Abstract

We present what is to our knowledge the first comprehensive investigation of the use of blazed fiber Bragg gratings (BFBGs) to interrogate wavelength division multiplexed (WDM) in-fiber optical sensor arrays. We show that the light outcoupled from the core of these BFBGs is radiated with sufficient optical power that it may be detected with a low-cost charge-coupled device (CCD) array. We present thorough system performance analysis that shows sufficient spectral–spatial resolution to decode sensors with a WDM separation of 75 ρm, signal-to-noise ratio greater than 45-dB bandwidth of 70 nm, and drift of only 0.1 ρm. We show the system to be polarization-state insensitive, making the BFBG–CCD spectral analysis technique a practical, extremely low-cost, alternative to traditional tunable filter approaches.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Meltz, W. Morey, W. Glenn, “In-fibre Bragg grating tap,” in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 1990), TuG1.
  2. P. S. Westbrook, K. S. Feder, P. I. Reyes, P. Steinvurzel, B. J. Eggleton, R. G. Ernst, L. A. Reith, D. M. Gill, “Application of fiber Bragg grating filter/tap module to a wavelength-locked low-chirp directly-modulated 10Gb/s RZ transmitter,” in Optical Fiber Communication Conference and Exhibit, 2002 (IEEE, Piscataway, N.J., 2002), pp. 680–682.
    [CrossRef]
  3. R. Kashyap, R. Wyatt, R. J. Campbell, “Wideband gain flattened erbium fibre amplifier using a photosensitive fibre blazed grating,” Electron. Lett. 29, 154–156 (1993).
    [CrossRef]
  4. H. Labidi, C. Debarros, R. Letteron, Riant, “Slanted Bragg grating with ultra-low polarization dependent loss,” in Optical Fibre and Communication Conference and Exhibit, 2002 (IEEE, Piscataway, N.J., 2002), p. 113.
  5. Y. Liu, L. Zhang, I. Bennion, “Fabricating fibre edge filters with arbitrary spectral response based on tilted chirped grating structures,” Meas. Sci. Tech. 10, L1–L3 (1999).
    [CrossRef]
  6. J. L. Wagner, T. A. Strasser, J. R. Pedrazzini, J. DeMarco, D. J. DiGiovanni, “Fibre grating optical spectrum analyzer tap,” in European Conference on Optical Communication (ECOC’97) (IEE, Edinburgh, 1997), pp. 65–68.
  7. T. Erdogan, “Fibre grating spectra,” J. Lightwave Tech. 15, 1277–1294 (1997).
    [CrossRef]
  8. T. Erdogan, J. E. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. A 13, 296–313 (1996).
    [CrossRef]
  9. K. S. Lee, T. Erdogan, “Fiber-mode conversion with tilted gratings in an optical fiber,” J. Opt. Soc. Am. A 18, 1176–1185 (2001).
    [CrossRef]
  10. K. S. Lee, T. Erdogan, “Fiber-mode coupling in transmissive and reflective tilted fiber gratings,” Appl. Opt. 39, 1394–1404 (2000).
    [CrossRef]
  11. K. S. Lee, T. Erdogan, “Transmissive tilted gratings for LP0.1-to-LP11 mode coupling,” IEEE Photon. Technol. Lett. 11, 1286–1288 (1999).
    [CrossRef]
  12. Y. Koyamada, “Analysis of core-mode to radiation-mode coupling in fiber Bragg gratings with finite cladding radius,” J. Lightwave Technol. 18, 1220–1225 (2000).
    [CrossRef]
  13. K. Zhou, A. G. Simpson, L. Zhang, I. Bennion, “Side-detection of strong radiation mode out-coupling from blazed FBGs in single- and multi-mode fibers,” Photonics Technol. Lett. 15, 936–938 (2003).
    [CrossRef]
  14. K. Zhou, A. G. Simpson, L. Zhang, I. Bennion, “Two-dimension optical power distribution of side-out-coupled radiation from tilted FBGs in multi-mode fibre,” Electron. Lett. 39, 651–653 (2003).
    [CrossRef]
  15. A. G. Simpson, K. Zhou, L. Zhang, I. Bennion, “High accuracy interrogation of a WDM FBG sensor array using radiation modes from a B-FBG,” in Bragg Gratings, Photosensitivity and Poling in Glass Waveguides (Optical Society of America, Washington, D.C., 2003), pp. 82–84.
  16. S. J. Mihailov, R. B. Walker, P. Lu, H. Ding, X. Dai, C. Smelser, L. Chen, “UV-induced polarisation-dependent loss (PDL) in tilted fibre Bragg gratings: application of a PDL equaliser,” IEE Proc.-Optoelectron 149, 211 (2002).
    [CrossRef]
  17. A. Ezbiri, S. E. Kanellopoulos, V. A. Handerek, “High resolution instrumentation system for fibre-Bragg grating aerospace sensors,” Opt. Commun. 150, 43–48 (1998).
    [CrossRef]

2003 (2)

K. Zhou, A. G. Simpson, L. Zhang, I. Bennion, “Side-detection of strong radiation mode out-coupling from blazed FBGs in single- and multi-mode fibers,” Photonics Technol. Lett. 15, 936–938 (2003).
[CrossRef]

K. Zhou, A. G. Simpson, L. Zhang, I. Bennion, “Two-dimension optical power distribution of side-out-coupled radiation from tilted FBGs in multi-mode fibre,” Electron. Lett. 39, 651–653 (2003).
[CrossRef]

2002 (1)

S. J. Mihailov, R. B. Walker, P. Lu, H. Ding, X. Dai, C. Smelser, L. Chen, “UV-induced polarisation-dependent loss (PDL) in tilted fibre Bragg gratings: application of a PDL equaliser,” IEE Proc.-Optoelectron 149, 211 (2002).
[CrossRef]

2001 (1)

2000 (2)

1999 (2)

Y. Liu, L. Zhang, I. Bennion, “Fabricating fibre edge filters with arbitrary spectral response based on tilted chirped grating structures,” Meas. Sci. Tech. 10, L1–L3 (1999).
[CrossRef]

K. S. Lee, T. Erdogan, “Transmissive tilted gratings for LP0.1-to-LP11 mode coupling,” IEEE Photon. Technol. Lett. 11, 1286–1288 (1999).
[CrossRef]

1998 (1)

A. Ezbiri, S. E. Kanellopoulos, V. A. Handerek, “High resolution instrumentation system for fibre-Bragg grating aerospace sensors,” Opt. Commun. 150, 43–48 (1998).
[CrossRef]

1997 (1)

T. Erdogan, “Fibre grating spectra,” J. Lightwave Tech. 15, 1277–1294 (1997).
[CrossRef]

1996 (1)

1993 (1)

R. Kashyap, R. Wyatt, R. J. Campbell, “Wideband gain flattened erbium fibre amplifier using a photosensitive fibre blazed grating,” Electron. Lett. 29, 154–156 (1993).
[CrossRef]

Bennion, I.

K. Zhou, A. G. Simpson, L. Zhang, I. Bennion, “Side-detection of strong radiation mode out-coupling from blazed FBGs in single- and multi-mode fibers,” Photonics Technol. Lett. 15, 936–938 (2003).
[CrossRef]

K. Zhou, A. G. Simpson, L. Zhang, I. Bennion, “Two-dimension optical power distribution of side-out-coupled radiation from tilted FBGs in multi-mode fibre,” Electron. Lett. 39, 651–653 (2003).
[CrossRef]

Y. Liu, L. Zhang, I. Bennion, “Fabricating fibre edge filters with arbitrary spectral response based on tilted chirped grating structures,” Meas. Sci. Tech. 10, L1–L3 (1999).
[CrossRef]

A. G. Simpson, K. Zhou, L. Zhang, I. Bennion, “High accuracy interrogation of a WDM FBG sensor array using radiation modes from a B-FBG,” in Bragg Gratings, Photosensitivity and Poling in Glass Waveguides (Optical Society of America, Washington, D.C., 2003), pp. 82–84.

Campbell, R. J.

R. Kashyap, R. Wyatt, R. J. Campbell, “Wideband gain flattened erbium fibre amplifier using a photosensitive fibre blazed grating,” Electron. Lett. 29, 154–156 (1993).
[CrossRef]

Chen, L.

S. J. Mihailov, R. B. Walker, P. Lu, H. Ding, X. Dai, C. Smelser, L. Chen, “UV-induced polarisation-dependent loss (PDL) in tilted fibre Bragg gratings: application of a PDL equaliser,” IEE Proc.-Optoelectron 149, 211 (2002).
[CrossRef]

Dai, X.

S. J. Mihailov, R. B. Walker, P. Lu, H. Ding, X. Dai, C. Smelser, L. Chen, “UV-induced polarisation-dependent loss (PDL) in tilted fibre Bragg gratings: application of a PDL equaliser,” IEE Proc.-Optoelectron 149, 211 (2002).
[CrossRef]

Debarros, C.

H. Labidi, C. Debarros, R. Letteron, Riant, “Slanted Bragg grating with ultra-low polarization dependent loss,” in Optical Fibre and Communication Conference and Exhibit, 2002 (IEEE, Piscataway, N.J., 2002), p. 113.

DeMarco, J.

J. L. Wagner, T. A. Strasser, J. R. Pedrazzini, J. DeMarco, D. J. DiGiovanni, “Fibre grating optical spectrum analyzer tap,” in European Conference on Optical Communication (ECOC’97) (IEE, Edinburgh, 1997), pp. 65–68.

DiGiovanni, D. J.

J. L. Wagner, T. A. Strasser, J. R. Pedrazzini, J. DeMarco, D. J. DiGiovanni, “Fibre grating optical spectrum analyzer tap,” in European Conference on Optical Communication (ECOC’97) (IEE, Edinburgh, 1997), pp. 65–68.

Ding, H.

S. J. Mihailov, R. B. Walker, P. Lu, H. Ding, X. Dai, C. Smelser, L. Chen, “UV-induced polarisation-dependent loss (PDL) in tilted fibre Bragg gratings: application of a PDL equaliser,” IEE Proc.-Optoelectron 149, 211 (2002).
[CrossRef]

Eggleton, B. J.

P. S. Westbrook, K. S. Feder, P. I. Reyes, P. Steinvurzel, B. J. Eggleton, R. G. Ernst, L. A. Reith, D. M. Gill, “Application of fiber Bragg grating filter/tap module to a wavelength-locked low-chirp directly-modulated 10Gb/s RZ transmitter,” in Optical Fiber Communication Conference and Exhibit, 2002 (IEEE, Piscataway, N.J., 2002), pp. 680–682.
[CrossRef]

Erdogan, T.

Ernst, R. G.

P. S. Westbrook, K. S. Feder, P. I. Reyes, P. Steinvurzel, B. J. Eggleton, R. G. Ernst, L. A. Reith, D. M. Gill, “Application of fiber Bragg grating filter/tap module to a wavelength-locked low-chirp directly-modulated 10Gb/s RZ transmitter,” in Optical Fiber Communication Conference and Exhibit, 2002 (IEEE, Piscataway, N.J., 2002), pp. 680–682.
[CrossRef]

Ezbiri, A.

A. Ezbiri, S. E. Kanellopoulos, V. A. Handerek, “High resolution instrumentation system for fibre-Bragg grating aerospace sensors,” Opt. Commun. 150, 43–48 (1998).
[CrossRef]

Feder, K. S.

P. S. Westbrook, K. S. Feder, P. I. Reyes, P. Steinvurzel, B. J. Eggleton, R. G. Ernst, L. A. Reith, D. M. Gill, “Application of fiber Bragg grating filter/tap module to a wavelength-locked low-chirp directly-modulated 10Gb/s RZ transmitter,” in Optical Fiber Communication Conference and Exhibit, 2002 (IEEE, Piscataway, N.J., 2002), pp. 680–682.
[CrossRef]

Gill, D. M.

P. S. Westbrook, K. S. Feder, P. I. Reyes, P. Steinvurzel, B. J. Eggleton, R. G. Ernst, L. A. Reith, D. M. Gill, “Application of fiber Bragg grating filter/tap module to a wavelength-locked low-chirp directly-modulated 10Gb/s RZ transmitter,” in Optical Fiber Communication Conference and Exhibit, 2002 (IEEE, Piscataway, N.J., 2002), pp. 680–682.
[CrossRef]

Glenn, W.

G. Meltz, W. Morey, W. Glenn, “In-fibre Bragg grating tap,” in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 1990), TuG1.

Handerek, V. A.

A. Ezbiri, S. E. Kanellopoulos, V. A. Handerek, “High resolution instrumentation system for fibre-Bragg grating aerospace sensors,” Opt. Commun. 150, 43–48 (1998).
[CrossRef]

Kanellopoulos, S. E.

A. Ezbiri, S. E. Kanellopoulos, V. A. Handerek, “High resolution instrumentation system for fibre-Bragg grating aerospace sensors,” Opt. Commun. 150, 43–48 (1998).
[CrossRef]

Kashyap, R.

R. Kashyap, R. Wyatt, R. J. Campbell, “Wideband gain flattened erbium fibre amplifier using a photosensitive fibre blazed grating,” Electron. Lett. 29, 154–156 (1993).
[CrossRef]

Koyamada, Y.

Labidi, H.

H. Labidi, C. Debarros, R. Letteron, Riant, “Slanted Bragg grating with ultra-low polarization dependent loss,” in Optical Fibre and Communication Conference and Exhibit, 2002 (IEEE, Piscataway, N.J., 2002), p. 113.

Lee, K. S.

Letteron, R.

H. Labidi, C. Debarros, R. Letteron, Riant, “Slanted Bragg grating with ultra-low polarization dependent loss,” in Optical Fibre and Communication Conference and Exhibit, 2002 (IEEE, Piscataway, N.J., 2002), p. 113.

Liu, Y.

Y. Liu, L. Zhang, I. Bennion, “Fabricating fibre edge filters with arbitrary spectral response based on tilted chirped grating structures,” Meas. Sci. Tech. 10, L1–L3 (1999).
[CrossRef]

Lu, P.

S. J. Mihailov, R. B. Walker, P. Lu, H. Ding, X. Dai, C. Smelser, L. Chen, “UV-induced polarisation-dependent loss (PDL) in tilted fibre Bragg gratings: application of a PDL equaliser,” IEE Proc.-Optoelectron 149, 211 (2002).
[CrossRef]

Meltz, G.

G. Meltz, W. Morey, W. Glenn, “In-fibre Bragg grating tap,” in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 1990), TuG1.

Mihailov, S. J.

S. J. Mihailov, R. B. Walker, P. Lu, H. Ding, X. Dai, C. Smelser, L. Chen, “UV-induced polarisation-dependent loss (PDL) in tilted fibre Bragg gratings: application of a PDL equaliser,” IEE Proc.-Optoelectron 149, 211 (2002).
[CrossRef]

Morey, W.

G. Meltz, W. Morey, W. Glenn, “In-fibre Bragg grating tap,” in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 1990), TuG1.

Pedrazzini, J. R.

J. L. Wagner, T. A. Strasser, J. R. Pedrazzini, J. DeMarco, D. J. DiGiovanni, “Fibre grating optical spectrum analyzer tap,” in European Conference on Optical Communication (ECOC’97) (IEE, Edinburgh, 1997), pp. 65–68.

Reith, L. A.

P. S. Westbrook, K. S. Feder, P. I. Reyes, P. Steinvurzel, B. J. Eggleton, R. G. Ernst, L. A. Reith, D. M. Gill, “Application of fiber Bragg grating filter/tap module to a wavelength-locked low-chirp directly-modulated 10Gb/s RZ transmitter,” in Optical Fiber Communication Conference and Exhibit, 2002 (IEEE, Piscataway, N.J., 2002), pp. 680–682.
[CrossRef]

Reyes, P. I.

P. S. Westbrook, K. S. Feder, P. I. Reyes, P. Steinvurzel, B. J. Eggleton, R. G. Ernst, L. A. Reith, D. M. Gill, “Application of fiber Bragg grating filter/tap module to a wavelength-locked low-chirp directly-modulated 10Gb/s RZ transmitter,” in Optical Fiber Communication Conference and Exhibit, 2002 (IEEE, Piscataway, N.J., 2002), pp. 680–682.
[CrossRef]

Riant,

H. Labidi, C. Debarros, R. Letteron, Riant, “Slanted Bragg grating with ultra-low polarization dependent loss,” in Optical Fibre and Communication Conference and Exhibit, 2002 (IEEE, Piscataway, N.J., 2002), p. 113.

Simpson, A. G.

K. Zhou, A. G. Simpson, L. Zhang, I. Bennion, “Two-dimension optical power distribution of side-out-coupled radiation from tilted FBGs in multi-mode fibre,” Electron. Lett. 39, 651–653 (2003).
[CrossRef]

K. Zhou, A. G. Simpson, L. Zhang, I. Bennion, “Side-detection of strong radiation mode out-coupling from blazed FBGs in single- and multi-mode fibers,” Photonics Technol. Lett. 15, 936–938 (2003).
[CrossRef]

A. G. Simpson, K. Zhou, L. Zhang, I. Bennion, “High accuracy interrogation of a WDM FBG sensor array using radiation modes from a B-FBG,” in Bragg Gratings, Photosensitivity and Poling in Glass Waveguides (Optical Society of America, Washington, D.C., 2003), pp. 82–84.

Sipe, J. E.

Smelser, C.

S. J. Mihailov, R. B. Walker, P. Lu, H. Ding, X. Dai, C. Smelser, L. Chen, “UV-induced polarisation-dependent loss (PDL) in tilted fibre Bragg gratings: application of a PDL equaliser,” IEE Proc.-Optoelectron 149, 211 (2002).
[CrossRef]

Steinvurzel, P.

P. S. Westbrook, K. S. Feder, P. I. Reyes, P. Steinvurzel, B. J. Eggleton, R. G. Ernst, L. A. Reith, D. M. Gill, “Application of fiber Bragg grating filter/tap module to a wavelength-locked low-chirp directly-modulated 10Gb/s RZ transmitter,” in Optical Fiber Communication Conference and Exhibit, 2002 (IEEE, Piscataway, N.J., 2002), pp. 680–682.
[CrossRef]

Strasser, T. A.

J. L. Wagner, T. A. Strasser, J. R. Pedrazzini, J. DeMarco, D. J. DiGiovanni, “Fibre grating optical spectrum analyzer tap,” in European Conference on Optical Communication (ECOC’97) (IEE, Edinburgh, 1997), pp. 65–68.

Wagner, J. L.

J. L. Wagner, T. A. Strasser, J. R. Pedrazzini, J. DeMarco, D. J. DiGiovanni, “Fibre grating optical spectrum analyzer tap,” in European Conference on Optical Communication (ECOC’97) (IEE, Edinburgh, 1997), pp. 65–68.

Walker, R. B.

S. J. Mihailov, R. B. Walker, P. Lu, H. Ding, X. Dai, C. Smelser, L. Chen, “UV-induced polarisation-dependent loss (PDL) in tilted fibre Bragg gratings: application of a PDL equaliser,” IEE Proc.-Optoelectron 149, 211 (2002).
[CrossRef]

Westbrook, P. S.

P. S. Westbrook, K. S. Feder, P. I. Reyes, P. Steinvurzel, B. J. Eggleton, R. G. Ernst, L. A. Reith, D. M. Gill, “Application of fiber Bragg grating filter/tap module to a wavelength-locked low-chirp directly-modulated 10Gb/s RZ transmitter,” in Optical Fiber Communication Conference and Exhibit, 2002 (IEEE, Piscataway, N.J., 2002), pp. 680–682.
[CrossRef]

Wyatt, R.

R. Kashyap, R. Wyatt, R. J. Campbell, “Wideband gain flattened erbium fibre amplifier using a photosensitive fibre blazed grating,” Electron. Lett. 29, 154–156 (1993).
[CrossRef]

Zhang, L.

K. Zhou, A. G. Simpson, L. Zhang, I. Bennion, “Two-dimension optical power distribution of side-out-coupled radiation from tilted FBGs in multi-mode fibre,” Electron. Lett. 39, 651–653 (2003).
[CrossRef]

K. Zhou, A. G. Simpson, L. Zhang, I. Bennion, “Side-detection of strong radiation mode out-coupling from blazed FBGs in single- and multi-mode fibers,” Photonics Technol. Lett. 15, 936–938 (2003).
[CrossRef]

Y. Liu, L. Zhang, I. Bennion, “Fabricating fibre edge filters with arbitrary spectral response based on tilted chirped grating structures,” Meas. Sci. Tech. 10, L1–L3 (1999).
[CrossRef]

A. G. Simpson, K. Zhou, L. Zhang, I. Bennion, “High accuracy interrogation of a WDM FBG sensor array using radiation modes from a B-FBG,” in Bragg Gratings, Photosensitivity and Poling in Glass Waveguides (Optical Society of America, Washington, D.C., 2003), pp. 82–84.

Zhou, K.

K. Zhou, A. G. Simpson, L. Zhang, I. Bennion, “Side-detection of strong radiation mode out-coupling from blazed FBGs in single- and multi-mode fibers,” Photonics Technol. Lett. 15, 936–938 (2003).
[CrossRef]

K. Zhou, A. G. Simpson, L. Zhang, I. Bennion, “Two-dimension optical power distribution of side-out-coupled radiation from tilted FBGs in multi-mode fibre,” Electron. Lett. 39, 651–653 (2003).
[CrossRef]

A. G. Simpson, K. Zhou, L. Zhang, I. Bennion, “High accuracy interrogation of a WDM FBG sensor array using radiation modes from a B-FBG,” in Bragg Gratings, Photosensitivity and Poling in Glass Waveguides (Optical Society of America, Washington, D.C., 2003), pp. 82–84.

Appl. Opt. (1)

Electron. Lett. (2)

K. Zhou, A. G. Simpson, L. Zhang, I. Bennion, “Two-dimension optical power distribution of side-out-coupled radiation from tilted FBGs in multi-mode fibre,” Electron. Lett. 39, 651–653 (2003).
[CrossRef]

R. Kashyap, R. Wyatt, R. J. Campbell, “Wideband gain flattened erbium fibre amplifier using a photosensitive fibre blazed grating,” Electron. Lett. 29, 154–156 (1993).
[CrossRef]

IEE Proc.-Optoelectron (1)

S. J. Mihailov, R. B. Walker, P. Lu, H. Ding, X. Dai, C. Smelser, L. Chen, “UV-induced polarisation-dependent loss (PDL) in tilted fibre Bragg gratings: application of a PDL equaliser,” IEE Proc.-Optoelectron 149, 211 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. S. Lee, T. Erdogan, “Transmissive tilted gratings for LP0.1-to-LP11 mode coupling,” IEEE Photon. Technol. Lett. 11, 1286–1288 (1999).
[CrossRef]

J. Lightwave Tech. (1)

T. Erdogan, “Fibre grating spectra,” J. Lightwave Tech. 15, 1277–1294 (1997).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (2)

Meas. Sci. Tech. (1)

Y. Liu, L. Zhang, I. Bennion, “Fabricating fibre edge filters with arbitrary spectral response based on tilted chirped grating structures,” Meas. Sci. Tech. 10, L1–L3 (1999).
[CrossRef]

Opt. Commun. (1)

A. Ezbiri, S. E. Kanellopoulos, V. A. Handerek, “High resolution instrumentation system for fibre-Bragg grating aerospace sensors,” Opt. Commun. 150, 43–48 (1998).
[CrossRef]

Photonics Technol. Lett. (1)

K. Zhou, A. G. Simpson, L. Zhang, I. Bennion, “Side-detection of strong radiation mode out-coupling from blazed FBGs in single- and multi-mode fibers,” Photonics Technol. Lett. 15, 936–938 (2003).
[CrossRef]

Other (5)

J. L. Wagner, T. A. Strasser, J. R. Pedrazzini, J. DeMarco, D. J. DiGiovanni, “Fibre grating optical spectrum analyzer tap,” in European Conference on Optical Communication (ECOC’97) (IEE, Edinburgh, 1997), pp. 65–68.

H. Labidi, C. Debarros, R. Letteron, Riant, “Slanted Bragg grating with ultra-low polarization dependent loss,” in Optical Fibre and Communication Conference and Exhibit, 2002 (IEEE, Piscataway, N.J., 2002), p. 113.

G. Meltz, W. Morey, W. Glenn, “In-fibre Bragg grating tap,” in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 1990), TuG1.

P. S. Westbrook, K. S. Feder, P. I. Reyes, P. Steinvurzel, B. J. Eggleton, R. G. Ernst, L. A. Reith, D. M. Gill, “Application of fiber Bragg grating filter/tap module to a wavelength-locked low-chirp directly-modulated 10Gb/s RZ transmitter,” in Optical Fiber Communication Conference and Exhibit, 2002 (IEEE, Piscataway, N.J., 2002), pp. 680–682.
[CrossRef]

A. G. Simpson, K. Zhou, L. Zhang, I. Bennion, “High accuracy interrogation of a WDM FBG sensor array using radiation modes from a B-FBG,” in Bragg Gratings, Photosensitivity and Poling in Glass Waveguides (Optical Society of America, Washington, D.C., 2003), pp. 82–84.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

BFBG geometrics showing the blaze angle and the radiation angle. The coordinate system used in this research.

Fig. 2
Fig. 2

(a) Photograph showing 633-nm He–Ne light being outcoupled from a BFBG. (b) Transmission spectra for BFBGs of increasing blaze angle.

Fig. 3
Fig. 3

Schematic diagram of the experimental apparatus.

Fig. 4
Fig. 4

Responsivity of a CCD array coated with Y2O2S:Er,Yb to IR radiation.

Fig. 5
Fig. 5

(a) Contour plot showing the beam profile of outcoupled 1511.2 nm light from a BFBG with blaze angle = 8°. Shown without focusing (left) and with cylindrical lens in y-plane (right). (b) Surface plot showing the amplitude distribution of outcoupled 1511.2 nm radiation from a BFBG with blaze angle = 8°. Shown without focusing (left) and with cylindrical lens in y-plane (right).

Fig. 6
Fig. 6

(a) Contour plot showing the spectral dependence of the radiation profile for 1500 to 1520 nm in 2-nm steps. (b) Diagrammatic representation of the transfer function describing the position of radiation modes for discrete wavelengths. Inset: Pixelation correction resulting from the CDA.

Fig. 7
Fig. 7

Spectrum of the SLED light source used to illuminate the system.

Fig. 8
Fig. 8

Detected (a) strain- and (b) temperature-induced λBR shifts with the BFBG–CCD apparatus.

Fig. 9
Fig. 9

(a) CCD output spectrum when illuminated with a sensor FBG and SLED broadband source. (b) SNR for increasing integration time.

Fig. 10
Fig. 10

Drift over time of the recorded λBR value of a sensor FBG measured with the BFBG–CCD system: (a) raw data and (b) Filtered data for external temperature variations. (c) Histogram to show the distribution of the recorded values of λBR over a 45-min period.

Fig. 11
Fig. 11

Peak position of a sensor for all possible polarization states; demonstrating the polarization independence of the BFBGyCCD detection system.

Fig. 12
Fig. 12

Simulated far-field images for 0° and 90° polarized at 633- [(a) and (b)] and 1560-nm [(c) and (d)] radiation.

Fig. 13
Fig. 13

Two received sensors separated (a) by 100 ρm (WDM separation of 100 ρm) and (b) by 50 ρm (WDM separation of 50 ρm).

Tables (1)

Tables Icon

Table 1 System Parameter Summary for Two Lenses of Different Focal Length

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δnz, x=δn cos2πΛcos ξz-2πΛsin ξx,
cos θ=cosξλΛ-neffλnclλ,
ξ=π2-tan-11n tan ξPM.
fΛ2 sinξPMtanξλ cosξC,
î=1..2048 xiyi1..2048 y   for all yi>threshold,

Metrics