Abstract

We demonstrate a wavelength-tunable semiconductor pump diode for Raman amplification. The diode is stabilized by a fiber Bragg grating (FBG) that can be continuously tuned over more than 20 nm. Tuning of the diode output wavelength is achieved by varying the center wavelength of the FBG, since the diode preferentially lases within the FBG bandwidth. We investigate the effects of wavelength tuning on the diode spectrum on its corresponding Raman gain, and on pump-pump four-wave mixing in fiber having zero-dispersion wavelength coincident with the Raman pumps.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Namiki, Y. Emori, “Ultrabroad band Raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes,” IEEE J. Sel. Top. Quantum Electron. 7, 3–16 (2001).
    [CrossRef]
  2. R. E. Neuhauser, P. M. Krummrich, H. Bock, C. Glingener, “Impact of nonlinear pump interactions on broadband distributed Raman amplification,” in Optical Fiber Communications, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), MA4.
  3. L. A. Coldren, S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995), Sec. 5.7.
  4. C. R. Giles, T. Erdogan, V. Mizrahi, “Simultaneous wavelength-stabilization of 980-nm pump lasers,” IEEE Photon Technol. Lett. 6, 907–909 (1994).
    [CrossRef]
  5. Y. Zhao, C. Shu, “Single-mode operation characteristics of a self-injection seeded Fabry-Perot laser diode with distributed feedback from a fiber grating,” IEEE Photon Technol. Lett. 9, 1436–1438 (1997).
    [CrossRef]
  6. A. P. A. Fischer, O. K. Andersen, M. Yousefi, S. Stolte, D. Lenstra, “Experimental and theoretical study of filtered optical feedback in a semiconductor laser,” IEEE J. Quantum Electron. 36, 375–384 (2000).
    [CrossRef]
  7. A. Iocco, H. G. Limberger, R. P. Salathe, L. A. Everall, K. E. Chisholm, J. A. R. Williams, I. Bennion, “Bragg grating fast tunable filter for wavelength division multiplexing,” IEEE J. Lightwave Technol. 17, 1217–1221 (1999).
    [CrossRef]
  8. J. Manning, R. Olshansky, C. B. Su, “The carrier-induced index change in AlGaAs and 1.3 mm InGaAsP diode lasers,” IEEE J. Quantum Electron. 19, 1525–1530 (1983).
    [CrossRef]
  9. A. F. Phillips, S. J. Sweeney, A. R. Adams, P. J. A. Thijs, “The temperature dependence of 1.3- and 1.5-μm compressively strained InGaAs(P) MQW semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 5, 401–412 (1999).
    [CrossRef]
  10. G. P. Agrawal, Non-Linear Fiber Optics (Academic, San Diego, 1995), Chap. 10.
  11. P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon Technol. Lett. 10, 159–161 (1998).
    [CrossRef]
  12. J. Bromage, P. J. Winzer, L. E. Nelson, C. J. McKinstrie, “Raman-enhanced pump-signal four-wave mixing in bidirectionally-pumped Raman amplifiers,” in Optical Amplifiers and Their Applications, Vol. 77 of the OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), OWA5.

2001 (1)

S. Namiki, Y. Emori, “Ultrabroad band Raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes,” IEEE J. Sel. Top. Quantum Electron. 7, 3–16 (2001).
[CrossRef]

2000 (1)

A. P. A. Fischer, O. K. Andersen, M. Yousefi, S. Stolte, D. Lenstra, “Experimental and theoretical study of filtered optical feedback in a semiconductor laser,” IEEE J. Quantum Electron. 36, 375–384 (2000).
[CrossRef]

1999 (2)

A. Iocco, H. G. Limberger, R. P. Salathe, L. A. Everall, K. E. Chisholm, J. A. R. Williams, I. Bennion, “Bragg grating fast tunable filter for wavelength division multiplexing,” IEEE J. Lightwave Technol. 17, 1217–1221 (1999).
[CrossRef]

A. F. Phillips, S. J. Sweeney, A. R. Adams, P. J. A. Thijs, “The temperature dependence of 1.3- and 1.5-μm compressively strained InGaAs(P) MQW semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 5, 401–412 (1999).
[CrossRef]

1998 (1)

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon Technol. Lett. 10, 159–161 (1998).
[CrossRef]

1997 (1)

Y. Zhao, C. Shu, “Single-mode operation characteristics of a self-injection seeded Fabry-Perot laser diode with distributed feedback from a fiber grating,” IEEE Photon Technol. Lett. 9, 1436–1438 (1997).
[CrossRef]

1994 (1)

C. R. Giles, T. Erdogan, V. Mizrahi, “Simultaneous wavelength-stabilization of 980-nm pump lasers,” IEEE Photon Technol. Lett. 6, 907–909 (1994).
[CrossRef]

1983 (1)

J. Manning, R. Olshansky, C. B. Su, “The carrier-induced index change in AlGaAs and 1.3 mm InGaAsP diode lasers,” IEEE J. Quantum Electron. 19, 1525–1530 (1983).
[CrossRef]

Adams, A. R.

A. F. Phillips, S. J. Sweeney, A. R. Adams, P. J. A. Thijs, “The temperature dependence of 1.3- and 1.5-μm compressively strained InGaAs(P) MQW semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 5, 401–412 (1999).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Non-Linear Fiber Optics (Academic, San Diego, 1995), Chap. 10.

Andersen, O. K.

A. P. A. Fischer, O. K. Andersen, M. Yousefi, S. Stolte, D. Lenstra, “Experimental and theoretical study of filtered optical feedback in a semiconductor laser,” IEEE J. Quantum Electron. 36, 375–384 (2000).
[CrossRef]

Bennion, I.

A. Iocco, H. G. Limberger, R. P. Salathe, L. A. Everall, K. E. Chisholm, J. A. R. Williams, I. Bennion, “Bragg grating fast tunable filter for wavelength division multiplexing,” IEEE J. Lightwave Technol. 17, 1217–1221 (1999).
[CrossRef]

Bock, H.

R. E. Neuhauser, P. M. Krummrich, H. Bock, C. Glingener, “Impact of nonlinear pump interactions on broadband distributed Raman amplification,” in Optical Fiber Communications, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), MA4.

Bromage, J.

J. Bromage, P. J. Winzer, L. E. Nelson, C. J. McKinstrie, “Raman-enhanced pump-signal four-wave mixing in bidirectionally-pumped Raman amplifiers,” in Optical Amplifiers and Their Applications, Vol. 77 of the OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), OWA5.

Chisholm, K. E.

A. Iocco, H. G. Limberger, R. P. Salathe, L. A. Everall, K. E. Chisholm, J. A. R. Williams, I. Bennion, “Bragg grating fast tunable filter for wavelength division multiplexing,” IEEE J. Lightwave Technol. 17, 1217–1221 (1999).
[CrossRef]

Coldren, L. A.

L. A. Coldren, S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995), Sec. 5.7.

Corzine, S. W.

L. A. Coldren, S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995), Sec. 5.7.

DeMarco, J. J.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon Technol. Lett. 10, 159–161 (1998).
[CrossRef]

DiGiovanni, D. J.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon Technol. Lett. 10, 159–161 (1998).
[CrossRef]

Emori, Y.

S. Namiki, Y. Emori, “Ultrabroad band Raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes,” IEEE J. Sel. Top. Quantum Electron. 7, 3–16 (2001).
[CrossRef]

Erdogan, T.

C. R. Giles, T. Erdogan, V. Mizrahi, “Simultaneous wavelength-stabilization of 980-nm pump lasers,” IEEE Photon Technol. Lett. 6, 907–909 (1994).
[CrossRef]

Eskildsen, L.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon Technol. Lett. 10, 159–161 (1998).
[CrossRef]

Everall, L. A.

A. Iocco, H. G. Limberger, R. P. Salathe, L. A. Everall, K. E. Chisholm, J. A. R. Williams, I. Bennion, “Bragg grating fast tunable filter for wavelength division multiplexing,” IEEE J. Lightwave Technol. 17, 1217–1221 (1999).
[CrossRef]

Fischer, A. P. A.

A. P. A. Fischer, O. K. Andersen, M. Yousefi, S. Stolte, D. Lenstra, “Experimental and theoretical study of filtered optical feedback in a semiconductor laser,” IEEE J. Quantum Electron. 36, 375–384 (2000).
[CrossRef]

Giles, C. R.

C. R. Giles, T. Erdogan, V. Mizrahi, “Simultaneous wavelength-stabilization of 980-nm pump lasers,” IEEE Photon Technol. Lett. 6, 907–909 (1994).
[CrossRef]

Glingener, C.

R. E. Neuhauser, P. M. Krummrich, H. Bock, C. Glingener, “Impact of nonlinear pump interactions on broadband distributed Raman amplification,” in Optical Fiber Communications, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), MA4.

Hansen, P. B.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon Technol. Lett. 10, 159–161 (1998).
[CrossRef]

Iocco, A.

A. Iocco, H. G. Limberger, R. P. Salathe, L. A. Everall, K. E. Chisholm, J. A. R. Williams, I. Bennion, “Bragg grating fast tunable filter for wavelength division multiplexing,” IEEE J. Lightwave Technol. 17, 1217–1221 (1999).
[CrossRef]

Judkins, J.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon Technol. Lett. 10, 159–161 (1998).
[CrossRef]

Krummrich, P. M.

R. E. Neuhauser, P. M. Krummrich, H. Bock, C. Glingener, “Impact of nonlinear pump interactions on broadband distributed Raman amplification,” in Optical Fiber Communications, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), MA4.

Lenstra, D.

A. P. A. Fischer, O. K. Andersen, M. Yousefi, S. Stolte, D. Lenstra, “Experimental and theoretical study of filtered optical feedback in a semiconductor laser,” IEEE J. Quantum Electron. 36, 375–384 (2000).
[CrossRef]

Limberger, H. G.

A. Iocco, H. G. Limberger, R. P. Salathe, L. A. Everall, K. E. Chisholm, J. A. R. Williams, I. Bennion, “Bragg grating fast tunable filter for wavelength division multiplexing,” IEEE J. Lightwave Technol. 17, 1217–1221 (1999).
[CrossRef]

Manning, J.

J. Manning, R. Olshansky, C. B. Su, “The carrier-induced index change in AlGaAs and 1.3 mm InGaAsP diode lasers,” IEEE J. Quantum Electron. 19, 1525–1530 (1983).
[CrossRef]

McKinstrie, C. J.

J. Bromage, P. J. Winzer, L. E. Nelson, C. J. McKinstrie, “Raman-enhanced pump-signal four-wave mixing in bidirectionally-pumped Raman amplifiers,” in Optical Amplifiers and Their Applications, Vol. 77 of the OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), OWA5.

Mizrahi, V.

C. R. Giles, T. Erdogan, V. Mizrahi, “Simultaneous wavelength-stabilization of 980-nm pump lasers,” IEEE Photon Technol. Lett. 6, 907–909 (1994).
[CrossRef]

Namiki, S.

S. Namiki, Y. Emori, “Ultrabroad band Raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes,” IEEE J. Sel. Top. Quantum Electron. 7, 3–16 (2001).
[CrossRef]

Nelson, L. E.

J. Bromage, P. J. Winzer, L. E. Nelson, C. J. McKinstrie, “Raman-enhanced pump-signal four-wave mixing in bidirectionally-pumped Raman amplifiers,” in Optical Amplifiers and Their Applications, Vol. 77 of the OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), OWA5.

Neuhauser, R. E.

R. E. Neuhauser, P. M. Krummrich, H. Bock, C. Glingener, “Impact of nonlinear pump interactions on broadband distributed Raman amplification,” in Optical Fiber Communications, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), MA4.

Olshansky, R.

J. Manning, R. Olshansky, C. B. Su, “The carrier-induced index change in AlGaAs and 1.3 mm InGaAsP diode lasers,” IEEE J. Quantum Electron. 19, 1525–1530 (1983).
[CrossRef]

Pedrazzani, R.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon Technol. Lett. 10, 159–161 (1998).
[CrossRef]

Phillips, A. F.

A. F. Phillips, S. J. Sweeney, A. R. Adams, P. J. A. Thijs, “The temperature dependence of 1.3- and 1.5-μm compressively strained InGaAs(P) MQW semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 5, 401–412 (1999).
[CrossRef]

Salathe, R. P.

A. Iocco, H. G. Limberger, R. P. Salathe, L. A. Everall, K. E. Chisholm, J. A. R. Williams, I. Bennion, “Bragg grating fast tunable filter for wavelength division multiplexing,” IEEE J. Lightwave Technol. 17, 1217–1221 (1999).
[CrossRef]

Shu, C.

Y. Zhao, C. Shu, “Single-mode operation characteristics of a self-injection seeded Fabry-Perot laser diode with distributed feedback from a fiber grating,” IEEE Photon Technol. Lett. 9, 1436–1438 (1997).
[CrossRef]

Stentz, A. J.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon Technol. Lett. 10, 159–161 (1998).
[CrossRef]

Stolte, S.

A. P. A. Fischer, O. K. Andersen, M. Yousefi, S. Stolte, D. Lenstra, “Experimental and theoretical study of filtered optical feedback in a semiconductor laser,” IEEE J. Quantum Electron. 36, 375–384 (2000).
[CrossRef]

Strasser, T. A.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon Technol. Lett. 10, 159–161 (1998).
[CrossRef]

Su, C. B.

J. Manning, R. Olshansky, C. B. Su, “The carrier-induced index change in AlGaAs and 1.3 mm InGaAsP diode lasers,” IEEE J. Quantum Electron. 19, 1525–1530 (1983).
[CrossRef]

Sweeney, S. J.

A. F. Phillips, S. J. Sweeney, A. R. Adams, P. J. A. Thijs, “The temperature dependence of 1.3- and 1.5-μm compressively strained InGaAs(P) MQW semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 5, 401–412 (1999).
[CrossRef]

Thijs, P. J. A.

A. F. Phillips, S. J. Sweeney, A. R. Adams, P. J. A. Thijs, “The temperature dependence of 1.3- and 1.5-μm compressively strained InGaAs(P) MQW semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 5, 401–412 (1999).
[CrossRef]

Williams, J. A. R.

A. Iocco, H. G. Limberger, R. P. Salathe, L. A. Everall, K. E. Chisholm, J. A. R. Williams, I. Bennion, “Bragg grating fast tunable filter for wavelength division multiplexing,” IEEE J. Lightwave Technol. 17, 1217–1221 (1999).
[CrossRef]

Winzer, P. J.

J. Bromage, P. J. Winzer, L. E. Nelson, C. J. McKinstrie, “Raman-enhanced pump-signal four-wave mixing in bidirectionally-pumped Raman amplifiers,” in Optical Amplifiers and Their Applications, Vol. 77 of the OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), OWA5.

Yousefi, M.

A. P. A. Fischer, O. K. Andersen, M. Yousefi, S. Stolte, D. Lenstra, “Experimental and theoretical study of filtered optical feedback in a semiconductor laser,” IEEE J. Quantum Electron. 36, 375–384 (2000).
[CrossRef]

Zhao, Y.

Y. Zhao, C. Shu, “Single-mode operation characteristics of a self-injection seeded Fabry-Perot laser diode with distributed feedback from a fiber grating,” IEEE Photon Technol. Lett. 9, 1436–1438 (1997).
[CrossRef]

IEEE J. Lightwave Technol. (1)

A. Iocco, H. G. Limberger, R. P. Salathe, L. A. Everall, K. E. Chisholm, J. A. R. Williams, I. Bennion, “Bragg grating fast tunable filter for wavelength division multiplexing,” IEEE J. Lightwave Technol. 17, 1217–1221 (1999).
[CrossRef]

IEEE J. Quantum Electron. (2)

J. Manning, R. Olshansky, C. B. Su, “The carrier-induced index change in AlGaAs and 1.3 mm InGaAsP diode lasers,” IEEE J. Quantum Electron. 19, 1525–1530 (1983).
[CrossRef]

A. P. A. Fischer, O. K. Andersen, M. Yousefi, S. Stolte, D. Lenstra, “Experimental and theoretical study of filtered optical feedback in a semiconductor laser,” IEEE J. Quantum Electron. 36, 375–384 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

A. F. Phillips, S. J. Sweeney, A. R. Adams, P. J. A. Thijs, “The temperature dependence of 1.3- and 1.5-μm compressively strained InGaAs(P) MQW semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 5, 401–412 (1999).
[CrossRef]

S. Namiki, Y. Emori, “Ultrabroad band Raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes,” IEEE J. Sel. Top. Quantum Electron. 7, 3–16 (2001).
[CrossRef]

IEEE Photon Technol. Lett. (3)

C. R. Giles, T. Erdogan, V. Mizrahi, “Simultaneous wavelength-stabilization of 980-nm pump lasers,” IEEE Photon Technol. Lett. 6, 907–909 (1994).
[CrossRef]

Y. Zhao, C. Shu, “Single-mode operation characteristics of a self-injection seeded Fabry-Perot laser diode with distributed feedback from a fiber grating,” IEEE Photon Technol. Lett. 9, 1436–1438 (1997).
[CrossRef]

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon Technol. Lett. 10, 159–161 (1998).
[CrossRef]

Other (4)

J. Bromage, P. J. Winzer, L. E. Nelson, C. J. McKinstrie, “Raman-enhanced pump-signal four-wave mixing in bidirectionally-pumped Raman amplifiers,” in Optical Amplifiers and Their Applications, Vol. 77 of the OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), OWA5.

R. E. Neuhauser, P. M. Krummrich, H. Bock, C. Glingener, “Impact of nonlinear pump interactions on broadband distributed Raman amplification,” in Optical Fiber Communications, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), MA4.

L. A. Coldren, S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995), Sec. 5.7.

G. P. Agrawal, Non-Linear Fiber Optics (Academic, San Diego, 1995), Chap. 10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic diagram illustrating principle of Raman amplification in optical communication systems.

Fig. 2
Fig. 2

(a) Schematic of tunable FBG-stabilized diode, (b) tuned grating spectra (measured in transmission), and (c) output spectra of diode at corresponding grating wavelengths (temperature and injection current also varied).

Fig. 3
Fig. 3

Unstabilized and stabilized (at various wavelength settings) diode output at 1000-mA injection current and 25 °C.

Fig. 4
Fig. 4

Unstabilized diode output at 25 °C constant temperature, showing current dependence of spectral shape and center wavelength.

Fig. 5
Fig. 5

Unstabilized diode output at constant 1000-mA injection current, showing temperature dependence of center wavelength; inset: L-I characteristic curves at various temperature settings.

Fig. 6
Fig. 6

Stabilized grating output tuned over 22.5-nm bandwidth with and without TEC and current adjustments (constant 250-mW optical power).

Fig. 7
Fig. 7

Bottom/left axes, stabilized diode output at constant TEC temperature (25 °C) and injection current (1000 mA); top/right axes, corresponding on/off Raman gain.

Fig. 8
Fig. 8

Left axis, on/off Raman gain from Fig. 6 plotted as frequency shift from pump peak wavelength; right axis, gain ripple, using middle curve (diode tuned to 1491 nm) as reference.

Fig. 9
Fig. 9

Bottom/left axes, Stabilized diode output at constant optical power (145 mW), TEC temperature optimized to give constant spectral shape; top/right axes, corresponding on/off Raman gain.

Fig. 10
Fig. 10

Left axis, on/off Raman gain from Fig. 7(a) plotted as frequency shift from pump peak wavelength; right axis, gain ripple, using middle curve (diode tuned to 1491 nm) as reference.

Fig. 11
Fig. 11

Experimental setup for measuring single pump Raman gain and for investigating pump-pump FWM.

Fig. 12
Fig. 12

Rayleigh backscattered pump and Raman ASE spectra with the longest pump wavelength at 1497 nm (solid curve) and 1495 nm (dashed curve).

Fig. 13
Fig. 13

Contour plot showing effective NF penalty dependence on signal wavelength and tunable pump wavelength.

Metrics