Abstract

We have designed a multimodality system that combines optical coherence tomography (OCT) and laser-induced fluorescence (LIF) in a 2.0-mm-diameter endoscopic package. OCT provides ∼18-μm resolution cross-sectional structural information over a 6-mm field. LIF spectra are collected sequentially at submillimeter resolution across the same field and provide histochemical information about the tissue. We present the use of a rod prism to reduce the asymmetry in the OCT beam caused by a cylindrical window. The endoscope has been applied to investigate mouse colon cancer in vivo.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Cancer Facts and Figures 2003 (American Cancer Society, Atlanta, Ga., 2003).
  2. R. Richards-Kortum, R. P. Rava, R. E. Petras, M. Fitzmaurice, M. Sivak, M. S. Feld, “Spectroscopic diagnosis of colonic dysplasia,” Photochem. Photobiol. 53, 777–786 (1991).
    [PubMed]
  3. K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, T. F. Deutsch, N. S. Nishioka, “Ultraviolet laser-induced fluorescence of colonic polyps,” Gastroenterology 102, 1155–1160 (1992).
    [PubMed]
  4. G. I. Zonios, R. M. Cothren, J. T. Arendt, W. Jun, J. Van Dam, J. M. Crawford, R. Manoharan, “Morphological model of human colon tissue fluorescence,” IEEE Trans. Biomed. Eng. 43, 113–122 (1996).
    [CrossRef] [PubMed]
  5. K. Kobayashi, J. A. Izatt, M. D. Kulkarni, J. Willis, M. V. Sivak, “High-resolution cross-sectional imaging of the gastrointestinal tract using optical coherence tomography: preliminary results,” Gastrointest. Endosc. 47, 515–523 (1998).
    [CrossRef] [PubMed]
  6. C. Pitris, C. Jesser, S. A. Boppart, D. Stamper, M. E. Brezinski, J. G. Fujimoto, “Feasibility of optical coherence tomography for high-resolution imaging of human gastrointestinal tract malignancies,” J. Gastroenterol. 35, 87–92 (2000).
    [CrossRef] [PubMed]
  7. M. V. Sivak, K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, J. Willis, “High-resolution endoscopic imaging of the GI tract using optical coherence tomography,” Gastrointest. Endosc. 51, 474–479 (2000).
    [CrossRef] [PubMed]
  8. R. J. McNichols, A. Gowda, B. A. Bell, R. M. Johnigan, K. H. Calhoun, M. Motamedi, “Development of an endoscopic fluorescence image guided OCT probe for oral cancer detection,” in Biomedical Diagnostic, Guidance, and Surgical-Assist Systems III, T. Vo-Dinh, W. S. Grundfest, D. A. Beanaron, eds., Proc. SPIE4254, 23–30 (2001).
    [CrossRef]
  9. R. V. Kuranov, V. V. Sapozhnikova, N. M. Shakhova, V. M. Gelikonov, E. V. Zagainova, S. A. Petrova, “Combined application of optical methods to increase the information content of optical coherent tomography in diagnostics of neoplastic processes,” Quantum Electron. 32, 993–998 (2002).
    [CrossRef]
  10. V. V. Sapozhnikova, N. M. Shakhova, V. A. Kamensky, R. V. Kuranov, V. B. Loshenov, S. A. Petrova, “Complementary use of optical coherence tomography and 5-aminolevulinic acid induced fluorescent spectroscopy for diagnosis of neoplastic processes in cervix and vulva,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, V. V. Tuchin, J. A. Izatt, J. G. Fujimoto, eds., Proc. SPIE4956, 81–88 (2003).
    [CrossRef]
  11. A. R. Tumlinson, L. P. Hariri, J. K. Barton, “Miniature endoscope for a combined OCT-LIF system,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, V. V. Tuchin, J. A. Izatt, J. G. Fugimoto, eds., Proc. SPIE4956, 129–138 (2003).
    [CrossRef]
  12. G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, J. G. Fujimoto, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21, 543–545 (1996).
    [CrossRef] [PubMed]
  13. B. E. Bouma, G. J. Tearney, “Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography,” Opt. Lett. 24, 531–533 (1999).
    [CrossRef]
  14. Y. T. Pan, H. K. Xie, G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Opt. Lett. 26, 1966–1968 (2001).
    [CrossRef]
  15. U. Utzinger, R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8, 121–147 (2003).
    [CrossRef] [PubMed]
  16. N. A. Denisov, “Comparison of competing fiber optic probes for tissue fluorescence analysis,” in Optical Biopsy and Tissue Optics, I. J. Bigio, G. J. Mueller, G. J. Puppels, R. W. Steiner, K. Svanberg, eds., Proc. SPIE4161, 234–243 (2000).
    [CrossRef]
  17. T. J. Pfefer, K. T. Schomacker, M. N. Ediger, N. S. Nishioka, “Multiple-fiber probe design for fluorescence spectroscopy in tissue,” Appl. Opt. 41, 4712–4721 (2002).
    [CrossRef] [PubMed]
  18. T. J. Pfefer, L. S. Matchette, A. M. Ross, M. N. Ediger, “Selective detection of fluorophore layers in turbid media: the role of fiber-optic probe design,” Opt. Lett. 28, 120–122 (2003).
    [CrossRef] [PubMed]
  19. L. K. Su, K. W. Kinzler, B. Vogelstein, A. C. Preisinger, A. R. Moser, A. Luongo, K. A. Gould, W. F. Dove, “Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene,” Science 256, 668–670 (1992).
    [CrossRef] [PubMed]
  20. P. C. Chulada, M. B. Thompson, J. F. Mahler, C. M. Doyle, B. W. Gaul, C. Lee, H. F. Tiano, S. G. Morham, O. Smithies, R. Langenbach, “Genetic disruption of Ptgs-1, as well as Ptgs-2, reduces intestinal tumorigenesis in Min mice,” Cancer Res. 60, 4705–4708 (2000).
    [PubMed]
  21. L. H. Colbert, J. M. Davis, D. A. Essig, A. Ghaffar, E. P. Mayer, “Exercise and tumor development in a mouse predisposed to multiple intestinal adenomas,” Med. Sci. Sports Exercise 32, 1704–1708 (2000).
    [CrossRef]
  22. C. D. Davis, H. Zeng, J. W. Finley, “Selenium-enriched broccoli decreases intestinal tumorigenesis in multiple intestinal neoplasia mice,” J. Nutr. 132, 307–309 (2002).
    [PubMed]
  23. H. K. Roy, W. J. Karoski, A. Ratashak, T. C. Smyrk, “Chemoprevention of intestinal tumorigenesis by nabumetone: induction of apoptosis and Bcl-2 downregulation,” Br. J. Cancer 84, 1412–1416 (2001).
    [CrossRef] [PubMed]
  24. E. H. Huang, J. J. Carter, R. L. Whelan, Y. H. Liu, J. O. Rosenberg, H. Rotterdam, A. M. Schmidt, D. M. Stern, K. A. Forde, “Colonoscopy in mice,” Surg. Endosc. 16, 22–24 (2002).
    [CrossRef] [PubMed]
  25. N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2, 89–117 (2000).
    [CrossRef] [PubMed]
  26. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22, 1439–1441 (1997).
    [CrossRef]

2003 (2)

2002 (4)

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, N. S. Nishioka, “Multiple-fiber probe design for fluorescence spectroscopy in tissue,” Appl. Opt. 41, 4712–4721 (2002).
[CrossRef] [PubMed]

R. V. Kuranov, V. V. Sapozhnikova, N. M. Shakhova, V. M. Gelikonov, E. V. Zagainova, S. A. Petrova, “Combined application of optical methods to increase the information content of optical coherent tomography in diagnostics of neoplastic processes,” Quantum Electron. 32, 993–998 (2002).
[CrossRef]

C. D. Davis, H. Zeng, J. W. Finley, “Selenium-enriched broccoli decreases intestinal tumorigenesis in multiple intestinal neoplasia mice,” J. Nutr. 132, 307–309 (2002).
[PubMed]

E. H. Huang, J. J. Carter, R. L. Whelan, Y. H. Liu, J. O. Rosenberg, H. Rotterdam, A. M. Schmidt, D. M. Stern, K. A. Forde, “Colonoscopy in mice,” Surg. Endosc. 16, 22–24 (2002).
[CrossRef] [PubMed]

2001 (2)

H. K. Roy, W. J. Karoski, A. Ratashak, T. C. Smyrk, “Chemoprevention of intestinal tumorigenesis by nabumetone: induction of apoptosis and Bcl-2 downregulation,” Br. J. Cancer 84, 1412–1416 (2001).
[CrossRef] [PubMed]

Y. T. Pan, H. K. Xie, G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Opt. Lett. 26, 1966–1968 (2001).
[CrossRef]

2000 (5)

P. C. Chulada, M. B. Thompson, J. F. Mahler, C. M. Doyle, B. W. Gaul, C. Lee, H. F. Tiano, S. G. Morham, O. Smithies, R. Langenbach, “Genetic disruption of Ptgs-1, as well as Ptgs-2, reduces intestinal tumorigenesis in Min mice,” Cancer Res. 60, 4705–4708 (2000).
[PubMed]

L. H. Colbert, J. M. Davis, D. A. Essig, A. Ghaffar, E. P. Mayer, “Exercise and tumor development in a mouse predisposed to multiple intestinal adenomas,” Med. Sci. Sports Exercise 32, 1704–1708 (2000).
[CrossRef]

C. Pitris, C. Jesser, S. A. Boppart, D. Stamper, M. E. Brezinski, J. G. Fujimoto, “Feasibility of optical coherence tomography for high-resolution imaging of human gastrointestinal tract malignancies,” J. Gastroenterol. 35, 87–92 (2000).
[CrossRef] [PubMed]

M. V. Sivak, K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, J. Willis, “High-resolution endoscopic imaging of the GI tract using optical coherence tomography,” Gastrointest. Endosc. 51, 474–479 (2000).
[CrossRef] [PubMed]

N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2, 89–117 (2000).
[CrossRef] [PubMed]

1999 (1)

1998 (1)

K. Kobayashi, J. A. Izatt, M. D. Kulkarni, J. Willis, M. V. Sivak, “High-resolution cross-sectional imaging of the gastrointestinal tract using optical coherence tomography: preliminary results,” Gastrointest. Endosc. 47, 515–523 (1998).
[CrossRef] [PubMed]

1997 (1)

1996 (2)

G. I. Zonios, R. M. Cothren, J. T. Arendt, W. Jun, J. Van Dam, J. M. Crawford, R. Manoharan, “Morphological model of human colon tissue fluorescence,” IEEE Trans. Biomed. Eng. 43, 113–122 (1996).
[CrossRef] [PubMed]

G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, J. G. Fujimoto, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21, 543–545 (1996).
[CrossRef] [PubMed]

1992 (2)

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, T. F. Deutsch, N. S. Nishioka, “Ultraviolet laser-induced fluorescence of colonic polyps,” Gastroenterology 102, 1155–1160 (1992).
[PubMed]

L. K. Su, K. W. Kinzler, B. Vogelstein, A. C. Preisinger, A. R. Moser, A. Luongo, K. A. Gould, W. F. Dove, “Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene,” Science 256, 668–670 (1992).
[CrossRef] [PubMed]

1991 (1)

R. Richards-Kortum, R. P. Rava, R. E. Petras, M. Fitzmaurice, M. Sivak, M. S. Feld, “Spectroscopic diagnosis of colonic dysplasia,” Photochem. Photobiol. 53, 777–786 (1991).
[PubMed]

Arendt, J. T.

G. I. Zonios, R. M. Cothren, J. T. Arendt, W. Jun, J. Van Dam, J. M. Crawford, R. Manoharan, “Morphological model of human colon tissue fluorescence,” IEEE Trans. Biomed. Eng. 43, 113–122 (1996).
[CrossRef] [PubMed]

Barton, J. K.

J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22, 1439–1441 (1997).
[CrossRef]

A. R. Tumlinson, L. P. Hariri, J. K. Barton, “Miniature endoscope for a combined OCT-LIF system,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, V. V. Tuchin, J. A. Izatt, J. G. Fugimoto, eds., Proc. SPIE4956, 129–138 (2003).
[CrossRef]

Bell, B. A.

R. J. McNichols, A. Gowda, B. A. Bell, R. M. Johnigan, K. H. Calhoun, M. Motamedi, “Development of an endoscopic fluorescence image guided OCT probe for oral cancer detection,” in Biomedical Diagnostic, Guidance, and Surgical-Assist Systems III, T. Vo-Dinh, W. S. Grundfest, D. A. Beanaron, eds., Proc. SPIE4254, 23–30 (2001).
[CrossRef]

Boppart, S. A.

C. Pitris, C. Jesser, S. A. Boppart, D. Stamper, M. E. Brezinski, J. G. Fujimoto, “Feasibility of optical coherence tomography for high-resolution imaging of human gastrointestinal tract malignancies,” J. Gastroenterol. 35, 87–92 (2000).
[CrossRef] [PubMed]

G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, J. G. Fujimoto, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21, 543–545 (1996).
[CrossRef] [PubMed]

Bouma, B. E.

Brezinski, M. E.

C. Pitris, C. Jesser, S. A. Boppart, D. Stamper, M. E. Brezinski, J. G. Fujimoto, “Feasibility of optical coherence tomography for high-resolution imaging of human gastrointestinal tract malignancies,” J. Gastroenterol. 35, 87–92 (2000).
[CrossRef] [PubMed]

G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, J. G. Fujimoto, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21, 543–545 (1996).
[CrossRef] [PubMed]

Calhoun, K. H.

R. J. McNichols, A. Gowda, B. A. Bell, R. M. Johnigan, K. H. Calhoun, M. Motamedi, “Development of an endoscopic fluorescence image guided OCT probe for oral cancer detection,” in Biomedical Diagnostic, Guidance, and Surgical-Assist Systems III, T. Vo-Dinh, W. S. Grundfest, D. A. Beanaron, eds., Proc. SPIE4254, 23–30 (2001).
[CrossRef]

Carter, J. J.

E. H. Huang, J. J. Carter, R. L. Whelan, Y. H. Liu, J. O. Rosenberg, H. Rotterdam, A. M. Schmidt, D. M. Stern, K. A. Forde, “Colonoscopy in mice,” Surg. Endosc. 16, 22–24 (2002).
[CrossRef] [PubMed]

Chak, A.

M. V. Sivak, K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, J. Willis, “High-resolution endoscopic imaging of the GI tract using optical coherence tomography,” Gastrointest. Endosc. 51, 474–479 (2000).
[CrossRef] [PubMed]

Chulada, P. C.

P. C. Chulada, M. B. Thompson, J. F. Mahler, C. M. Doyle, B. W. Gaul, C. Lee, H. F. Tiano, S. G. Morham, O. Smithies, R. Langenbach, “Genetic disruption of Ptgs-1, as well as Ptgs-2, reduces intestinal tumorigenesis in Min mice,” Cancer Res. 60, 4705–4708 (2000).
[PubMed]

Colbert, L. H.

L. H. Colbert, J. M. Davis, D. A. Essig, A. Ghaffar, E. P. Mayer, “Exercise and tumor development in a mouse predisposed to multiple intestinal adenomas,” Med. Sci. Sports Exercise 32, 1704–1708 (2000).
[CrossRef]

Compton, C. C.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, T. F. Deutsch, N. S. Nishioka, “Ultraviolet laser-induced fluorescence of colonic polyps,” Gastroenterology 102, 1155–1160 (1992).
[PubMed]

Cothren, R. M.

G. I. Zonios, R. M. Cothren, J. T. Arendt, W. Jun, J. Van Dam, J. M. Crawford, R. Manoharan, “Morphological model of human colon tissue fluorescence,” IEEE Trans. Biomed. Eng. 43, 113–122 (1996).
[CrossRef] [PubMed]

Crawford, J. M.

G. I. Zonios, R. M. Cothren, J. T. Arendt, W. Jun, J. Van Dam, J. M. Crawford, R. Manoharan, “Morphological model of human colon tissue fluorescence,” IEEE Trans. Biomed. Eng. 43, 113–122 (1996).
[CrossRef] [PubMed]

Davis, C. D.

C. D. Davis, H. Zeng, J. W. Finley, “Selenium-enriched broccoli decreases intestinal tumorigenesis in multiple intestinal neoplasia mice,” J. Nutr. 132, 307–309 (2002).
[PubMed]

Davis, J. M.

L. H. Colbert, J. M. Davis, D. A. Essig, A. Ghaffar, E. P. Mayer, “Exercise and tumor development in a mouse predisposed to multiple intestinal adenomas,” Med. Sci. Sports Exercise 32, 1704–1708 (2000).
[CrossRef]

Denisov, N. A.

N. A. Denisov, “Comparison of competing fiber optic probes for tissue fluorescence analysis,” in Optical Biopsy and Tissue Optics, I. J. Bigio, G. J. Mueller, G. J. Puppels, R. W. Steiner, K. Svanberg, eds., Proc. SPIE4161, 234–243 (2000).
[CrossRef]

Deutsch, T. F.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, T. F. Deutsch, N. S. Nishioka, “Ultraviolet laser-induced fluorescence of colonic polyps,” Gastroenterology 102, 1155–1160 (1992).
[PubMed]

Dove, W. F.

L. K. Su, K. W. Kinzler, B. Vogelstein, A. C. Preisinger, A. R. Moser, A. Luongo, K. A. Gould, W. F. Dove, “Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene,” Science 256, 668–670 (1992).
[CrossRef] [PubMed]

Doyle, C. M.

P. C. Chulada, M. B. Thompson, J. F. Mahler, C. M. Doyle, B. W. Gaul, C. Lee, H. F. Tiano, S. G. Morham, O. Smithies, R. Langenbach, “Genetic disruption of Ptgs-1, as well as Ptgs-2, reduces intestinal tumorigenesis in Min mice,” Cancer Res. 60, 4705–4708 (2000).
[PubMed]

Ediger, M. N.

Essig, D. A.

L. H. Colbert, J. M. Davis, D. A. Essig, A. Ghaffar, E. P. Mayer, “Exercise and tumor development in a mouse predisposed to multiple intestinal adenomas,” Med. Sci. Sports Exercise 32, 1704–1708 (2000).
[CrossRef]

Fedder, G. K.

Feld, M. S.

R. Richards-Kortum, R. P. Rava, R. E. Petras, M. Fitzmaurice, M. Sivak, M. S. Feld, “Spectroscopic diagnosis of colonic dysplasia,” Photochem. Photobiol. 53, 777–786 (1991).
[PubMed]

Finley, J. W.

C. D. Davis, H. Zeng, J. W. Finley, “Selenium-enriched broccoli decreases intestinal tumorigenesis in multiple intestinal neoplasia mice,” J. Nutr. 132, 307–309 (2002).
[PubMed]

Fitzmaurice, M.

R. Richards-Kortum, R. P. Rava, R. E. Petras, M. Fitzmaurice, M. Sivak, M. S. Feld, “Spectroscopic diagnosis of colonic dysplasia,” Photochem. Photobiol. 53, 777–786 (1991).
[PubMed]

Flotte, T. J.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, T. F. Deutsch, N. S. Nishioka, “Ultraviolet laser-induced fluorescence of colonic polyps,” Gastroenterology 102, 1155–1160 (1992).
[PubMed]

Forde, K. A.

E. H. Huang, J. J. Carter, R. L. Whelan, Y. H. Liu, J. O. Rosenberg, H. Rotterdam, A. M. Schmidt, D. M. Stern, K. A. Forde, “Colonoscopy in mice,” Surg. Endosc. 16, 22–24 (2002).
[CrossRef] [PubMed]

Frisoli, J. K.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, T. F. Deutsch, N. S. Nishioka, “Ultraviolet laser-induced fluorescence of colonic polyps,” Gastroenterology 102, 1155–1160 (1992).
[PubMed]

Fujimoto, J. G.

C. Pitris, C. Jesser, S. A. Boppart, D. Stamper, M. E. Brezinski, J. G. Fujimoto, “Feasibility of optical coherence tomography for high-resolution imaging of human gastrointestinal tract malignancies,” J. Gastroenterol. 35, 87–92 (2000).
[CrossRef] [PubMed]

G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, J. G. Fujimoto, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21, 543–545 (1996).
[CrossRef] [PubMed]

Gaul, B. W.

P. C. Chulada, M. B. Thompson, J. F. Mahler, C. M. Doyle, B. W. Gaul, C. Lee, H. F. Tiano, S. G. Morham, O. Smithies, R. Langenbach, “Genetic disruption of Ptgs-1, as well as Ptgs-2, reduces intestinal tumorigenesis in Min mice,” Cancer Res. 60, 4705–4708 (2000).
[PubMed]

Gelikonov, V. M.

R. V. Kuranov, V. V. Sapozhnikova, N. M. Shakhova, V. M. Gelikonov, E. V. Zagainova, S. A. Petrova, “Combined application of optical methods to increase the information content of optical coherent tomography in diagnostics of neoplastic processes,” Quantum Electron. 32, 993–998 (2002).
[CrossRef]

Ghaffar, A.

L. H. Colbert, J. M. Davis, D. A. Essig, A. Ghaffar, E. P. Mayer, “Exercise and tumor development in a mouse predisposed to multiple intestinal adenomas,” Med. Sci. Sports Exercise 32, 1704–1708 (2000).
[CrossRef]

Gould, K. A.

L. K. Su, K. W. Kinzler, B. Vogelstein, A. C. Preisinger, A. R. Moser, A. Luongo, K. A. Gould, W. F. Dove, “Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene,” Science 256, 668–670 (1992).
[CrossRef] [PubMed]

Gowda, A.

R. J. McNichols, A. Gowda, B. A. Bell, R. M. Johnigan, K. H. Calhoun, M. Motamedi, “Development of an endoscopic fluorescence image guided OCT probe for oral cancer detection,” in Biomedical Diagnostic, Guidance, and Surgical-Assist Systems III, T. Vo-Dinh, W. S. Grundfest, D. A. Beanaron, eds., Proc. SPIE4254, 23–30 (2001).
[CrossRef]

Hariri, L. P.

A. R. Tumlinson, L. P. Hariri, J. K. Barton, “Miniature endoscope for a combined OCT-LIF system,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, V. V. Tuchin, J. A. Izatt, J. G. Fugimoto, eds., Proc. SPIE4956, 129–138 (2003).
[CrossRef]

Huang, E. H.

E. H. Huang, J. J. Carter, R. L. Whelan, Y. H. Liu, J. O. Rosenberg, H. Rotterdam, A. M. Schmidt, D. M. Stern, K. A. Forde, “Colonoscopy in mice,” Surg. Endosc. 16, 22–24 (2002).
[CrossRef] [PubMed]

Isenberg, G. A.

M. V. Sivak, K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, J. Willis, “High-resolution endoscopic imaging of the GI tract using optical coherence tomography,” Gastrointest. Endosc. 51, 474–479 (2000).
[CrossRef] [PubMed]

Izatt, J. A.

M. V. Sivak, K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, J. Willis, “High-resolution endoscopic imaging of the GI tract using optical coherence tomography,” Gastrointest. Endosc. 51, 474–479 (2000).
[CrossRef] [PubMed]

K. Kobayashi, J. A. Izatt, M. D. Kulkarni, J. Willis, M. V. Sivak, “High-resolution cross-sectional imaging of the gastrointestinal tract using optical coherence tomography: preliminary results,” Gastrointest. Endosc. 47, 515–523 (1998).
[CrossRef] [PubMed]

J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22, 1439–1441 (1997).
[CrossRef]

Jesser, C.

C. Pitris, C. Jesser, S. A. Boppart, D. Stamper, M. E. Brezinski, J. G. Fujimoto, “Feasibility of optical coherence tomography for high-resolution imaging of human gastrointestinal tract malignancies,” J. Gastroenterol. 35, 87–92 (2000).
[CrossRef] [PubMed]

Johnigan, R. M.

R. J. McNichols, A. Gowda, B. A. Bell, R. M. Johnigan, K. H. Calhoun, M. Motamedi, “Development of an endoscopic fluorescence image guided OCT probe for oral cancer detection,” in Biomedical Diagnostic, Guidance, and Surgical-Assist Systems III, T. Vo-Dinh, W. S. Grundfest, D. A. Beanaron, eds., Proc. SPIE4254, 23–30 (2001).
[CrossRef]

Jun, W.

G. I. Zonios, R. M. Cothren, J. T. Arendt, W. Jun, J. Van Dam, J. M. Crawford, R. Manoharan, “Morphological model of human colon tissue fluorescence,” IEEE Trans. Biomed. Eng. 43, 113–122 (1996).
[CrossRef] [PubMed]

Kamensky, V. A.

V. V. Sapozhnikova, N. M. Shakhova, V. A. Kamensky, R. V. Kuranov, V. B. Loshenov, S. A. Petrova, “Complementary use of optical coherence tomography and 5-aminolevulinic acid induced fluorescent spectroscopy for diagnosis of neoplastic processes in cervix and vulva,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, V. V. Tuchin, J. A. Izatt, J. G. Fujimoto, eds., Proc. SPIE4956, 81–88 (2003).
[CrossRef]

Karoski, W. J.

H. K. Roy, W. J. Karoski, A. Ratashak, T. C. Smyrk, “Chemoprevention of intestinal tumorigenesis by nabumetone: induction of apoptosis and Bcl-2 downregulation,” Br. J. Cancer 84, 1412–1416 (2001).
[CrossRef] [PubMed]

Kinzler, K. W.

L. K. Su, K. W. Kinzler, B. Vogelstein, A. C. Preisinger, A. R. Moser, A. Luongo, K. A. Gould, W. F. Dove, “Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene,” Science 256, 668–670 (1992).
[CrossRef] [PubMed]

Kobayashi, K.

M. V. Sivak, K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, J. Willis, “High-resolution endoscopic imaging of the GI tract using optical coherence tomography,” Gastrointest. Endosc. 51, 474–479 (2000).
[CrossRef] [PubMed]

K. Kobayashi, J. A. Izatt, M. D. Kulkarni, J. Willis, M. V. Sivak, “High-resolution cross-sectional imaging of the gastrointestinal tract using optical coherence tomography: preliminary results,” Gastrointest. Endosc. 47, 515–523 (1998).
[CrossRef] [PubMed]

Kulkarni, M. D.

K. Kobayashi, J. A. Izatt, M. D. Kulkarni, J. Willis, M. V. Sivak, “High-resolution cross-sectional imaging of the gastrointestinal tract using optical coherence tomography: preliminary results,” Gastrointest. Endosc. 47, 515–523 (1998).
[CrossRef] [PubMed]

J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22, 1439–1441 (1997).
[CrossRef]

Kuranov, R. V.

R. V. Kuranov, V. V. Sapozhnikova, N. M. Shakhova, V. M. Gelikonov, E. V. Zagainova, S. A. Petrova, “Combined application of optical methods to increase the information content of optical coherent tomography in diagnostics of neoplastic processes,” Quantum Electron. 32, 993–998 (2002).
[CrossRef]

V. V. Sapozhnikova, N. M. Shakhova, V. A. Kamensky, R. V. Kuranov, V. B. Loshenov, S. A. Petrova, “Complementary use of optical coherence tomography and 5-aminolevulinic acid induced fluorescent spectroscopy for diagnosis of neoplastic processes in cervix and vulva,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, V. V. Tuchin, J. A. Izatt, J. G. Fujimoto, eds., Proc. SPIE4956, 81–88 (2003).
[CrossRef]

Langenbach, R.

P. C. Chulada, M. B. Thompson, J. F. Mahler, C. M. Doyle, B. W. Gaul, C. Lee, H. F. Tiano, S. G. Morham, O. Smithies, R. Langenbach, “Genetic disruption of Ptgs-1, as well as Ptgs-2, reduces intestinal tumorigenesis in Min mice,” Cancer Res. 60, 4705–4708 (2000).
[PubMed]

Lee, C.

P. C. Chulada, M. B. Thompson, J. F. Mahler, C. M. Doyle, B. W. Gaul, C. Lee, H. F. Tiano, S. G. Morham, O. Smithies, R. Langenbach, “Genetic disruption of Ptgs-1, as well as Ptgs-2, reduces intestinal tumorigenesis in Min mice,” Cancer Res. 60, 4705–4708 (2000).
[PubMed]

Liu, Y. H.

E. H. Huang, J. J. Carter, R. L. Whelan, Y. H. Liu, J. O. Rosenberg, H. Rotterdam, A. M. Schmidt, D. M. Stern, K. A. Forde, “Colonoscopy in mice,” Surg. Endosc. 16, 22–24 (2002).
[CrossRef] [PubMed]

Loshenov, V. B.

V. V. Sapozhnikova, N. M. Shakhova, V. A. Kamensky, R. V. Kuranov, V. B. Loshenov, S. A. Petrova, “Complementary use of optical coherence tomography and 5-aminolevulinic acid induced fluorescent spectroscopy for diagnosis of neoplastic processes in cervix and vulva,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, V. V. Tuchin, J. A. Izatt, J. G. Fujimoto, eds., Proc. SPIE4956, 81–88 (2003).
[CrossRef]

Luongo, A.

L. K. Su, K. W. Kinzler, B. Vogelstein, A. C. Preisinger, A. R. Moser, A. Luongo, K. A. Gould, W. F. Dove, “Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene,” Science 256, 668–670 (1992).
[CrossRef] [PubMed]

Mahler, J. F.

P. C. Chulada, M. B. Thompson, J. F. Mahler, C. M. Doyle, B. W. Gaul, C. Lee, H. F. Tiano, S. G. Morham, O. Smithies, R. Langenbach, “Genetic disruption of Ptgs-1, as well as Ptgs-2, reduces intestinal tumorigenesis in Min mice,” Cancer Res. 60, 4705–4708 (2000).
[PubMed]

Manoharan, R.

G. I. Zonios, R. M. Cothren, J. T. Arendt, W. Jun, J. Van Dam, J. M. Crawford, R. Manoharan, “Morphological model of human colon tissue fluorescence,” IEEE Trans. Biomed. Eng. 43, 113–122 (1996).
[CrossRef] [PubMed]

Matchette, L. S.

Mayer, E. P.

L. H. Colbert, J. M. Davis, D. A. Essig, A. Ghaffar, E. P. Mayer, “Exercise and tumor development in a mouse predisposed to multiple intestinal adenomas,” Med. Sci. Sports Exercise 32, 1704–1708 (2000).
[CrossRef]

McNichols, R. J.

R. J. McNichols, A. Gowda, B. A. Bell, R. M. Johnigan, K. H. Calhoun, M. Motamedi, “Development of an endoscopic fluorescence image guided OCT probe for oral cancer detection,” in Biomedical Diagnostic, Guidance, and Surgical-Assist Systems III, T. Vo-Dinh, W. S. Grundfest, D. A. Beanaron, eds., Proc. SPIE4254, 23–30 (2001).
[CrossRef]

Morham, S. G.

P. C. Chulada, M. B. Thompson, J. F. Mahler, C. M. Doyle, B. W. Gaul, C. Lee, H. F. Tiano, S. G. Morham, O. Smithies, R. Langenbach, “Genetic disruption of Ptgs-1, as well as Ptgs-2, reduces intestinal tumorigenesis in Min mice,” Cancer Res. 60, 4705–4708 (2000).
[PubMed]

Moser, A. R.

L. K. Su, K. W. Kinzler, B. Vogelstein, A. C. Preisinger, A. R. Moser, A. Luongo, K. A. Gould, W. F. Dove, “Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene,” Science 256, 668–670 (1992).
[CrossRef] [PubMed]

Motamedi, M.

R. J. McNichols, A. Gowda, B. A. Bell, R. M. Johnigan, K. H. Calhoun, M. Motamedi, “Development of an endoscopic fluorescence image guided OCT probe for oral cancer detection,” in Biomedical Diagnostic, Guidance, and Surgical-Assist Systems III, T. Vo-Dinh, W. S. Grundfest, D. A. Beanaron, eds., Proc. SPIE4254, 23–30 (2001).
[CrossRef]

Nishioka, N. S.

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, N. S. Nishioka, “Multiple-fiber probe design for fluorescence spectroscopy in tissue,” Appl. Opt. 41, 4712–4721 (2002).
[CrossRef] [PubMed]

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, T. F. Deutsch, N. S. Nishioka, “Ultraviolet laser-induced fluorescence of colonic polyps,” Gastroenterology 102, 1155–1160 (1992).
[PubMed]

Pan, Y. T.

Petras, R. E.

R. Richards-Kortum, R. P. Rava, R. E. Petras, M. Fitzmaurice, M. Sivak, M. S. Feld, “Spectroscopic diagnosis of colonic dysplasia,” Photochem. Photobiol. 53, 777–786 (1991).
[PubMed]

Petrova, S. A.

R. V. Kuranov, V. V. Sapozhnikova, N. M. Shakhova, V. M. Gelikonov, E. V. Zagainova, S. A. Petrova, “Combined application of optical methods to increase the information content of optical coherent tomography in diagnostics of neoplastic processes,” Quantum Electron. 32, 993–998 (2002).
[CrossRef]

V. V. Sapozhnikova, N. M. Shakhova, V. A. Kamensky, R. V. Kuranov, V. B. Loshenov, S. A. Petrova, “Complementary use of optical coherence tomography and 5-aminolevulinic acid induced fluorescent spectroscopy for diagnosis of neoplastic processes in cervix and vulva,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, V. V. Tuchin, J. A. Izatt, J. G. Fujimoto, eds., Proc. SPIE4956, 81–88 (2003).
[CrossRef]

Pfefer, T. J.

Pitris, C.

C. Pitris, C. Jesser, S. A. Boppart, D. Stamper, M. E. Brezinski, J. G. Fujimoto, “Feasibility of optical coherence tomography for high-resolution imaging of human gastrointestinal tract malignancies,” J. Gastroenterol. 35, 87–92 (2000).
[CrossRef] [PubMed]

Preisinger, A. C.

L. K. Su, K. W. Kinzler, B. Vogelstein, A. C. Preisinger, A. R. Moser, A. Luongo, K. A. Gould, W. F. Dove, “Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene,” Science 256, 668–670 (1992).
[CrossRef] [PubMed]

Ramanujam, N.

N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2, 89–117 (2000).
[CrossRef] [PubMed]

Ratashak, A.

H. K. Roy, W. J. Karoski, A. Ratashak, T. C. Smyrk, “Chemoprevention of intestinal tumorigenesis by nabumetone: induction of apoptosis and Bcl-2 downregulation,” Br. J. Cancer 84, 1412–1416 (2001).
[CrossRef] [PubMed]

Rava, R. P.

R. Richards-Kortum, R. P. Rava, R. E. Petras, M. Fitzmaurice, M. Sivak, M. S. Feld, “Spectroscopic diagnosis of colonic dysplasia,” Photochem. Photobiol. 53, 777–786 (1991).
[PubMed]

Richards-Kortum, R.

R. Richards-Kortum, R. P. Rava, R. E. Petras, M. Fitzmaurice, M. Sivak, M. S. Feld, “Spectroscopic diagnosis of colonic dysplasia,” Photochem. Photobiol. 53, 777–786 (1991).
[PubMed]

Richards-Kortum, R. R.

U. Utzinger, R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8, 121–147 (2003).
[CrossRef] [PubMed]

Richter, J. M.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, T. F. Deutsch, N. S. Nishioka, “Ultraviolet laser-induced fluorescence of colonic polyps,” Gastroenterology 102, 1155–1160 (1992).
[PubMed]

Rollins, A. M.

M. V. Sivak, K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, J. Willis, “High-resolution endoscopic imaging of the GI tract using optical coherence tomography,” Gastrointest. Endosc. 51, 474–479 (2000).
[CrossRef] [PubMed]

Rosenberg, J. O.

E. H. Huang, J. J. Carter, R. L. Whelan, Y. H. Liu, J. O. Rosenberg, H. Rotterdam, A. M. Schmidt, D. M. Stern, K. A. Forde, “Colonoscopy in mice,” Surg. Endosc. 16, 22–24 (2002).
[CrossRef] [PubMed]

Ross, A. M.

Rotterdam, H.

E. H. Huang, J. J. Carter, R. L. Whelan, Y. H. Liu, J. O. Rosenberg, H. Rotterdam, A. M. Schmidt, D. M. Stern, K. A. Forde, “Colonoscopy in mice,” Surg. Endosc. 16, 22–24 (2002).
[CrossRef] [PubMed]

Roy, H. K.

H. K. Roy, W. J. Karoski, A. Ratashak, T. C. Smyrk, “Chemoprevention of intestinal tumorigenesis by nabumetone: induction of apoptosis and Bcl-2 downregulation,” Br. J. Cancer 84, 1412–1416 (2001).
[CrossRef] [PubMed]

Sapozhnikova, V. V.

R. V. Kuranov, V. V. Sapozhnikova, N. M. Shakhova, V. M. Gelikonov, E. V. Zagainova, S. A. Petrova, “Combined application of optical methods to increase the information content of optical coherent tomography in diagnostics of neoplastic processes,” Quantum Electron. 32, 993–998 (2002).
[CrossRef]

V. V. Sapozhnikova, N. M. Shakhova, V. A. Kamensky, R. V. Kuranov, V. B. Loshenov, S. A. Petrova, “Complementary use of optical coherence tomography and 5-aminolevulinic acid induced fluorescent spectroscopy for diagnosis of neoplastic processes in cervix and vulva,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, V. V. Tuchin, J. A. Izatt, J. G. Fujimoto, eds., Proc. SPIE4956, 81–88 (2003).
[CrossRef]

Schmidt, A. M.

E. H. Huang, J. J. Carter, R. L. Whelan, Y. H. Liu, J. O. Rosenberg, H. Rotterdam, A. M. Schmidt, D. M. Stern, K. A. Forde, “Colonoscopy in mice,” Surg. Endosc. 16, 22–24 (2002).
[CrossRef] [PubMed]

Schomacker, K. T.

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, N. S. Nishioka, “Multiple-fiber probe design for fluorescence spectroscopy in tissue,” Appl. Opt. 41, 4712–4721 (2002).
[CrossRef] [PubMed]

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, T. F. Deutsch, N. S. Nishioka, “Ultraviolet laser-induced fluorescence of colonic polyps,” Gastroenterology 102, 1155–1160 (1992).
[PubMed]

Shakhova, N. M.

R. V. Kuranov, V. V. Sapozhnikova, N. M. Shakhova, V. M. Gelikonov, E. V. Zagainova, S. A. Petrova, “Combined application of optical methods to increase the information content of optical coherent tomography in diagnostics of neoplastic processes,” Quantum Electron. 32, 993–998 (2002).
[CrossRef]

V. V. Sapozhnikova, N. M. Shakhova, V. A. Kamensky, R. V. Kuranov, V. B. Loshenov, S. A. Petrova, “Complementary use of optical coherence tomography and 5-aminolevulinic acid induced fluorescent spectroscopy for diagnosis of neoplastic processes in cervix and vulva,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, V. V. Tuchin, J. A. Izatt, J. G. Fujimoto, eds., Proc. SPIE4956, 81–88 (2003).
[CrossRef]

Sivak, M.

R. Richards-Kortum, R. P. Rava, R. E. Petras, M. Fitzmaurice, M. Sivak, M. S. Feld, “Spectroscopic diagnosis of colonic dysplasia,” Photochem. Photobiol. 53, 777–786 (1991).
[PubMed]

Sivak, M. V.

M. V. Sivak, K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, J. Willis, “High-resolution endoscopic imaging of the GI tract using optical coherence tomography,” Gastrointest. Endosc. 51, 474–479 (2000).
[CrossRef] [PubMed]

K. Kobayashi, J. A. Izatt, M. D. Kulkarni, J. Willis, M. V. Sivak, “High-resolution cross-sectional imaging of the gastrointestinal tract using optical coherence tomography: preliminary results,” Gastrointest. Endosc. 47, 515–523 (1998).
[CrossRef] [PubMed]

Smithies, O.

P. C. Chulada, M. B. Thompson, J. F. Mahler, C. M. Doyle, B. W. Gaul, C. Lee, H. F. Tiano, S. G. Morham, O. Smithies, R. Langenbach, “Genetic disruption of Ptgs-1, as well as Ptgs-2, reduces intestinal tumorigenesis in Min mice,” Cancer Res. 60, 4705–4708 (2000).
[PubMed]

Smyrk, T. C.

H. K. Roy, W. J. Karoski, A. Ratashak, T. C. Smyrk, “Chemoprevention of intestinal tumorigenesis by nabumetone: induction of apoptosis and Bcl-2 downregulation,” Br. J. Cancer 84, 1412–1416 (2001).
[CrossRef] [PubMed]

Southern, J. F.

Stamper, D.

C. Pitris, C. Jesser, S. A. Boppart, D. Stamper, M. E. Brezinski, J. G. Fujimoto, “Feasibility of optical coherence tomography for high-resolution imaging of human gastrointestinal tract malignancies,” J. Gastroenterol. 35, 87–92 (2000).
[CrossRef] [PubMed]

Stern, D. M.

E. H. Huang, J. J. Carter, R. L. Whelan, Y. H. Liu, J. O. Rosenberg, H. Rotterdam, A. M. Schmidt, D. M. Stern, K. A. Forde, “Colonoscopy in mice,” Surg. Endosc. 16, 22–24 (2002).
[CrossRef] [PubMed]

Su, L. K.

L. K. Su, K. W. Kinzler, B. Vogelstein, A. C. Preisinger, A. R. Moser, A. Luongo, K. A. Gould, W. F. Dove, “Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene,” Science 256, 668–670 (1992).
[CrossRef] [PubMed]

Tearney, G. J.

Thompson, M. B.

P. C. Chulada, M. B. Thompson, J. F. Mahler, C. M. Doyle, B. W. Gaul, C. Lee, H. F. Tiano, S. G. Morham, O. Smithies, R. Langenbach, “Genetic disruption of Ptgs-1, as well as Ptgs-2, reduces intestinal tumorigenesis in Min mice,” Cancer Res. 60, 4705–4708 (2000).
[PubMed]

Tiano, H. F.

P. C. Chulada, M. B. Thompson, J. F. Mahler, C. M. Doyle, B. W. Gaul, C. Lee, H. F. Tiano, S. G. Morham, O. Smithies, R. Langenbach, “Genetic disruption of Ptgs-1, as well as Ptgs-2, reduces intestinal tumorigenesis in Min mice,” Cancer Res. 60, 4705–4708 (2000).
[PubMed]

Tumlinson, A. R.

A. R. Tumlinson, L. P. Hariri, J. K. Barton, “Miniature endoscope for a combined OCT-LIF system,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, V. V. Tuchin, J. A. Izatt, J. G. Fugimoto, eds., Proc. SPIE4956, 129–138 (2003).
[CrossRef]

Ung-Runyawee, R.

M. V. Sivak, K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, J. Willis, “High-resolution endoscopic imaging of the GI tract using optical coherence tomography,” Gastrointest. Endosc. 51, 474–479 (2000).
[CrossRef] [PubMed]

Utzinger, U.

U. Utzinger, R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8, 121–147 (2003).
[CrossRef] [PubMed]

Van Dam, J.

G. I. Zonios, R. M. Cothren, J. T. Arendt, W. Jun, J. Van Dam, J. M. Crawford, R. Manoharan, “Morphological model of human colon tissue fluorescence,” IEEE Trans. Biomed. Eng. 43, 113–122 (1996).
[CrossRef] [PubMed]

Vogelstein, B.

L. K. Su, K. W. Kinzler, B. Vogelstein, A. C. Preisinger, A. R. Moser, A. Luongo, K. A. Gould, W. F. Dove, “Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene,” Science 256, 668–670 (1992).
[CrossRef] [PubMed]

Weissman, N. J.

Welch, A. J.

Whelan, R. L.

E. H. Huang, J. J. Carter, R. L. Whelan, Y. H. Liu, J. O. Rosenberg, H. Rotterdam, A. M. Schmidt, D. M. Stern, K. A. Forde, “Colonoscopy in mice,” Surg. Endosc. 16, 22–24 (2002).
[CrossRef] [PubMed]

Willis, J.

M. V. Sivak, K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, J. Willis, “High-resolution endoscopic imaging of the GI tract using optical coherence tomography,” Gastrointest. Endosc. 51, 474–479 (2000).
[CrossRef] [PubMed]

K. Kobayashi, J. A. Izatt, M. D. Kulkarni, J. Willis, M. V. Sivak, “High-resolution cross-sectional imaging of the gastrointestinal tract using optical coherence tomography: preliminary results,” Gastrointest. Endosc. 47, 515–523 (1998).
[CrossRef] [PubMed]

Wong, R. C.

M. V. Sivak, K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, J. Willis, “High-resolution endoscopic imaging of the GI tract using optical coherence tomography,” Gastrointest. Endosc. 51, 474–479 (2000).
[CrossRef] [PubMed]

Xie, H. K.

Yazdanfar, S.

Zagainova, E. V.

R. V. Kuranov, V. V. Sapozhnikova, N. M. Shakhova, V. M. Gelikonov, E. V. Zagainova, S. A. Petrova, “Combined application of optical methods to increase the information content of optical coherent tomography in diagnostics of neoplastic processes,” Quantum Electron. 32, 993–998 (2002).
[CrossRef]

Zeng, H.

C. D. Davis, H. Zeng, J. W. Finley, “Selenium-enriched broccoli decreases intestinal tumorigenesis in multiple intestinal neoplasia mice,” J. Nutr. 132, 307–309 (2002).
[PubMed]

Zonios, G. I.

G. I. Zonios, R. M. Cothren, J. T. Arendt, W. Jun, J. Van Dam, J. M. Crawford, R. Manoharan, “Morphological model of human colon tissue fluorescence,” IEEE Trans. Biomed. Eng. 43, 113–122 (1996).
[CrossRef] [PubMed]

Appl. Opt. (1)

Br. J. Cancer (1)

H. K. Roy, W. J. Karoski, A. Ratashak, T. C. Smyrk, “Chemoprevention of intestinal tumorigenesis by nabumetone: induction of apoptosis and Bcl-2 downregulation,” Br. J. Cancer 84, 1412–1416 (2001).
[CrossRef] [PubMed]

Cancer Res. (1)

P. C. Chulada, M. B. Thompson, J. F. Mahler, C. M. Doyle, B. W. Gaul, C. Lee, H. F. Tiano, S. G. Morham, O. Smithies, R. Langenbach, “Genetic disruption of Ptgs-1, as well as Ptgs-2, reduces intestinal tumorigenesis in Min mice,” Cancer Res. 60, 4705–4708 (2000).
[PubMed]

Gastroenterology (1)

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, T. F. Deutsch, N. S. Nishioka, “Ultraviolet laser-induced fluorescence of colonic polyps,” Gastroenterology 102, 1155–1160 (1992).
[PubMed]

Gastrointest. Endosc. (2)

K. Kobayashi, J. A. Izatt, M. D. Kulkarni, J. Willis, M. V. Sivak, “High-resolution cross-sectional imaging of the gastrointestinal tract using optical coherence tomography: preliminary results,” Gastrointest. Endosc. 47, 515–523 (1998).
[CrossRef] [PubMed]

M. V. Sivak, K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, J. Willis, “High-resolution endoscopic imaging of the GI tract using optical coherence tomography,” Gastrointest. Endosc. 51, 474–479 (2000).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng. (1)

G. I. Zonios, R. M. Cothren, J. T. Arendt, W. Jun, J. Van Dam, J. M. Crawford, R. Manoharan, “Morphological model of human colon tissue fluorescence,” IEEE Trans. Biomed. Eng. 43, 113–122 (1996).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

U. Utzinger, R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8, 121–147 (2003).
[CrossRef] [PubMed]

J. Gastroenterol. (1)

C. Pitris, C. Jesser, S. A. Boppart, D. Stamper, M. E. Brezinski, J. G. Fujimoto, “Feasibility of optical coherence tomography for high-resolution imaging of human gastrointestinal tract malignancies,” J. Gastroenterol. 35, 87–92 (2000).
[CrossRef] [PubMed]

J. Nutr. (1)

C. D. Davis, H. Zeng, J. W. Finley, “Selenium-enriched broccoli decreases intestinal tumorigenesis in multiple intestinal neoplasia mice,” J. Nutr. 132, 307–309 (2002).
[PubMed]

Med. Sci. Sports Exercise (1)

L. H. Colbert, J. M. Davis, D. A. Essig, A. Ghaffar, E. P. Mayer, “Exercise and tumor development in a mouse predisposed to multiple intestinal adenomas,” Med. Sci. Sports Exercise 32, 1704–1708 (2000).
[CrossRef]

Neoplasia (1)

N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2, 89–117 (2000).
[CrossRef] [PubMed]

Opt. Lett. (5)

Photochem. Photobiol. (1)

R. Richards-Kortum, R. P. Rava, R. E. Petras, M. Fitzmaurice, M. Sivak, M. S. Feld, “Spectroscopic diagnosis of colonic dysplasia,” Photochem. Photobiol. 53, 777–786 (1991).
[PubMed]

Quantum Electron. (1)

R. V. Kuranov, V. V. Sapozhnikova, N. M. Shakhova, V. M. Gelikonov, E. V. Zagainova, S. A. Petrova, “Combined application of optical methods to increase the information content of optical coherent tomography in diagnostics of neoplastic processes,” Quantum Electron. 32, 993–998 (2002).
[CrossRef]

Science (1)

L. K. Su, K. W. Kinzler, B. Vogelstein, A. C. Preisinger, A. R. Moser, A. Luongo, K. A. Gould, W. F. Dove, “Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene,” Science 256, 668–670 (1992).
[CrossRef] [PubMed]

Surg. Endosc. (1)

E. H. Huang, J. J. Carter, R. L. Whelan, Y. H. Liu, J. O. Rosenberg, H. Rotterdam, A. M. Schmidt, D. M. Stern, K. A. Forde, “Colonoscopy in mice,” Surg. Endosc. 16, 22–24 (2002).
[CrossRef] [PubMed]

Other (5)

N. A. Denisov, “Comparison of competing fiber optic probes for tissue fluorescence analysis,” in Optical Biopsy and Tissue Optics, I. J. Bigio, G. J. Mueller, G. J. Puppels, R. W. Steiner, K. Svanberg, eds., Proc. SPIE4161, 234–243 (2000).
[CrossRef]

V. V. Sapozhnikova, N. M. Shakhova, V. A. Kamensky, R. V. Kuranov, V. B. Loshenov, S. A. Petrova, “Complementary use of optical coherence tomography and 5-aminolevulinic acid induced fluorescent spectroscopy for diagnosis of neoplastic processes in cervix and vulva,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, V. V. Tuchin, J. A. Izatt, J. G. Fujimoto, eds., Proc. SPIE4956, 81–88 (2003).
[CrossRef]

A. R. Tumlinson, L. P. Hariri, J. K. Barton, “Miniature endoscope for a combined OCT-LIF system,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, V. V. Tuchin, J. A. Izatt, J. G. Fugimoto, eds., Proc. SPIE4956, 129–138 (2003).
[CrossRef]

Cancer Facts and Figures 2003 (American Cancer Society, Atlanta, Ga., 2003).

R. J. McNichols, A. Gowda, B. A. Bell, R. M. Johnigan, K. H. Calhoun, M. Motamedi, “Development of an endoscopic fluorescence image guided OCT probe for oral cancer detection,” in Biomedical Diagnostic, Guidance, and Surgical-Assist Systems III, T. Vo-Dinh, W. S. Grundfest, D. A. Beanaron, eds., Proc. SPIE4254, 23–30 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Overview of the combined OCT-LIF endoscope shows two systems that meet at the endoscope tip and at the data-acquisition computer. The OCT system consists of a superluminescent diode (SLD) source, coupled through a fiber-optic beam splitter (50/50) to the sample arm, the reference arm [polarization controller (PC), fiber-optic collimator (FC), and reference mirror (RM)], and the detector (DET). The LIF system consists of a He–Cd excitation laser (EL) that is selectable for 325- or 442-nm output radiation and a neutral-density filter (ND) to reduce the intensity before the light is coupled into the excitation channel by a focusing lens (FL). Emission light returning on the collection fibers passes a collimating lens (CL) before the excitation light is removed by a long-pass filter (LP), and a focusing lens (FL) images the fibers onto the entrance slit of the spectrometer (S). The OCT sample arm, LIF excitation, and LIF collection fibers are bundled together into the inner lumen of the endoscope body. This inner lumen is pushed and pulled relative to the outer lumen by the motion controller (MC) to cause a lateral scan at the endoscope tip optics (ETO). The computer (COM) interfaces with the OCT system through the data-acquisition board (DAQ), which controls the reference mirror (RM), receives image data from the lock-in amplifier (LIA), and controls the lateral scan of the tip optics. The computer interfaces with the LIF system through the general-purpose interface bus (GPIB) interface to the spectrometer controller (SC), which controls the setup of the spectrometer (S) and gathers data from the CCD.

Fig. 2
Fig. 2

(a) Code V model of the endoscope tip shows the focused IR for OCT as well as the diffuse UV illumination. IR illumination for OCT is launched from a single-mode fiber (O), focused by a GRIN lens (G), reflected sideward by a rod prism (P), through a test tube window (W), and into the tissue (T). UV illumination for LIF is launched from a multimode fiber (E) and diffuses to a wide spot before hitting the tissue. (b) A solid model of the endoscope tip illustrates how the LIF excitation fiber (E) and collection fibers (C) sit above the OCT channel [the fiber (O), stripped of its jacket, passes through the ferrule (F) to contact the GRIN lens (G)]. Both systems are cemented to a rod prism (P) that reflects the light through the side of a thin-walled silica tube (W). (c) An image of the endoscope with the optics retracted superimposed upon an image with the optics translated to the tip.

Fig. 3
Fig. 3

Beam footprint analysis shows the excited spot (dark circles) compared with the field of view of one of the emission fibers (lighter circles). Multiple circles indicate a beam originating from different locations across the 200-μm fiber face. Jagged edges on the right of the image indicate where steep refraction angles have distorted the field of view of the emission fiber.

Fig. 4
Fig. 4

Emission spectra from reference dye solutions: quinine (Q) (325-excitation only), fluorescein (F), and rhodamine (R). Dotted curves indicate spectra measured by a commercial fluorometer in a right-angle configuration. Solid curves indicate spectra from the same dyes measured with our device in a front face configuration. Spectral intensities between the two devices are normalized at the fluorescein peak. The sharp peak at 650 nm is due to second-order excitation light in the commercial instrument.

Fig. 5
Fig. 5

OCT image and associated LIF emission spectra taken with the endoscope on mouse colon tissue. Bar chart (middle) shows intensity of selected emission wavelengths (390, 450, 680 nm) at corresponding positions in the image above. The OCT image is 6 mm long × 1.0 mm deep. Features visible in the image include glass (g) of the endoscope window, mucosal layer (m), the boundary between the mucosa and the submucosa (sm), the boundary between tunica media and adventitia (tm), adventitia (a), and a motion artifact due to breathing (b).

Fig. 6
Fig. 6

Sample tissue spectrum is compared with likely component spectra. NADH, the reduced form of nicotinamide adenine dinucleotide; FAD, flavin adenine dinucleotide; Hb, hemoglobin.

Tables (2)

Tables Icon

Table 1 Concentrations of Reference Dyes Used

Tables Icon

Table 2 Various Configurations Modeled with a Code V Gaussian Beam Tracea

Metrics