Abstract

A simple geometry optical sensor based on porous silicon technology is theoretically and experimentally studied. We expose some porous silicon optical microcavities with different porous structures to several substances of environmental interest: Very large red shifts in the single transmission peak in the reflectivity spectrum due to changes in the average refractive index are observed. The phenomenon can be ascribed to capillary condensation of vapor phases in the silicon pores. We numerically compute the peak shifts as a function of the liquid volume fraction condensed into the stack by using the Bruggeman theory. The results presented are promising for vapor and liquid detection and identification.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Erson, R. S. Miller, C. W. Tobias, “Investigations of porous silicon for vapor sensing,” Sens. Actuators A 23, 835–839 (1990).
    [CrossRef]
  2. K. Watanabe, T. Okada, I. Choe, Y. Sato, “Organic vapor sensitivity in a porous silicon device,” Sens. Actuators B 33, 194–197 (1996).
    [CrossRef]
  3. M. Ben-Chorin, A. Kux, I. Schecter, “Adsorbate effects on photoluminescence and electrical conductivity of porous silicon,” Appl. Phys. Lett. 64, 481–483 (1994).
    [CrossRef]
  4. A. Motohashi, M. Kawakami, H. Aoyagi, A. Kinoshita, A. Satou, “Gas identification by a single gas sensor using porous silicon as the sensitive material,” Jpn. J. Appl. Phys. 34, 5840–5843 (1995).
    [CrossRef]
  5. H. F. Arrand, A. Loni, R. Arens-Fischer, M. G. Kruger, M. Thoenissen, H. Lueth, S. Kershaw, N. N. Vorazov, “Solvent detection using porous silicon optical waveguides,” J. Lumin. 80, 119–123 (1999).
    [CrossRef]
  6. J. Gao, T. Gao, M. J. Sailor, “A porous silicon vapor sensor based on laser interferometry,” Appl. Phys. Lett. 77, 901–903 (2000).
    [CrossRef]
  7. V. Mulloni, L. Pavesi, “Porous silicon microcavities as optical chemical sensors,” Appl. Phys. Lett. 76, 2523–2525 (2000).
    [CrossRef]
  8. S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, B. L. Miller, “Porous silicon microcavities for biosensing applications,” Phys. Status Solidi A 182, 541–546 (2000).
    [CrossRef]
  9. P. A. Snow, E. K. Squire, P. St. J. Russel, L. T. Canaham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781–1784 (1999).
    [CrossRef]
  10. L. Pavesi, “Porous silicon dielectric multilayers and microcavities,” RVI. Nuovo Cimento 20, 1–76 (1997).
    [CrossRef]
  11. M. A. Muriel, A. Carballar, “Internal field distributions in fiber Bragg gratings,” IEEE Photonics Technol. Lett. 9, 955–957 (1997).
    [CrossRef]
  12. J. E. Spanier, I. P. Herman, “Use of hybrid phenomenological and statistical effective-medium theories of dielectric functions to model the infrared reflectance of porous SiC films,” Phys. Rev. B 61, 10437–10450 (2000).
    [CrossRef]
  13. P. Allcock, P. A. Snow, “Time-resolved sensing of organic vapors in low modulating porous silicon dielectric mirrors,” J. Appl. Phys. 90, 5052–5057 (2001).
    [CrossRef]
  14. L. De Stefano, L. Moretti, I. Rendina, A. M. Rossi, “Time-resolved sensing of chemical species in porous silicon optical microcavity,” Sens. Actuators B (to be published).
  15. A. V. Neimark, P. I. Ravikovitch, “Capillary condensation in MMS and pore structure characterization,” Microporous Mesoporous Mater. 44-45, 697–707 (2001).
    [CrossRef]

2001 (2)

P. Allcock, P. A. Snow, “Time-resolved sensing of organic vapors in low modulating porous silicon dielectric mirrors,” J. Appl. Phys. 90, 5052–5057 (2001).
[CrossRef]

A. V. Neimark, P. I. Ravikovitch, “Capillary condensation in MMS and pore structure characterization,” Microporous Mesoporous Mater. 44-45, 697–707 (2001).
[CrossRef]

2000 (4)

J. E. Spanier, I. P. Herman, “Use of hybrid phenomenological and statistical effective-medium theories of dielectric functions to model the infrared reflectance of porous SiC films,” Phys. Rev. B 61, 10437–10450 (2000).
[CrossRef]

J. Gao, T. Gao, M. J. Sailor, “A porous silicon vapor sensor based on laser interferometry,” Appl. Phys. Lett. 77, 901–903 (2000).
[CrossRef]

V. Mulloni, L. Pavesi, “Porous silicon microcavities as optical chemical sensors,” Appl. Phys. Lett. 76, 2523–2525 (2000).
[CrossRef]

S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, B. L. Miller, “Porous silicon microcavities for biosensing applications,” Phys. Status Solidi A 182, 541–546 (2000).
[CrossRef]

1999 (2)

P. A. Snow, E. K. Squire, P. St. J. Russel, L. T. Canaham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781–1784 (1999).
[CrossRef]

H. F. Arrand, A. Loni, R. Arens-Fischer, M. G. Kruger, M. Thoenissen, H. Lueth, S. Kershaw, N. N. Vorazov, “Solvent detection using porous silicon optical waveguides,” J. Lumin. 80, 119–123 (1999).
[CrossRef]

1997 (2)

L. Pavesi, “Porous silicon dielectric multilayers and microcavities,” RVI. Nuovo Cimento 20, 1–76 (1997).
[CrossRef]

M. A. Muriel, A. Carballar, “Internal field distributions in fiber Bragg gratings,” IEEE Photonics Technol. Lett. 9, 955–957 (1997).
[CrossRef]

1996 (1)

K. Watanabe, T. Okada, I. Choe, Y. Sato, “Organic vapor sensitivity in a porous silicon device,” Sens. Actuators B 33, 194–197 (1996).
[CrossRef]

1995 (1)

A. Motohashi, M. Kawakami, H. Aoyagi, A. Kinoshita, A. Satou, “Gas identification by a single gas sensor using porous silicon as the sensitive material,” Jpn. J. Appl. Phys. 34, 5840–5843 (1995).
[CrossRef]

1994 (1)

M. Ben-Chorin, A. Kux, I. Schecter, “Adsorbate effects on photoluminescence and electrical conductivity of porous silicon,” Appl. Phys. Lett. 64, 481–483 (1994).
[CrossRef]

1990 (1)

R. C. Erson, R. S. Miller, C. W. Tobias, “Investigations of porous silicon for vapor sensing,” Sens. Actuators A 23, 835–839 (1990).
[CrossRef]

Allcock, P.

P. Allcock, P. A. Snow, “Time-resolved sensing of organic vapors in low modulating porous silicon dielectric mirrors,” J. Appl. Phys. 90, 5052–5057 (2001).
[CrossRef]

Aoyagi, H.

A. Motohashi, M. Kawakami, H. Aoyagi, A. Kinoshita, A. Satou, “Gas identification by a single gas sensor using porous silicon as the sensitive material,” Jpn. J. Appl. Phys. 34, 5840–5843 (1995).
[CrossRef]

Arens-Fischer, R.

H. F. Arrand, A. Loni, R. Arens-Fischer, M. G. Kruger, M. Thoenissen, H. Lueth, S. Kershaw, N. N. Vorazov, “Solvent detection using porous silicon optical waveguides,” J. Lumin. 80, 119–123 (1999).
[CrossRef]

Arrand, H. F.

H. F. Arrand, A. Loni, R. Arens-Fischer, M. G. Kruger, M. Thoenissen, H. Lueth, S. Kershaw, N. N. Vorazov, “Solvent detection using porous silicon optical waveguides,” J. Lumin. 80, 119–123 (1999).
[CrossRef]

Ben-Chorin, M.

M. Ben-Chorin, A. Kux, I. Schecter, “Adsorbate effects on photoluminescence and electrical conductivity of porous silicon,” Appl. Phys. Lett. 64, 481–483 (1994).
[CrossRef]

Canaham, L. T.

P. A. Snow, E. K. Squire, P. St. J. Russel, L. T. Canaham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781–1784 (1999).
[CrossRef]

Carballar, A.

M. A. Muriel, A. Carballar, “Internal field distributions in fiber Bragg gratings,” IEEE Photonics Technol. Lett. 9, 955–957 (1997).
[CrossRef]

Chan, S.

S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, B. L. Miller, “Porous silicon microcavities for biosensing applications,” Phys. Status Solidi A 182, 541–546 (2000).
[CrossRef]

Choe, I.

K. Watanabe, T. Okada, I. Choe, Y. Sato, “Organic vapor sensitivity in a porous silicon device,” Sens. Actuators B 33, 194–197 (1996).
[CrossRef]

De Stefano, L.

L. De Stefano, L. Moretti, I. Rendina, A. M. Rossi, “Time-resolved sensing of chemical species in porous silicon optical microcavity,” Sens. Actuators B (to be published).

Erson, R. C.

R. C. Erson, R. S. Miller, C. W. Tobias, “Investigations of porous silicon for vapor sensing,” Sens. Actuators A 23, 835–839 (1990).
[CrossRef]

Fauchet, P. M.

S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, B. L. Miller, “Porous silicon microcavities for biosensing applications,” Phys. Status Solidi A 182, 541–546 (2000).
[CrossRef]

Gao, J.

J. Gao, T. Gao, M. J. Sailor, “A porous silicon vapor sensor based on laser interferometry,” Appl. Phys. Lett. 77, 901–903 (2000).
[CrossRef]

Gao, T.

J. Gao, T. Gao, M. J. Sailor, “A porous silicon vapor sensor based on laser interferometry,” Appl. Phys. Lett. 77, 901–903 (2000).
[CrossRef]

Herman, I. P.

J. E. Spanier, I. P. Herman, “Use of hybrid phenomenological and statistical effective-medium theories of dielectric functions to model the infrared reflectance of porous SiC films,” Phys. Rev. B 61, 10437–10450 (2000).
[CrossRef]

Kawakami, M.

A. Motohashi, M. Kawakami, H. Aoyagi, A. Kinoshita, A. Satou, “Gas identification by a single gas sensor using porous silicon as the sensitive material,” Jpn. J. Appl. Phys. 34, 5840–5843 (1995).
[CrossRef]

Kershaw, S.

H. F. Arrand, A. Loni, R. Arens-Fischer, M. G. Kruger, M. Thoenissen, H. Lueth, S. Kershaw, N. N. Vorazov, “Solvent detection using porous silicon optical waveguides,” J. Lumin. 80, 119–123 (1999).
[CrossRef]

Kinoshita, A.

A. Motohashi, M. Kawakami, H. Aoyagi, A. Kinoshita, A. Satou, “Gas identification by a single gas sensor using porous silicon as the sensitive material,” Jpn. J. Appl. Phys. 34, 5840–5843 (1995).
[CrossRef]

Kruger, M. G.

H. F. Arrand, A. Loni, R. Arens-Fischer, M. G. Kruger, M. Thoenissen, H. Lueth, S. Kershaw, N. N. Vorazov, “Solvent detection using porous silicon optical waveguides,” J. Lumin. 80, 119–123 (1999).
[CrossRef]

Kux, A.

M. Ben-Chorin, A. Kux, I. Schecter, “Adsorbate effects on photoluminescence and electrical conductivity of porous silicon,” Appl. Phys. Lett. 64, 481–483 (1994).
[CrossRef]

Li, Y.

S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, B. L. Miller, “Porous silicon microcavities for biosensing applications,” Phys. Status Solidi A 182, 541–546 (2000).
[CrossRef]

Loni, A.

H. F. Arrand, A. Loni, R. Arens-Fischer, M. G. Kruger, M. Thoenissen, H. Lueth, S. Kershaw, N. N. Vorazov, “Solvent detection using porous silicon optical waveguides,” J. Lumin. 80, 119–123 (1999).
[CrossRef]

Lueth, H.

H. F. Arrand, A. Loni, R. Arens-Fischer, M. G. Kruger, M. Thoenissen, H. Lueth, S. Kershaw, N. N. Vorazov, “Solvent detection using porous silicon optical waveguides,” J. Lumin. 80, 119–123 (1999).
[CrossRef]

Miller, B. L.

S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, B. L. Miller, “Porous silicon microcavities for biosensing applications,” Phys. Status Solidi A 182, 541–546 (2000).
[CrossRef]

Miller, R. S.

R. C. Erson, R. S. Miller, C. W. Tobias, “Investigations of porous silicon for vapor sensing,” Sens. Actuators A 23, 835–839 (1990).
[CrossRef]

Moretti, L.

L. De Stefano, L. Moretti, I. Rendina, A. M. Rossi, “Time-resolved sensing of chemical species in porous silicon optical microcavity,” Sens. Actuators B (to be published).

Motohashi, A.

A. Motohashi, M. Kawakami, H. Aoyagi, A. Kinoshita, A. Satou, “Gas identification by a single gas sensor using porous silicon as the sensitive material,” Jpn. J. Appl. Phys. 34, 5840–5843 (1995).
[CrossRef]

Mulloni, V.

V. Mulloni, L. Pavesi, “Porous silicon microcavities as optical chemical sensors,” Appl. Phys. Lett. 76, 2523–2525 (2000).
[CrossRef]

Muriel, M. A.

M. A. Muriel, A. Carballar, “Internal field distributions in fiber Bragg gratings,” IEEE Photonics Technol. Lett. 9, 955–957 (1997).
[CrossRef]

Neimark, A. V.

A. V. Neimark, P. I. Ravikovitch, “Capillary condensation in MMS and pore structure characterization,” Microporous Mesoporous Mater. 44-45, 697–707 (2001).
[CrossRef]

Okada, T.

K. Watanabe, T. Okada, I. Choe, Y. Sato, “Organic vapor sensitivity in a porous silicon device,” Sens. Actuators B 33, 194–197 (1996).
[CrossRef]

Pavesi, L.

V. Mulloni, L. Pavesi, “Porous silicon microcavities as optical chemical sensors,” Appl. Phys. Lett. 76, 2523–2525 (2000).
[CrossRef]

L. Pavesi, “Porous silicon dielectric multilayers and microcavities,” RVI. Nuovo Cimento 20, 1–76 (1997).
[CrossRef]

Ravikovitch, P. I.

A. V. Neimark, P. I. Ravikovitch, “Capillary condensation in MMS and pore structure characterization,” Microporous Mesoporous Mater. 44-45, 697–707 (2001).
[CrossRef]

Rendina, I.

L. De Stefano, L. Moretti, I. Rendina, A. M. Rossi, “Time-resolved sensing of chemical species in porous silicon optical microcavity,” Sens. Actuators B (to be published).

Rossi, A. M.

L. De Stefano, L. Moretti, I. Rendina, A. M. Rossi, “Time-resolved sensing of chemical species in porous silicon optical microcavity,” Sens. Actuators B (to be published).

Rothberg, L. J.

S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, B. L. Miller, “Porous silicon microcavities for biosensing applications,” Phys. Status Solidi A 182, 541–546 (2000).
[CrossRef]

Russel, P. St. J.

P. A. Snow, E. K. Squire, P. St. J. Russel, L. T. Canaham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781–1784 (1999).
[CrossRef]

Sailor, M. J.

J. Gao, T. Gao, M. J. Sailor, “A porous silicon vapor sensor based on laser interferometry,” Appl. Phys. Lett. 77, 901–903 (2000).
[CrossRef]

Sato, Y.

K. Watanabe, T. Okada, I. Choe, Y. Sato, “Organic vapor sensitivity in a porous silicon device,” Sens. Actuators B 33, 194–197 (1996).
[CrossRef]

Satou, A.

A. Motohashi, M. Kawakami, H. Aoyagi, A. Kinoshita, A. Satou, “Gas identification by a single gas sensor using porous silicon as the sensitive material,” Jpn. J. Appl. Phys. 34, 5840–5843 (1995).
[CrossRef]

Schecter, I.

M. Ben-Chorin, A. Kux, I. Schecter, “Adsorbate effects on photoluminescence and electrical conductivity of porous silicon,” Appl. Phys. Lett. 64, 481–483 (1994).
[CrossRef]

Snow, P. A.

P. Allcock, P. A. Snow, “Time-resolved sensing of organic vapors in low modulating porous silicon dielectric mirrors,” J. Appl. Phys. 90, 5052–5057 (2001).
[CrossRef]

P. A. Snow, E. K. Squire, P. St. J. Russel, L. T. Canaham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781–1784 (1999).
[CrossRef]

Spanier, J. E.

J. E. Spanier, I. P. Herman, “Use of hybrid phenomenological and statistical effective-medium theories of dielectric functions to model the infrared reflectance of porous SiC films,” Phys. Rev. B 61, 10437–10450 (2000).
[CrossRef]

Squire, E. K.

P. A. Snow, E. K. Squire, P. St. J. Russel, L. T. Canaham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781–1784 (1999).
[CrossRef]

Thoenissen, M.

H. F. Arrand, A. Loni, R. Arens-Fischer, M. G. Kruger, M. Thoenissen, H. Lueth, S. Kershaw, N. N. Vorazov, “Solvent detection using porous silicon optical waveguides,” J. Lumin. 80, 119–123 (1999).
[CrossRef]

Tobias, C. W.

R. C. Erson, R. S. Miller, C. W. Tobias, “Investigations of porous silicon for vapor sensing,” Sens. Actuators A 23, 835–839 (1990).
[CrossRef]

Vorazov, N. N.

H. F. Arrand, A. Loni, R. Arens-Fischer, M. G. Kruger, M. Thoenissen, H. Lueth, S. Kershaw, N. N. Vorazov, “Solvent detection using porous silicon optical waveguides,” J. Lumin. 80, 119–123 (1999).
[CrossRef]

Watanabe, K.

K. Watanabe, T. Okada, I. Choe, Y. Sato, “Organic vapor sensitivity in a porous silicon device,” Sens. Actuators B 33, 194–197 (1996).
[CrossRef]

Appl. Phys. Lett. (3)

M. Ben-Chorin, A. Kux, I. Schecter, “Adsorbate effects on photoluminescence and electrical conductivity of porous silicon,” Appl. Phys. Lett. 64, 481–483 (1994).
[CrossRef]

J. Gao, T. Gao, M. J. Sailor, “A porous silicon vapor sensor based on laser interferometry,” Appl. Phys. Lett. 77, 901–903 (2000).
[CrossRef]

V. Mulloni, L. Pavesi, “Porous silicon microcavities as optical chemical sensors,” Appl. Phys. Lett. 76, 2523–2525 (2000).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

M. A. Muriel, A. Carballar, “Internal field distributions in fiber Bragg gratings,” IEEE Photonics Technol. Lett. 9, 955–957 (1997).
[CrossRef]

J. Appl. Phys. (2)

P. Allcock, P. A. Snow, “Time-resolved sensing of organic vapors in low modulating porous silicon dielectric mirrors,” J. Appl. Phys. 90, 5052–5057 (2001).
[CrossRef]

P. A. Snow, E. K. Squire, P. St. J. Russel, L. T. Canaham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781–1784 (1999).
[CrossRef]

J. Lumin. (1)

H. F. Arrand, A. Loni, R. Arens-Fischer, M. G. Kruger, M. Thoenissen, H. Lueth, S. Kershaw, N. N. Vorazov, “Solvent detection using porous silicon optical waveguides,” J. Lumin. 80, 119–123 (1999).
[CrossRef]

Jpn. J. Appl. Phys. (1)

A. Motohashi, M. Kawakami, H. Aoyagi, A. Kinoshita, A. Satou, “Gas identification by a single gas sensor using porous silicon as the sensitive material,” Jpn. J. Appl. Phys. 34, 5840–5843 (1995).
[CrossRef]

Microporous Mesoporous Mater. (1)

A. V. Neimark, P. I. Ravikovitch, “Capillary condensation in MMS and pore structure characterization,” Microporous Mesoporous Mater. 44-45, 697–707 (2001).
[CrossRef]

Phys. Rev. B (1)

J. E. Spanier, I. P. Herman, “Use of hybrid phenomenological and statistical effective-medium theories of dielectric functions to model the infrared reflectance of porous SiC films,” Phys. Rev. B 61, 10437–10450 (2000).
[CrossRef]

Phys. Status Solidi A (1)

S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, B. L. Miller, “Porous silicon microcavities for biosensing applications,” Phys. Status Solidi A 182, 541–546 (2000).
[CrossRef]

RVI. Nuovo Cimento (1)

L. Pavesi, “Porous silicon dielectric multilayers and microcavities,” RVI. Nuovo Cimento 20, 1–76 (1997).
[CrossRef]

Sens. Actuators A (1)

R. C. Erson, R. S. Miller, C. W. Tobias, “Investigations of porous silicon for vapor sensing,” Sens. Actuators A 23, 835–839 (1990).
[CrossRef]

Sens. Actuators B (1)

K. Watanabe, T. Okada, I. Choe, Y. Sato, “Organic vapor sensitivity in a porous silicon device,” Sens. Actuators B 33, 194–197 (1996).
[CrossRef]

Other (1)

L. De Stefano, L. Moretti, I. Rendina, A. M. Rossi, “Time-resolved sensing of chemical species in porous silicon optical microcavity,” Sens. Actuators B (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental and simulated spectrum of the PSMC: solid curve, experimental registered spectrum; dotted curve, numerical simulated spectrum.

Fig. 2
Fig. 2

Calculated wavelength shift of the PSMC transmission peak as a function of the organic solvent liquid fraction in the case of the LPS series.

Fig. 3
Fig. 3

Calculated wavelength shift of the PSMC transmission peak as a function of the organic solvent liquid fraction in the case of the HPS series.

Fig. 4
Fig. 4

FE SEM image of the LPS microcavity surface.

Fig. 5
Fig. 5

FE SEM image of the HPS microcavity surface.

Fig. 6
Fig. 6

FE SEM image of the HPS microcavity cross section.

Fig. 7
Fig. 7

Reflectivity spectra of porous silicon microcavities before and after the exposure to methanol: solid curve, HPS microcavity spectra; dotted curve, LPS microcavity spectra.

Fig. 8
Fig. 8

Time-resolved measurement in the case of the isopropanol. LSP series microcavity.

Tables (1)

Tables Icon

Table 1 Chemical Organic Substances Used in Sensing Experiments and Some Relevant Physical-Chemical Properties

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

i fiεi-εavεi+2εav=0,
1-pkεSi-εkεSi+2εk+pk-Vεair-εkεair+2εk+Vεch-εkεch+2εk=0,
kBTρl lnpsat/p=2γlg cos θ/R,

Metrics