Abstract

The effect of strain induced from die bonding on the optical guiding of a ridge-waveguide laser is examined. Measurements of the strain in a p-down-mounted InP-based diode laser with fits to polarization-resolved photoluminescence are used to compute the resulting photoelastic effect in a ridge waveguide. The strain is found to alter the refractive indices in the material sufficiently in the waveguide to change the mode and reduce the optical confinement. In the far field the beam is calculated to be made narrow and asymmetric by the die-bonding strain.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Diehl, ed., High Power Diode Lasers (Springer-Verlag, New York, 2000).
    [CrossRef]
  2. R. Beach, W. J. Benett, B. L. Freitas, D. Mundinger, B. J. Comaskey, R. W. Solarz, M. A. Emanuel, “Modular microchannel cooled heatsinks for high average power laser diode arrays,” IEEE J. Quantum Electron. 28, 966–976 (1992).
    [CrossRef]
  3. T. Hayakawa, N. Miyauchi, S. Yamamoto, H. Hayashi, S. Yano, T. Hijikata, “Improved lifetimes of (GaAl)As visible (740-nm) lasers by reducing bonding stress,” Appl. Phys. Lett. 42, 23–24 (1983).
    [CrossRef]
  4. V. Swaminathan, L. A. Koszi, M. W. Focht, “Effect of macroscopic stress on accelerated aging of GaInAsP channeled substrate buried heterostructure lasers,” J. Appl. Phys. 66, 1849–1854 (1989).
    [CrossRef]
  5. N. K. Dutta, “Effect of uniaxial stress on optical gain in semiconductors,” J. Appl. Phys. 55, 285–288 (1984).
    [CrossRef]
  6. N. K. Dutta, D. C. Craft, “Effect of stress on the polarization of stimulated emission from injection lasers,” J. Appl. Phys. 56, 65–70 (1984).
    [CrossRef]
  7. J. Yang, D. T. Cassidy, “Strain measurement and estimation of photoelastic effects and strain-induced optical gain change in ridge waveguide lasers,” J. Appl. Phys. 77, 3382–3387 (1995).
    [CrossRef]
  8. J. F. Nye, Physical Properties of Crystals (Clarendon, Oxford, 1985).
  9. P. D. Colbourne, D. T. Cassidy, “Imaging of stresses in GaAs diode lasers using polarization-resolved photoluminescence,” IEEE J. Quantum Electron. 29, 62–68 (1993).
    [CrossRef]
  10. M. A. Fritz, D. T. Cassidy, “Extraction of bonding strain data in diode lasers from polarization-resolved photoluminescence measurements,” Microelectronics Reliability (to be published).
  11. N. Suzuki, K. Tada, “Elasto-optic properties of InP,” Jpn. J. Appl. Phys. 22, 441–445 (1983).
    [CrossRef]
  12. EMIS Datareviews Series 6, Properties of Indium Phosphide (Inspec, New York, 1991).
  13. G. R. Hadley, R. E. Smith, “Full-vector waveguide modeling using an iterative finite-difference method with transparent boundary conditions,” J. Lightwave Technol. 13, 465–469 (1995).
    [CrossRef]
  14. R. Maceijko, J. M. Glinski, A. Champagne, J. Berger, L. Samson, “Photoelastic effects on the emission patterns of InGaAsP ridge-waveguide lasers,” IEEE J. Quantum Electron. 25, 651–660 (1989).
    [CrossRef]
  15. R. Maceijko, A. Golebiowski, A. Champagne, J. M. Glinski, “Selective TE-TM mode pumping efficiencies for ridge-waveguide lasers in presence of stress,” IEEE J. Quantum Electron. 29, 51–60 (1993).
    [CrossRef]
  16. Q. Z. Liu, F. Deng, L. S. Yu, Z. F. Guan, S. A. Pappert, P. K. L. Yu, S. S. Lau, J. M. Redwing, T. F. Kuech, “Photoelastic waveguides and the controlled introduction of strain in III–V semiconductors by means of thin-film technology,” J. Appl. Phys. 78, 236–244 (1995).
    [CrossRef]

1995 (3)

J. Yang, D. T. Cassidy, “Strain measurement and estimation of photoelastic effects and strain-induced optical gain change in ridge waveguide lasers,” J. Appl. Phys. 77, 3382–3387 (1995).
[CrossRef]

G. R. Hadley, R. E. Smith, “Full-vector waveguide modeling using an iterative finite-difference method with transparent boundary conditions,” J. Lightwave Technol. 13, 465–469 (1995).
[CrossRef]

Q. Z. Liu, F. Deng, L. S. Yu, Z. F. Guan, S. A. Pappert, P. K. L. Yu, S. S. Lau, J. M. Redwing, T. F. Kuech, “Photoelastic waveguides and the controlled introduction of strain in III–V semiconductors by means of thin-film technology,” J. Appl. Phys. 78, 236–244 (1995).
[CrossRef]

1993 (2)

R. Maceijko, A. Golebiowski, A. Champagne, J. M. Glinski, “Selective TE-TM mode pumping efficiencies for ridge-waveguide lasers in presence of stress,” IEEE J. Quantum Electron. 29, 51–60 (1993).
[CrossRef]

P. D. Colbourne, D. T. Cassidy, “Imaging of stresses in GaAs diode lasers using polarization-resolved photoluminescence,” IEEE J. Quantum Electron. 29, 62–68 (1993).
[CrossRef]

1992 (1)

R. Beach, W. J. Benett, B. L. Freitas, D. Mundinger, B. J. Comaskey, R. W. Solarz, M. A. Emanuel, “Modular microchannel cooled heatsinks for high average power laser diode arrays,” IEEE J. Quantum Electron. 28, 966–976 (1992).
[CrossRef]

1989 (2)

V. Swaminathan, L. A. Koszi, M. W. Focht, “Effect of macroscopic stress on accelerated aging of GaInAsP channeled substrate buried heterostructure lasers,” J. Appl. Phys. 66, 1849–1854 (1989).
[CrossRef]

R. Maceijko, J. M. Glinski, A. Champagne, J. Berger, L. Samson, “Photoelastic effects on the emission patterns of InGaAsP ridge-waveguide lasers,” IEEE J. Quantum Electron. 25, 651–660 (1989).
[CrossRef]

1984 (2)

N. K. Dutta, “Effect of uniaxial stress on optical gain in semiconductors,” J. Appl. Phys. 55, 285–288 (1984).
[CrossRef]

N. K. Dutta, D. C. Craft, “Effect of stress on the polarization of stimulated emission from injection lasers,” J. Appl. Phys. 56, 65–70 (1984).
[CrossRef]

1983 (2)

T. Hayakawa, N. Miyauchi, S. Yamamoto, H. Hayashi, S. Yano, T. Hijikata, “Improved lifetimes of (GaAl)As visible (740-nm) lasers by reducing bonding stress,” Appl. Phys. Lett. 42, 23–24 (1983).
[CrossRef]

N. Suzuki, K. Tada, “Elasto-optic properties of InP,” Jpn. J. Appl. Phys. 22, 441–445 (1983).
[CrossRef]

Beach, R.

R. Beach, W. J. Benett, B. L. Freitas, D. Mundinger, B. J. Comaskey, R. W. Solarz, M. A. Emanuel, “Modular microchannel cooled heatsinks for high average power laser diode arrays,” IEEE J. Quantum Electron. 28, 966–976 (1992).
[CrossRef]

Benett, W. J.

R. Beach, W. J. Benett, B. L. Freitas, D. Mundinger, B. J. Comaskey, R. W. Solarz, M. A. Emanuel, “Modular microchannel cooled heatsinks for high average power laser diode arrays,” IEEE J. Quantum Electron. 28, 966–976 (1992).
[CrossRef]

Berger, J.

R. Maceijko, J. M. Glinski, A. Champagne, J. Berger, L. Samson, “Photoelastic effects on the emission patterns of InGaAsP ridge-waveguide lasers,” IEEE J. Quantum Electron. 25, 651–660 (1989).
[CrossRef]

Cassidy, D. T.

J. Yang, D. T. Cassidy, “Strain measurement and estimation of photoelastic effects and strain-induced optical gain change in ridge waveguide lasers,” J. Appl. Phys. 77, 3382–3387 (1995).
[CrossRef]

P. D. Colbourne, D. T. Cassidy, “Imaging of stresses in GaAs diode lasers using polarization-resolved photoluminescence,” IEEE J. Quantum Electron. 29, 62–68 (1993).
[CrossRef]

M. A. Fritz, D. T. Cassidy, “Extraction of bonding strain data in diode lasers from polarization-resolved photoluminescence measurements,” Microelectronics Reliability (to be published).

Champagne, A.

R. Maceijko, A. Golebiowski, A. Champagne, J. M. Glinski, “Selective TE-TM mode pumping efficiencies for ridge-waveguide lasers in presence of stress,” IEEE J. Quantum Electron. 29, 51–60 (1993).
[CrossRef]

R. Maceijko, J. M. Glinski, A. Champagne, J. Berger, L. Samson, “Photoelastic effects on the emission patterns of InGaAsP ridge-waveguide lasers,” IEEE J. Quantum Electron. 25, 651–660 (1989).
[CrossRef]

Colbourne, P. D.

P. D. Colbourne, D. T. Cassidy, “Imaging of stresses in GaAs diode lasers using polarization-resolved photoluminescence,” IEEE J. Quantum Electron. 29, 62–68 (1993).
[CrossRef]

Comaskey, B. J.

R. Beach, W. J. Benett, B. L. Freitas, D. Mundinger, B. J. Comaskey, R. W. Solarz, M. A. Emanuel, “Modular microchannel cooled heatsinks for high average power laser diode arrays,” IEEE J. Quantum Electron. 28, 966–976 (1992).
[CrossRef]

Craft, D. C.

N. K. Dutta, D. C. Craft, “Effect of stress on the polarization of stimulated emission from injection lasers,” J. Appl. Phys. 56, 65–70 (1984).
[CrossRef]

Deng, F.

Q. Z. Liu, F. Deng, L. S. Yu, Z. F. Guan, S. A. Pappert, P. K. L. Yu, S. S. Lau, J. M. Redwing, T. F. Kuech, “Photoelastic waveguides and the controlled introduction of strain in III–V semiconductors by means of thin-film technology,” J. Appl. Phys. 78, 236–244 (1995).
[CrossRef]

Dutta, N. K.

N. K. Dutta, “Effect of uniaxial stress on optical gain in semiconductors,” J. Appl. Phys. 55, 285–288 (1984).
[CrossRef]

N. K. Dutta, D. C. Craft, “Effect of stress on the polarization of stimulated emission from injection lasers,” J. Appl. Phys. 56, 65–70 (1984).
[CrossRef]

Emanuel, M. A.

R. Beach, W. J. Benett, B. L. Freitas, D. Mundinger, B. J. Comaskey, R. W. Solarz, M. A. Emanuel, “Modular microchannel cooled heatsinks for high average power laser diode arrays,” IEEE J. Quantum Electron. 28, 966–976 (1992).
[CrossRef]

Focht, M. W.

V. Swaminathan, L. A. Koszi, M. W. Focht, “Effect of macroscopic stress on accelerated aging of GaInAsP channeled substrate buried heterostructure lasers,” J. Appl. Phys. 66, 1849–1854 (1989).
[CrossRef]

Freitas, B. L.

R. Beach, W. J. Benett, B. L. Freitas, D. Mundinger, B. J. Comaskey, R. W. Solarz, M. A. Emanuel, “Modular microchannel cooled heatsinks for high average power laser diode arrays,” IEEE J. Quantum Electron. 28, 966–976 (1992).
[CrossRef]

Fritz, M. A.

M. A. Fritz, D. T. Cassidy, “Extraction of bonding strain data in diode lasers from polarization-resolved photoluminescence measurements,” Microelectronics Reliability (to be published).

Glinski, J. M.

R. Maceijko, A. Golebiowski, A. Champagne, J. M. Glinski, “Selective TE-TM mode pumping efficiencies for ridge-waveguide lasers in presence of stress,” IEEE J. Quantum Electron. 29, 51–60 (1993).
[CrossRef]

R. Maceijko, J. M. Glinski, A. Champagne, J. Berger, L. Samson, “Photoelastic effects on the emission patterns of InGaAsP ridge-waveguide lasers,” IEEE J. Quantum Electron. 25, 651–660 (1989).
[CrossRef]

Golebiowski, A.

R. Maceijko, A. Golebiowski, A. Champagne, J. M. Glinski, “Selective TE-TM mode pumping efficiencies for ridge-waveguide lasers in presence of stress,” IEEE J. Quantum Electron. 29, 51–60 (1993).
[CrossRef]

Guan, Z. F.

Q. Z. Liu, F. Deng, L. S. Yu, Z. F. Guan, S. A. Pappert, P. K. L. Yu, S. S. Lau, J. M. Redwing, T. F. Kuech, “Photoelastic waveguides and the controlled introduction of strain in III–V semiconductors by means of thin-film technology,” J. Appl. Phys. 78, 236–244 (1995).
[CrossRef]

Hadley, G. R.

G. R. Hadley, R. E. Smith, “Full-vector waveguide modeling using an iterative finite-difference method with transparent boundary conditions,” J. Lightwave Technol. 13, 465–469 (1995).
[CrossRef]

Hayakawa, T.

T. Hayakawa, N. Miyauchi, S. Yamamoto, H. Hayashi, S. Yano, T. Hijikata, “Improved lifetimes of (GaAl)As visible (740-nm) lasers by reducing bonding stress,” Appl. Phys. Lett. 42, 23–24 (1983).
[CrossRef]

Hayashi, H.

T. Hayakawa, N. Miyauchi, S. Yamamoto, H. Hayashi, S. Yano, T. Hijikata, “Improved lifetimes of (GaAl)As visible (740-nm) lasers by reducing bonding stress,” Appl. Phys. Lett. 42, 23–24 (1983).
[CrossRef]

Hijikata, T.

T. Hayakawa, N. Miyauchi, S. Yamamoto, H. Hayashi, S. Yano, T. Hijikata, “Improved lifetimes of (GaAl)As visible (740-nm) lasers by reducing bonding stress,” Appl. Phys. Lett. 42, 23–24 (1983).
[CrossRef]

Koszi, L. A.

V. Swaminathan, L. A. Koszi, M. W. Focht, “Effect of macroscopic stress on accelerated aging of GaInAsP channeled substrate buried heterostructure lasers,” J. Appl. Phys. 66, 1849–1854 (1989).
[CrossRef]

Kuech, T. F.

Q. Z. Liu, F. Deng, L. S. Yu, Z. F. Guan, S. A. Pappert, P. K. L. Yu, S. S. Lau, J. M. Redwing, T. F. Kuech, “Photoelastic waveguides and the controlled introduction of strain in III–V semiconductors by means of thin-film technology,” J. Appl. Phys. 78, 236–244 (1995).
[CrossRef]

Lau, S. S.

Q. Z. Liu, F. Deng, L. S. Yu, Z. F. Guan, S. A. Pappert, P. K. L. Yu, S. S. Lau, J. M. Redwing, T. F. Kuech, “Photoelastic waveguides and the controlled introduction of strain in III–V semiconductors by means of thin-film technology,” J. Appl. Phys. 78, 236–244 (1995).
[CrossRef]

Liu, Q. Z.

Q. Z. Liu, F. Deng, L. S. Yu, Z. F. Guan, S. A. Pappert, P. K. L. Yu, S. S. Lau, J. M. Redwing, T. F. Kuech, “Photoelastic waveguides and the controlled introduction of strain in III–V semiconductors by means of thin-film technology,” J. Appl. Phys. 78, 236–244 (1995).
[CrossRef]

Maceijko, R.

R. Maceijko, A. Golebiowski, A. Champagne, J. M. Glinski, “Selective TE-TM mode pumping efficiencies for ridge-waveguide lasers in presence of stress,” IEEE J. Quantum Electron. 29, 51–60 (1993).
[CrossRef]

R. Maceijko, J. M. Glinski, A. Champagne, J. Berger, L. Samson, “Photoelastic effects on the emission patterns of InGaAsP ridge-waveguide lasers,” IEEE J. Quantum Electron. 25, 651–660 (1989).
[CrossRef]

Miyauchi, N.

T. Hayakawa, N. Miyauchi, S. Yamamoto, H. Hayashi, S. Yano, T. Hijikata, “Improved lifetimes of (GaAl)As visible (740-nm) lasers by reducing bonding stress,” Appl. Phys. Lett. 42, 23–24 (1983).
[CrossRef]

Mundinger, D.

R. Beach, W. J. Benett, B. L. Freitas, D. Mundinger, B. J. Comaskey, R. W. Solarz, M. A. Emanuel, “Modular microchannel cooled heatsinks for high average power laser diode arrays,” IEEE J. Quantum Electron. 28, 966–976 (1992).
[CrossRef]

Nye, J. F.

J. F. Nye, Physical Properties of Crystals (Clarendon, Oxford, 1985).

Pappert, S. A.

Q. Z. Liu, F. Deng, L. S. Yu, Z. F. Guan, S. A. Pappert, P. K. L. Yu, S. S. Lau, J. M. Redwing, T. F. Kuech, “Photoelastic waveguides and the controlled introduction of strain in III–V semiconductors by means of thin-film technology,” J. Appl. Phys. 78, 236–244 (1995).
[CrossRef]

Redwing, J. M.

Q. Z. Liu, F. Deng, L. S. Yu, Z. F. Guan, S. A. Pappert, P. K. L. Yu, S. S. Lau, J. M. Redwing, T. F. Kuech, “Photoelastic waveguides and the controlled introduction of strain in III–V semiconductors by means of thin-film technology,” J. Appl. Phys. 78, 236–244 (1995).
[CrossRef]

Samson, L.

R. Maceijko, J. M. Glinski, A. Champagne, J. Berger, L. Samson, “Photoelastic effects on the emission patterns of InGaAsP ridge-waveguide lasers,” IEEE J. Quantum Electron. 25, 651–660 (1989).
[CrossRef]

Smith, R. E.

G. R. Hadley, R. E. Smith, “Full-vector waveguide modeling using an iterative finite-difference method with transparent boundary conditions,” J. Lightwave Technol. 13, 465–469 (1995).
[CrossRef]

Solarz, R. W.

R. Beach, W. J. Benett, B. L. Freitas, D. Mundinger, B. J. Comaskey, R. W. Solarz, M. A. Emanuel, “Modular microchannel cooled heatsinks for high average power laser diode arrays,” IEEE J. Quantum Electron. 28, 966–976 (1992).
[CrossRef]

Suzuki, N.

N. Suzuki, K. Tada, “Elasto-optic properties of InP,” Jpn. J. Appl. Phys. 22, 441–445 (1983).
[CrossRef]

Swaminathan, V.

V. Swaminathan, L. A. Koszi, M. W. Focht, “Effect of macroscopic stress on accelerated aging of GaInAsP channeled substrate buried heterostructure lasers,” J. Appl. Phys. 66, 1849–1854 (1989).
[CrossRef]

Tada, K.

N. Suzuki, K. Tada, “Elasto-optic properties of InP,” Jpn. J. Appl. Phys. 22, 441–445 (1983).
[CrossRef]

Yamamoto, S.

T. Hayakawa, N. Miyauchi, S. Yamamoto, H. Hayashi, S. Yano, T. Hijikata, “Improved lifetimes of (GaAl)As visible (740-nm) lasers by reducing bonding stress,” Appl. Phys. Lett. 42, 23–24 (1983).
[CrossRef]

Yang, J.

J. Yang, D. T. Cassidy, “Strain measurement and estimation of photoelastic effects and strain-induced optical gain change in ridge waveguide lasers,” J. Appl. Phys. 77, 3382–3387 (1995).
[CrossRef]

Yano, S.

T. Hayakawa, N. Miyauchi, S. Yamamoto, H. Hayashi, S. Yano, T. Hijikata, “Improved lifetimes of (GaAl)As visible (740-nm) lasers by reducing bonding stress,” Appl. Phys. Lett. 42, 23–24 (1983).
[CrossRef]

Yu, L. S.

Q. Z. Liu, F. Deng, L. S. Yu, Z. F. Guan, S. A. Pappert, P. K. L. Yu, S. S. Lau, J. M. Redwing, T. F. Kuech, “Photoelastic waveguides and the controlled introduction of strain in III–V semiconductors by means of thin-film technology,” J. Appl. Phys. 78, 236–244 (1995).
[CrossRef]

Yu, P. K. L.

Q. Z. Liu, F. Deng, L. S. Yu, Z. F. Guan, S. A. Pappert, P. K. L. Yu, S. S. Lau, J. M. Redwing, T. F. Kuech, “Photoelastic waveguides and the controlled introduction of strain in III–V semiconductors by means of thin-film technology,” J. Appl. Phys. 78, 236–244 (1995).
[CrossRef]

Appl. Phys. Lett. (1)

T. Hayakawa, N. Miyauchi, S. Yamamoto, H. Hayashi, S. Yano, T. Hijikata, “Improved lifetimes of (GaAl)As visible (740-nm) lasers by reducing bonding stress,” Appl. Phys. Lett. 42, 23–24 (1983).
[CrossRef]

IEEE J. Quantum Electron. (4)

R. Beach, W. J. Benett, B. L. Freitas, D. Mundinger, B. J. Comaskey, R. W. Solarz, M. A. Emanuel, “Modular microchannel cooled heatsinks for high average power laser diode arrays,” IEEE J. Quantum Electron. 28, 966–976 (1992).
[CrossRef]

P. D. Colbourne, D. T. Cassidy, “Imaging of stresses in GaAs diode lasers using polarization-resolved photoluminescence,” IEEE J. Quantum Electron. 29, 62–68 (1993).
[CrossRef]

R. Maceijko, J. M. Glinski, A. Champagne, J. Berger, L. Samson, “Photoelastic effects on the emission patterns of InGaAsP ridge-waveguide lasers,” IEEE J. Quantum Electron. 25, 651–660 (1989).
[CrossRef]

R. Maceijko, A. Golebiowski, A. Champagne, J. M. Glinski, “Selective TE-TM mode pumping efficiencies for ridge-waveguide lasers in presence of stress,” IEEE J. Quantum Electron. 29, 51–60 (1993).
[CrossRef]

J. Appl. Phys. (5)

Q. Z. Liu, F. Deng, L. S. Yu, Z. F. Guan, S. A. Pappert, P. K. L. Yu, S. S. Lau, J. M. Redwing, T. F. Kuech, “Photoelastic waveguides and the controlled introduction of strain in III–V semiconductors by means of thin-film technology,” J. Appl. Phys. 78, 236–244 (1995).
[CrossRef]

V. Swaminathan, L. A. Koszi, M. W. Focht, “Effect of macroscopic stress on accelerated aging of GaInAsP channeled substrate buried heterostructure lasers,” J. Appl. Phys. 66, 1849–1854 (1989).
[CrossRef]

N. K. Dutta, “Effect of uniaxial stress on optical gain in semiconductors,” J. Appl. Phys. 55, 285–288 (1984).
[CrossRef]

N. K. Dutta, D. C. Craft, “Effect of stress on the polarization of stimulated emission from injection lasers,” J. Appl. Phys. 56, 65–70 (1984).
[CrossRef]

J. Yang, D. T. Cassidy, “Strain measurement and estimation of photoelastic effects and strain-induced optical gain change in ridge waveguide lasers,” J. Appl. Phys. 77, 3382–3387 (1995).
[CrossRef]

J. Lightwave Technol. (1)

G. R. Hadley, R. E. Smith, “Full-vector waveguide modeling using an iterative finite-difference method with transparent boundary conditions,” J. Lightwave Technol. 13, 465–469 (1995).
[CrossRef]

Jpn. J. Appl. Phys. (1)

N. Suzuki, K. Tada, “Elasto-optic properties of InP,” Jpn. J. Appl. Phys. 22, 441–445 (1983).
[CrossRef]

Other (4)

EMIS Datareviews Series 6, Properties of Indium Phosphide (Inspec, New York, 1991).

J. F. Nye, Physical Properties of Crystals (Clarendon, Oxford, 1985).

M. A. Fritz, D. T. Cassidy, “Extraction of bonding strain data in diode lasers from polarization-resolved photoluminescence measurements,” Microelectronics Reliability (to be published).

R. Diehl, ed., High Power Diode Lasers (Springer-Verlag, New York, 2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Waveguide structure used in mode-solving software. Dimensions are in micrometers.

Fig. 2
Fig. 2

Photoelastic effect in TE polarization along the horizontal curve at the facet, 5 μm from the bottom of the chip.

Fig. 3
Fig. 3

Lateral-mode profile along the active region for an unstrained waveguide.

Fig. 4
Fig. 4

Transverse-mode profile near the ridge edge for an unstrained waveguide.

Fig. 5
Fig. 5

Lateral-mode profile along the active region for the waveguide with altered refractive indices due to the die bonding.

Fig. 6
Fig. 6

Transverse-mode profile near the ridge edge for the waveguide with altered refractive indices due to the die bonding.

Fig. 7
Fig. 7

Far-field amplitude of the laser output for the unstrained laser structure. The axes are the angles from the center, and they range from -45° to +45° parallel and perpendicular, respectively, to the junction plane. The amplitude is normalized (unitless).

Fig. 8
Fig. 8

Far-field amplitude of the laser output for the laser structure with altered refractive indices. The axes are the angles from the center and range from -45° to +45° parallel and perpendicular, respectively, to the junction plane. The amplitude is normalized (unitless).

Fig. 9
Fig. 9

Far-field amplitude profile parallel to the junction plane.

Fig. 10
Fig. 10

Far-field amplitude profile perpendicular to the junction plane.

Tables (1)

Tables Icon

Table 1 Comparison of Unstrained Versus Strained Waveguide Structure

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ΔBxx=π11σxx+π12σyy+π12σzz,ΔByy=π12σxx+π11+π12+π442 σyy+π11+π12-π442 σzz,ΔBzz=π12σxx+π11+π12-π442 σyy+π11+π12+π442 σzz.
Bii=1nii2,   ΔBii-2nii3 Δnii,
Δnii-12nii3ΔBii.
π11=-1.103π12=-0.323π44=-1.266×10-12 m2/N at 1.55 μm.

Metrics