Abstract

We present a simplified setup for the generation and electro-optic sampling of terahertz pulses employing a nonamplified pump source and a single ZnTe crystal, which is simultaneously used for generation and detection. The setup is characterized, and first steps of its application for gas-phase spectroscopy are presented.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
    [CrossRef]
  2. S. Mickan, D. Abbott, J. Munch, X.-C. Zhang, T. van Doorn, “Analysis of system trade-offs for terahertz imaging,” Microelectron. J. 31, 503–514 (2000).
    [CrossRef]
  3. R. W. McGowan, R. A. Cheville, D. Grischkowsky, “Direct observation of the Gouy phase shift in THz impulse ranging,” Appl. Phys. Lett. 76, 670–672 (2000).
    [CrossRef]
  4. D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B 67, 379–390 (1998).
    [CrossRef]
  5. E. Knoesel, M. Bonn, J. Shan, T. F. Heinz, “Charge transport and carrier dynamics in liquids probed by THz time-domain spectroscopy,” Phys. Rev. Lett. 86, 340–343 (2001).
    [CrossRef] [PubMed]
  6. D. M. Mittleman, J. Cunningham, M. C. Nuss, M. Geva, “Noncontact semiconductor wafer characterization with the terahertz Hall effect,” Appl. Phys. Lett. 71, 16–18 (1997).
    [CrossRef]
  7. Similar to this and having two sets of parabolic mirrors for collimation and focusing into a sample area and into a probe crystal: Q. Wu, X. C. Zhang, “Free-Space electrooptic sampling of terahertz beams,”Appl. Phys. Lett. 67, 3523–3525 (1995).
  8. Q. Chen, X.-C. Zhang, “Polarization modulation in optoelectronic generation and detection of terahertz beams,” Appl. Phys. Lett. 74, 3435–3437 (1999).
    [CrossRef]
  9. See, for instance, the great collection of data by Pickett et al. at http://spec.jpl.nasa.gov .
  10. R. A. Cheville, D. Grischkowsky, “Observation of pure rotational absorption spectra in the y(2) band of hot H2O in flames,” Opt. Lett. 23, 531–533 (1998).
    [CrossRef]

2001 (1)

E. Knoesel, M. Bonn, J. Shan, T. F. Heinz, “Charge transport and carrier dynamics in liquids probed by THz time-domain spectroscopy,” Phys. Rev. Lett. 86, 340–343 (2001).
[CrossRef] [PubMed]

2000 (2)

S. Mickan, D. Abbott, J. Munch, X.-C. Zhang, T. van Doorn, “Analysis of system trade-offs for terahertz imaging,” Microelectron. J. 31, 503–514 (2000).
[CrossRef]

R. W. McGowan, R. A. Cheville, D. Grischkowsky, “Direct observation of the Gouy phase shift in THz impulse ranging,” Appl. Phys. Lett. 76, 670–672 (2000).
[CrossRef]

1999 (2)

Q. Chen, X.-C. Zhang, “Polarization modulation in optoelectronic generation and detection of terahertz beams,” Appl. Phys. Lett. 74, 3435–3437 (1999).
[CrossRef]

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[CrossRef]

1998 (2)

R. A. Cheville, D. Grischkowsky, “Observation of pure rotational absorption spectra in the y(2) band of hot H2O in flames,” Opt. Lett. 23, 531–533 (1998).
[CrossRef]

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B 67, 379–390 (1998).
[CrossRef]

1997 (1)

D. M. Mittleman, J. Cunningham, M. C. Nuss, M. Geva, “Noncontact semiconductor wafer characterization with the terahertz Hall effect,” Appl. Phys. Lett. 71, 16–18 (1997).
[CrossRef]

1995 (1)

Similar to this and having two sets of parabolic mirrors for collimation and focusing into a sample area and into a probe crystal: Q. Wu, X. C. Zhang, “Free-Space electrooptic sampling of terahertz beams,”Appl. Phys. Lett. 67, 3523–3525 (1995).

Abbott, D.

S. Mickan, D. Abbott, J. Munch, X.-C. Zhang, T. van Doorn, “Analysis of system trade-offs for terahertz imaging,” Microelectron. J. 31, 503–514 (2000).
[CrossRef]

Baraniuk, R. G.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[CrossRef]

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B 67, 379–390 (1998).
[CrossRef]

Bonn, M.

E. Knoesel, M. Bonn, J. Shan, T. F. Heinz, “Charge transport and carrier dynamics in liquids probed by THz time-domain spectroscopy,” Phys. Rev. Lett. 86, 340–343 (2001).
[CrossRef] [PubMed]

Chen, Q.

Q. Chen, X.-C. Zhang, “Polarization modulation in optoelectronic generation and detection of terahertz beams,” Appl. Phys. Lett. 74, 3435–3437 (1999).
[CrossRef]

Cheville, R. A.

R. W. McGowan, R. A. Cheville, D. Grischkowsky, “Direct observation of the Gouy phase shift in THz impulse ranging,” Appl. Phys. Lett. 76, 670–672 (2000).
[CrossRef]

R. A. Cheville, D. Grischkowsky, “Observation of pure rotational absorption spectra in the y(2) band of hot H2O in flames,” Opt. Lett. 23, 531–533 (1998).
[CrossRef]

Cunningham, J.

D. M. Mittleman, J. Cunningham, M. C. Nuss, M. Geva, “Noncontact semiconductor wafer characterization with the terahertz Hall effect,” Appl. Phys. Lett. 71, 16–18 (1997).
[CrossRef]

Geva, M.

D. M. Mittleman, J. Cunningham, M. C. Nuss, M. Geva, “Noncontact semiconductor wafer characterization with the terahertz Hall effect,” Appl. Phys. Lett. 71, 16–18 (1997).
[CrossRef]

Grischkowsky, D.

R. W. McGowan, R. A. Cheville, D. Grischkowsky, “Direct observation of the Gouy phase shift in THz impulse ranging,” Appl. Phys. Lett. 76, 670–672 (2000).
[CrossRef]

R. A. Cheville, D. Grischkowsky, “Observation of pure rotational absorption spectra in the y(2) band of hot H2O in flames,” Opt. Lett. 23, 531–533 (1998).
[CrossRef]

Gupta, M.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[CrossRef]

Heinz, T. F.

E. Knoesel, M. Bonn, J. Shan, T. F. Heinz, “Charge transport and carrier dynamics in liquids probed by THz time-domain spectroscopy,” Phys. Rev. Lett. 86, 340–343 (2001).
[CrossRef] [PubMed]

Jacobsen, R. H.

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B 67, 379–390 (1998).
[CrossRef]

Knoesel, E.

E. Knoesel, M. Bonn, J. Shan, T. F. Heinz, “Charge transport and carrier dynamics in liquids probed by THz time-domain spectroscopy,” Phys. Rev. Lett. 86, 340–343 (2001).
[CrossRef] [PubMed]

Koch, M.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[CrossRef]

McGowan, R. W.

R. W. McGowan, R. A. Cheville, D. Grischkowsky, “Direct observation of the Gouy phase shift in THz impulse ranging,” Appl. Phys. Lett. 76, 670–672 (2000).
[CrossRef]

Mickan, S.

S. Mickan, D. Abbott, J. Munch, X.-C. Zhang, T. van Doorn, “Analysis of system trade-offs for terahertz imaging,” Microelectron. J. 31, 503–514 (2000).
[CrossRef]

Mittleman, D. M.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[CrossRef]

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B 67, 379–390 (1998).
[CrossRef]

D. M. Mittleman, J. Cunningham, M. C. Nuss, M. Geva, “Noncontact semiconductor wafer characterization with the terahertz Hall effect,” Appl. Phys. Lett. 71, 16–18 (1997).
[CrossRef]

Munch, J.

S. Mickan, D. Abbott, J. Munch, X.-C. Zhang, T. van Doorn, “Analysis of system trade-offs for terahertz imaging,” Microelectron. J. 31, 503–514 (2000).
[CrossRef]

Neelamani, R.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[CrossRef]

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B 67, 379–390 (1998).
[CrossRef]

Nuss, M. C.

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B 67, 379–390 (1998).
[CrossRef]

D. M. Mittleman, J. Cunningham, M. C. Nuss, M. Geva, “Noncontact semiconductor wafer characterization with the terahertz Hall effect,” Appl. Phys. Lett. 71, 16–18 (1997).
[CrossRef]

Rudd, J. V.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[CrossRef]

Shan, J.

E. Knoesel, M. Bonn, J. Shan, T. F. Heinz, “Charge transport and carrier dynamics in liquids probed by THz time-domain spectroscopy,” Phys. Rev. Lett. 86, 340–343 (2001).
[CrossRef] [PubMed]

van Doorn, T.

S. Mickan, D. Abbott, J. Munch, X.-C. Zhang, T. van Doorn, “Analysis of system trade-offs for terahertz imaging,” Microelectron. J. 31, 503–514 (2000).
[CrossRef]

Wu, Q.

Similar to this and having two sets of parabolic mirrors for collimation and focusing into a sample area and into a probe crystal: Q. Wu, X. C. Zhang, “Free-Space electrooptic sampling of terahertz beams,”Appl. Phys. Lett. 67, 3523–3525 (1995).

Zhang, X. C.

Similar to this and having two sets of parabolic mirrors for collimation and focusing into a sample area and into a probe crystal: Q. Wu, X. C. Zhang, “Free-Space electrooptic sampling of terahertz beams,”Appl. Phys. Lett. 67, 3523–3525 (1995).

Zhang, X.-C.

S. Mickan, D. Abbott, J. Munch, X.-C. Zhang, T. van Doorn, “Analysis of system trade-offs for terahertz imaging,” Microelectron. J. 31, 503–514 (2000).
[CrossRef]

Q. Chen, X.-C. Zhang, “Polarization modulation in optoelectronic generation and detection of terahertz beams,” Appl. Phys. Lett. 74, 3435–3437 (1999).
[CrossRef]

Appl. Phys. B (2)

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[CrossRef]

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B 67, 379–390 (1998).
[CrossRef]

Appl. Phys. Lett. (4)

D. M. Mittleman, J. Cunningham, M. C. Nuss, M. Geva, “Noncontact semiconductor wafer characterization with the terahertz Hall effect,” Appl. Phys. Lett. 71, 16–18 (1997).
[CrossRef]

Similar to this and having two sets of parabolic mirrors for collimation and focusing into a sample area and into a probe crystal: Q. Wu, X. C. Zhang, “Free-Space electrooptic sampling of terahertz beams,”Appl. Phys. Lett. 67, 3523–3525 (1995).

Q. Chen, X.-C. Zhang, “Polarization modulation in optoelectronic generation and detection of terahertz beams,” Appl. Phys. Lett. 74, 3435–3437 (1999).
[CrossRef]

R. W. McGowan, R. A. Cheville, D. Grischkowsky, “Direct observation of the Gouy phase shift in THz impulse ranging,” Appl. Phys. Lett. 76, 670–672 (2000).
[CrossRef]

Microelectron. J. (1)

S. Mickan, D. Abbott, J. Munch, X.-C. Zhang, T. van Doorn, “Analysis of system trade-offs for terahertz imaging,” Microelectron. J. 31, 503–514 (2000).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

E. Knoesel, M. Bonn, J. Shan, T. F. Heinz, “Charge transport and carrier dynamics in liquids probed by THz time-domain spectroscopy,” Phys. Rev. Lett. 86, 340–343 (2001).
[CrossRef] [PubMed]

Other (1)

See, for instance, the great collection of data by Pickett et al. at http://spec.jpl.nasa.gov .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

THz generation and detection setup. A polarized near-IR pulse generates THz radiation in a ZnTe crystal. The radiation is focused onto a chopper (and sample cell, if desired) by means of two parabolic mirrors, the latter of which is mounted on a translation stage. A similar setup of two parabolic mirrors guides the radiation back to the generation spot. Here its electrical field turns the polarization of a successive generation pulse. The generation pulse propagates through a small hole located in the center of the parabolic mirror. Its change in polarization is measured with an unbiased photodiode in a crossed-polarizer setup. The plane of polarization of the THz pulse can be modified by a periscope mirror that is brought directly under the second parabolic mirror (grey). The total length of the cavity is 3.75 meters.

Fig. 2
Fig. 2

THz waveform acquired with the setup presented. The main feature is caused by pulses traversing the cavity 1,2,3…times without being reflected within the ZnTe crystal. The third (fourth) feature correspond to a single passage through the cavity and two (four) internal reflections in the ZnTe crystal. The second pulse, which is enlarged in the inset, represents the signal retarded by one cycle in the ZnTe crystal and measured after two cavity cycles. It is contracted by a factor of two with respect to the other features, which is caused by the repeated impact of cavity length shortening in two cavity cycles. Similar effects render the main pulse sharper than the third and fourth one. The circle indicates the signal for a triple pass through the cavity at only a single pass through the crystal, which can be caused by a reflection on the outside surface of the ZnTe crystal.

Fig. 3
Fig. 3

Fourier transform of the waveform of Fig. 2. Spectral weight is found beyond the cutoff frequency of ZnTe at ≈3 THz. This is caused by pulses that performed multiple (double) cycles in the cavity.

Fig. 4
Fig. 4

Polar diagram of the dependence of the THz field direction and strength on the orientation of the ZnTe crystal normal to the pump pulse. All indicated angles refer to rotations between the [001] direction of the ZnTe (110) surface and the polarization of the incoming light, which is assumed to be parallel to the abscissa.

Fig. 5
Fig. 5

Simulated (curves) and measured (connected squares) amplitude of the THz pulse as a function of the rotation of the ZnTe crystal, standard setup (i.e., separate generation and detection crystals) with generation crystal rotated (top), cavity setup (middle), and cavity setup with 90° rotation (bottom).

Fig. 6
Fig. 6

Portion of the spectrum of the main THz pulse after passage through 30 cm of wet air. The spectrum indicated in black was acquired immediately after combustion of an acetylene-oxygen mixture in the beam focus on the translation stage, whereas the grey line was acquired during combustion. The assignment of rotational transitions was taken from Ref. 9. Lines marked by an * correspond to vibrationally excited molecules, which are predominantly found during combustion.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ETHz=Egen g  d14 |g|2×-3 sin2 Θg cos Θgsin3 Θg -2 sin Θgcos2 Θg,
ETHz_prop=A R Egen g, AR=ax cosϕ-ay sinϕax sinϕay cosϕ.
xd2+yd2n2-r41yd22xdydExdEyd=1.
α=arccos12+Exd2ε1/2, δ=11n2-r412Exd-ε1/2-11n2-r412Exd+ε1/2.

Metrics