersey, “Optical fiber sensors for permanent downwell monitoring applications in the oil and gas industry,” IEICE Trans. Electron. E83-C(3), 400–404 (2000).

J. Lightwave Technol. (3)

A. Wang, S. He, X. Fang, X. Jin, L. Lin, “Optical fiber pressure sensor based on photoelasticity and its application,” J. Lightwave Technol. 10, 1466–1472 (1992).
[CrossRef]

A. Carballar, M. A. Muriel, “Phase reconstruction from reflectivity in fiber Bragg gratings,” J. Lightwave Technol. 15, 1314–1322 (1997).
[CrossRef]

A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Lightwave Technol. 19, 1495–1501 (2001).
[CrossRef]

Opt. Lett. (5)

Opt. Quantum Electron. (1)

A. Kumar, R. K. Varshney, “Propagation characteristics of highly elliptical-core optical wave guides: a perturbation approach,” Opt. Quantum Electron. 16, 349–354 (1984).
[CrossRef]

Sens. Actuators A (1)

Ph. M. Nellen, P. Mauron, A. Frank, U. Sennhauser, K. Bohnert, P. Pequignot, P. Bodor, H. Brändle, “Reliability of fiber Bragg grating based sensors for downhole applications,” Sens. Actuators A 103, 364–376 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Polarimetric elliptical-core fiber laser sensors for hydrostatic pressure. The reflection spectra of the fiber Bragg grating (FBG) reflectors are schematically illustrated.

Fig. 2
Fig. 2

Calculated pressure-induced differential phase shift in an elliptical-core fiber as a function of normalized frequency for various ratios a/ b of the core axis lengths.

Fig. 3
Fig. 3

Polarization-mode beat frequency as a function of fluid pressure (squares) and deviation from linearity (circles). The shaded band corresponds to deviations of ±0.5% of the full-scale (FS) frequency shift. The free spectral range of the laser is 197 MHz (52-cm cavity length).

Fig. 4
Fig. 4

Beat frequency versus temperature of a temperature-compensated fiber laser sensor. The expected temperature dependence of an uncompensated sensor with the same cavity length is indicated as well (dashed line). FSR, free spectral range.

Fig. 5
Fig. 5

Schematic reflection spectra of the two grating reflectors of the laser in Fig. 1(a) for x- and y-polarized (x-pol. and y-pol., respectively) light for identical Bragg wavelengths and for one grating detuned by a fraction of the grating bandwidth. The dotted vertical lines indicate the laser emission wavelengths.

Fig. 6
Fig. 6

LMB and PMB signals. Inset, polarization-mode beat signals near 15 MHz at high resolution for various differences, Δλ B , in Bragg wavelength of the two grating reflectors.

Fig. 7
Fig. 7

PMB signals (left column) and LMB signals (right column) for matched Bragg wavelengths of the grating reflectors (Δλ B = 0, top) and for one detuned grating (Δλ B = 60 pm, bottom). The cavity length was 338 mm.

Fig. 8
Fig. 8

Bragg wavelength drift of uncoated fiber gratings under fluid pressure at 230 °C for three fluids. Wavelength offsets at pressure changes have been subtracted. The drifts are the result of fiber deterioration by the fluid.

Fig. 9
Fig. 9

Bragg wavelength drift of fiber gratings as a result of mechanical relaxation of the fiber coating subsequent to a steplike temperature change from 300 °C to room temperature for three coating materials. The coating thicknesses were 1 μm.

Fig. 10
Fig. 10

Beat frequency drift for erbium-doped and undoped elliptical-core sensing fibers after step changes in pressure and temperature. The frequency drift is given in fractions of the preceding step-induced beat frequency change.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

δΔφδp=Δβ δLδp+L δΔβδp.
2πp=φfFBG1νp+4πνpnfL1/c+4πνpnsL2/c+φsFBG2νp,
2πq=φsFBG1νq+4πνqnsL1/c+4πνqnfL2/c+φfFBG2νq,

Metrics