Abstract

Using a Michelson white-light interferometer, we measure the group-delay dispersion and third-order dispersion coefficients, d2ϕ/dω2 and d3ϕ/dω3, of chromium-doped forsterite (Cr:Mg2SiO4) over wavelengths of 1050–1600 nm for light polarized along both the c and b crystal axes. In this interval, the second-order dispersion for the c axis ranges from 35 fs2/mm to -14 fs2/mm, and the third-order dispersion ranges from 36 fs3/mm to 142 fs3/mm. For the b axis the second-order dispersion ranges from 35 fs2/mm to -15 fs2/mm and the third-order from 73 fs3/mm to 185 fs3/mm. Our data are relevant for the development of optimized dispersion compensation tools for Cr:Mg2SiO4 femtosecond lasers. These measurements help to clarify previously published results and show some significant discrepancies that existed, especially in the third-order dispersion. Our results should furthermore be useful to build up an analytic expression for the index of refraction of chromium forsterite.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
    [CrossRef]
  2. A. Seas, V. Petricevic, R. R. Alfano, “Generation of sub-100-fs pulses from a cw mode-locked chromium-doped forsterite laser,” Opt. Lett. 17, 937–939 (1992).
    [CrossRef] [PubMed]
  3. A. Sennaroglu, T. J. Carrig, C. R. Pollock, “Femtosecond pulse generation by using an additive-pulse mode-locked chromium-doped forsterite laser operated at 77 K,” Opt. Lett. 17, 1216–1218 (1992).
    [CrossRef] [PubMed]
  4. A. Sennaroglu, C. R. Pollock, H. Nathel, “Generation of 48-fs pulses and measurement of crystal dispersion by using a regeneratively initiated self-mode-locked chromium-doped forsterite laser,” Opt. Lett. 18, 826–828 (1993).
    [CrossRef] [PubMed]
  5. A. Seas, V. Petricevic, R. R. Alfano, “Self-mode-locked chromium-doped forsterite laser generates 50-fs pulses,” Opt. Lett. 18, 891–893 (1993).
    [CrossRef] [PubMed]
  6. V. Yanovsky, Y. Pang, F. Wise, B. Minkov, “Generation of 25-fs pulses from a self-mode-locked Cr:forsterite laser with optimized group-delay dispersion,” Opt. Lett. 18, 1541–1543 (1993).
    [CrossRef] [PubMed]
  7. Y. P. Tong, P. M. W. French, J. R. Taylor, J. G. Fujimoto, “All-solid-state femtosecond sources in the near-infrared,” Opt. Commun. 136, 235–238 (1997).
    [CrossRef]
  8. X. Liu, L. Quian, F. Wise, Z. Zhang, T. Itatani, T. Sugaya, T. Nakagawa, K. Torizuka, “Femtosecond Cr:forsterite laser diode pumped by a double-clad fiber,” Opt. Lett. 23, 129–131 (1998).
    [CrossRef]
  9. Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, T. Nakagawa, “Self-starting mode-locked femtosecond forsterite laser with a semiconductor saturable-absorber mirror,” Opt. Lett. 22, 1006–1008 (1997).
    [CrossRef] [PubMed]
  10. B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, J. G. Fujimoto, “Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography,” Opt. Lett. 21, 1839–1841 (1996).
    [CrossRef] [PubMed]
  11. V. V. Yakovlev, V. Shcheslavskiy, A. Ivanov, “High-energy femtosecond Cr:forsterite oscillators and their applications in biomedical and material sciences,” Appl. Phys. B 74, S145–S152 (2002).
    [CrossRef]
  12. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, T. W. Hänsch, “A direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
    [CrossRef] [PubMed]
  13. R. Shelton, L. Ma, H. Kapteyn, M. Murnane, J. Hall, J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science 293, 1286–1289 (2001).
    [CrossRef] [PubMed]
  14. Z. Wei, Y. Kobayashi, Z. Zhang, K. Torizuka, “Generation of two-color femtosecond pulses by self-synchronizing Ti:sapphire and Cr:forsterite lasers,” Opt. Lett. 26, 1806–1808 (2001).
    [CrossRef]
  15. C. Chudoba, J. G. Fujimoto, E. P. Ippen, H. A. Haus, U. Morgner, F. X. Kaertner, V. Scheuer, G. Angelow, T. Tschudi, “All-solid-state Cr:forsterite laser generating 14-fs pulses at 1.3 μm,” Opt. Lett. 26, 292–294 (2001).
    [CrossRef]
  16. Z. Burshtein, Y. Shimony, “Refractive index dispersion and anisotropy in Cr4+:Mg2SiO4,” Opt. Mater. 20, 87–96 (2002).
    [CrossRef]
  17. V. Yanovsky, Y. Pang, F. Wise, “Self-modelocked Cr:forsterite laser with optimized group-delay dispersion,” in Generation, Amplification and Measurement of Ultrashort Laser Pulses, R. P. Trebino, I. A. Walmsley, eds., Proc. SPIE2116, 293–299 (1993).
    [CrossRef]
  18. A. Sennaroglu, C. R. Pollock, H. Nathel, “Generation of tunable femtosecond pulses in the 1.21–1.27 μm and 605–635 nm wavelength regime by using a regeneratively initiated self-mode-locked Cr:forsterite laser,” IEEE J. Quantum Electron. 30, 1851–1861 (1994).
    [CrossRef]
  19. Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, T. Nakagawa, “Femtosecond Cr:forsterite laser with mode locking initiated by a quantum-well saturable absorber,” IEEE J. Quantum Electron. 33, 1975–1981 (1997).
    [CrossRef]
  20. K. Naganuma, K. Mogi, H. Yamada, “Group-delay measurement using the Fourier transform of an interferometric cross correlation generated by white light,” Opt. Lett. 15, 393–395 (1993).
    [CrossRef]
  21. S. Diddams, J.-C. Diels, “Dispersion measurements with white-light interferometry,” J. Opt. Soc. Am. B 13, 1120–1129 (1996).
    [CrossRef]
  22. A. G. Van Engen, S. A. Diddams, T. S. Clement, “Dispersion measurements of water with white-light interferometry,” Appl. Opt. 37, 5679–5686 (1998).
    [CrossRef]

2002 (2)

V. V. Yakovlev, V. Shcheslavskiy, A. Ivanov, “High-energy femtosecond Cr:forsterite oscillators and their applications in biomedical and material sciences,” Appl. Phys. B 74, S145–S152 (2002).
[CrossRef]

Z. Burshtein, Y. Shimony, “Refractive index dispersion and anisotropy in Cr4+:Mg2SiO4,” Opt. Mater. 20, 87–96 (2002).
[CrossRef]

2001 (3)

2000 (1)

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, T. W. Hänsch, “A direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

1998 (2)

1997 (3)

Y. P. Tong, P. M. W. French, J. R. Taylor, J. G. Fujimoto, “All-solid-state femtosecond sources in the near-infrared,” Opt. Commun. 136, 235–238 (1997).
[CrossRef]

Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, T. Nakagawa, “Femtosecond Cr:forsterite laser with mode locking initiated by a quantum-well saturable absorber,” IEEE J. Quantum Electron. 33, 1975–1981 (1997).
[CrossRef]

Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, T. Nakagawa, “Self-starting mode-locked femtosecond forsterite laser with a semiconductor saturable-absorber mirror,” Opt. Lett. 22, 1006–1008 (1997).
[CrossRef] [PubMed]

1996 (2)

1994 (1)

A. Sennaroglu, C. R. Pollock, H. Nathel, “Generation of tunable femtosecond pulses in the 1.21–1.27 μm and 605–635 nm wavelength regime by using a regeneratively initiated self-mode-locked Cr:forsterite laser,” IEEE J. Quantum Electron. 30, 1851–1861 (1994).
[CrossRef]

1993 (4)

1992 (2)

1988 (1)

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

Alfano, R. R.

Angelow, G.

Anzai, H.

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

Bilinsky, I. P.

Bouma, B. E.

Burshtein, Z.

Z. Burshtein, Y. Shimony, “Refractive index dispersion and anisotropy in Cr4+:Mg2SiO4,” Opt. Mater. 20, 87–96 (2002).
[CrossRef]

Carrig, T. J.

Chudoba, C.

Clement, T. S.

Cundiff, S. T.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, T. W. Hänsch, “A direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Diddams, S.

Diddams, S. A.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, T. W. Hänsch, “A direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

A. G. Van Engen, S. A. Diddams, T. S. Clement, “Dispersion measurements of water with white-light interferometry,” Appl. Opt. 37, 5679–5686 (1998).
[CrossRef]

Diels, J.-C.

French, P. M. W.

Y. P. Tong, P. M. W. French, J. R. Taylor, J. G. Fujimoto, “All-solid-state femtosecond sources in the near-infrared,” Opt. Commun. 136, 235–238 (1997).
[CrossRef]

Fujimoto, J. G.

Gayen, S. K.

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

Golubovic, B.

Hall, J.

R. Shelton, L. Ma, H. Kapteyn, M. Murnane, J. Hall, J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science 293, 1286–1289 (2001).
[CrossRef] [PubMed]

Hall, J. L.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, T. W. Hänsch, “A direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Hänsch, T. W.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, T. W. Hänsch, “A direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Haus, H. A.

Holzwarth, R.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, T. W. Hänsch, “A direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Ippen, E. P.

Itatani, T.

Ivanov, A.

V. V. Yakovlev, V. Shcheslavskiy, A. Ivanov, “High-energy femtosecond Cr:forsterite oscillators and their applications in biomedical and material sciences,” Appl. Phys. B 74, S145–S152 (2002).
[CrossRef]

Jones, D. J.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, T. W. Hänsch, “A direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Kaertner, F. X.

Kapteyn, H.

R. Shelton, L. Ma, H. Kapteyn, M. Murnane, J. Hall, J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science 293, 1286–1289 (2001).
[CrossRef] [PubMed]

Kobayashi, K.

Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, T. Nakagawa, “Self-starting mode-locked femtosecond forsterite laser with a semiconductor saturable-absorber mirror,” Opt. Lett. 22, 1006–1008 (1997).
[CrossRef] [PubMed]

Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, T. Nakagawa, “Femtosecond Cr:forsterite laser with mode locking initiated by a quantum-well saturable absorber,” IEEE J. Quantum Electron. 33, 1975–1981 (1997).
[CrossRef]

Kobayashi, Y.

Liu, X.

Ma, L.

R. Shelton, L. Ma, H. Kapteyn, M. Murnane, J. Hall, J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science 293, 1286–1289 (2001).
[CrossRef] [PubMed]

Minkov, B.

Mogi, K.

Morgner, U.

Murnane, M.

R. Shelton, L. Ma, H. Kapteyn, M. Murnane, J. Hall, J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science 293, 1286–1289 (2001).
[CrossRef] [PubMed]

Naganuma, K.

Nakagawa, T.

Nathel, H.

A. Sennaroglu, C. R. Pollock, H. Nathel, “Generation of tunable femtosecond pulses in the 1.21–1.27 μm and 605–635 nm wavelength regime by using a regeneratively initiated self-mode-locked Cr:forsterite laser,” IEEE J. Quantum Electron. 30, 1851–1861 (1994).
[CrossRef]

A. Sennaroglu, C. R. Pollock, H. Nathel, “Generation of 48-fs pulses and measurement of crystal dispersion by using a regeneratively initiated self-mode-locked chromium-doped forsterite laser,” Opt. Lett. 18, 826–828 (1993).
[CrossRef] [PubMed]

Pang, Y.

V. Yanovsky, Y. Pang, F. Wise, B. Minkov, “Generation of 25-fs pulses from a self-mode-locked Cr:forsterite laser with optimized group-delay dispersion,” Opt. Lett. 18, 1541–1543 (1993).
[CrossRef] [PubMed]

V. Yanovsky, Y. Pang, F. Wise, “Self-modelocked Cr:forsterite laser with optimized group-delay dispersion,” in Generation, Amplification and Measurement of Ultrashort Laser Pulses, R. P. Trebino, I. A. Walmsley, eds., Proc. SPIE2116, 293–299 (1993).
[CrossRef]

Petricevic, V.

Pollock, C. R.

Quian, L.

Ranka, J. K.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, T. W. Hänsch, “A direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Scheuer, V.

Seas, A.

Sennaroglu, A.

Shcheslavskiy, V.

V. V. Yakovlev, V. Shcheslavskiy, A. Ivanov, “High-energy femtosecond Cr:forsterite oscillators and their applications in biomedical and material sciences,” Appl. Phys. B 74, S145–S152 (2002).
[CrossRef]

Shelton, R.

R. Shelton, L. Ma, H. Kapteyn, M. Murnane, J. Hall, J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science 293, 1286–1289 (2001).
[CrossRef] [PubMed]

Shimony, Y.

Z. Burshtein, Y. Shimony, “Refractive index dispersion and anisotropy in Cr4+:Mg2SiO4,” Opt. Mater. 20, 87–96 (2002).
[CrossRef]

Sugaya, T.

Taylor, J. R.

Y. P. Tong, P. M. W. French, J. R. Taylor, J. G. Fujimoto, “All-solid-state femtosecond sources in the near-infrared,” Opt. Commun. 136, 235–238 (1997).
[CrossRef]

Tearney, G. J.

Tong, Y. P.

Y. P. Tong, P. M. W. French, J. R. Taylor, J. G. Fujimoto, “All-solid-state femtosecond sources in the near-infrared,” Opt. Commun. 136, 235–238 (1997).
[CrossRef]

Torizuka, K.

Tschudi, T.

Udem, Th.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, T. W. Hänsch, “A direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Van Engen, A. G.

Wei, Z.

Windeler, R. S.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, T. W. Hänsch, “A direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Wise, F.

Yakovlev, V. V.

V. V. Yakovlev, V. Shcheslavskiy, A. Ivanov, “High-energy femtosecond Cr:forsterite oscillators and their applications in biomedical and material sciences,” Appl. Phys. B 74, S145–S152 (2002).
[CrossRef]

Yamada, H.

Yamagishi, K.

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

Yamaguchi, Y.

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

Yanovsky, V.

V. Yanovsky, Y. Pang, F. Wise, B. Minkov, “Generation of 25-fs pulses from a self-mode-locked Cr:forsterite laser with optimized group-delay dispersion,” Opt. Lett. 18, 1541–1543 (1993).
[CrossRef] [PubMed]

V. Yanovsky, Y. Pang, F. Wise, “Self-modelocked Cr:forsterite laser with optimized group-delay dispersion,” in Generation, Amplification and Measurement of Ultrashort Laser Pulses, R. P. Trebino, I. A. Walmsley, eds., Proc. SPIE2116, 293–299 (1993).
[CrossRef]

Ye, J.

R. Shelton, L. Ma, H. Kapteyn, M. Murnane, J. Hall, J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science 293, 1286–1289 (2001).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, T. W. Hänsch, “A direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Zhang, Z.

Appl. Opt. (1)

Appl. Phys. B (1)

V. V. Yakovlev, V. Shcheslavskiy, A. Ivanov, “High-energy femtosecond Cr:forsterite oscillators and their applications in biomedical and material sciences,” Appl. Phys. B 74, S145–S152 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

IEEE J. Quantum Electron. (2)

A. Sennaroglu, C. R. Pollock, H. Nathel, “Generation of tunable femtosecond pulses in the 1.21–1.27 μm and 605–635 nm wavelength regime by using a regeneratively initiated self-mode-locked Cr:forsterite laser,” IEEE J. Quantum Electron. 30, 1851–1861 (1994).
[CrossRef]

Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, T. Nakagawa, “Femtosecond Cr:forsterite laser with mode locking initiated by a quantum-well saturable absorber,” IEEE J. Quantum Electron. 33, 1975–1981 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

Y. P. Tong, P. M. W. French, J. R. Taylor, J. G. Fujimoto, “All-solid-state femtosecond sources in the near-infrared,” Opt. Commun. 136, 235–238 (1997).
[CrossRef]

Opt. Lett. (11)

Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, T. Nakagawa, “Self-starting mode-locked femtosecond forsterite laser with a semiconductor saturable-absorber mirror,” Opt. Lett. 22, 1006–1008 (1997).
[CrossRef] [PubMed]

X. Liu, L. Quian, F. Wise, Z. Zhang, T. Itatani, T. Sugaya, T. Nakagawa, K. Torizuka, “Femtosecond Cr:forsterite laser diode pumped by a double-clad fiber,” Opt. Lett. 23, 129–131 (1998).
[CrossRef]

K. Naganuma, K. Mogi, H. Yamada, “Group-delay measurement using the Fourier transform of an interferometric cross correlation generated by white light,” Opt. Lett. 15, 393–395 (1993).
[CrossRef]

A. Seas, V. Petricevic, R. R. Alfano, “Generation of sub-100-fs pulses from a cw mode-locked chromium-doped forsterite laser,” Opt. Lett. 17, 937–939 (1992).
[CrossRef] [PubMed]

A. Sennaroglu, T. J. Carrig, C. R. Pollock, “Femtosecond pulse generation by using an additive-pulse mode-locked chromium-doped forsterite laser operated at 77 K,” Opt. Lett. 17, 1216–1218 (1992).
[CrossRef] [PubMed]

A. Sennaroglu, C. R. Pollock, H. Nathel, “Generation of 48-fs pulses and measurement of crystal dispersion by using a regeneratively initiated self-mode-locked chromium-doped forsterite laser,” Opt. Lett. 18, 826–828 (1993).
[CrossRef] [PubMed]

A. Seas, V. Petricevic, R. R. Alfano, “Self-mode-locked chromium-doped forsterite laser generates 50-fs pulses,” Opt. Lett. 18, 891–893 (1993).
[CrossRef] [PubMed]

V. Yanovsky, Y. Pang, F. Wise, B. Minkov, “Generation of 25-fs pulses from a self-mode-locked Cr:forsterite laser with optimized group-delay dispersion,” Opt. Lett. 18, 1541–1543 (1993).
[CrossRef] [PubMed]

B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, J. G. Fujimoto, “Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography,” Opt. Lett. 21, 1839–1841 (1996).
[CrossRef] [PubMed]

C. Chudoba, J. G. Fujimoto, E. P. Ippen, H. A. Haus, U. Morgner, F. X. Kaertner, V. Scheuer, G. Angelow, T. Tschudi, “All-solid-state Cr:forsterite laser generating 14-fs pulses at 1.3 μm,” Opt. Lett. 26, 292–294 (2001).
[CrossRef]

Z. Wei, Y. Kobayashi, Z. Zhang, K. Torizuka, “Generation of two-color femtosecond pulses by self-synchronizing Ti:sapphire and Cr:forsterite lasers,” Opt. Lett. 26, 1806–1808 (2001).
[CrossRef]

Opt. Mater. (1)

Z. Burshtein, Y. Shimony, “Refractive index dispersion and anisotropy in Cr4+:Mg2SiO4,” Opt. Mater. 20, 87–96 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, T. W. Hänsch, “A direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Science (1)

R. Shelton, L. Ma, H. Kapteyn, M. Murnane, J. Hall, J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science 293, 1286–1289 (2001).
[CrossRef] [PubMed]

Other (1)

V. Yanovsky, Y. Pang, F. Wise, “Self-modelocked Cr:forsterite laser with optimized group-delay dispersion,” in Generation, Amplification and Measurement of Ultrashort Laser Pulses, R. P. Trebino, I. A. Walmsley, eds., Proc. SPIE2116, 293–299 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Measured white-light interferogram of Cr:forsterite with unpolarized light. The two packets of fringes arise from the light polarized along the b axis (small amplitude) and c axis (large amplitude). A properly oriented polarizer before the detector is used to select one of these individual interferograms for analysis of the dispersion along the respective axis.

Fig. 2
Fig. 2

Measured absorption coefficients of Cr:forsterite for light polarized along the three different crystal axes.

Fig. 3
Fig. 3

Measured dispersion coefficients as a function of wavelength and frequency for polarizations along both c and b axes: (a) second-order dispersion (GDD), (b) third-order dispersion (TOD). (c) and (d) show a comparison of our GDD and TOD data with the data of Zhang et al.9,19 and Burshtein and Shimony.

Fig. 4
Fig. 4

Comparison of (a) GDD and (b) TOD calculated from higher-order polynomial fits for the b axis. Error bars are shown for all measurements and extend beyond the graphed region at short and long wavelengths.

Tables (2)

Tables Icon

Table 1 Measured GDD and TOD for Light Polarized Along the c and b Axes and for Wavelengths between 1050 and 1600 nm

Tables Icon

Table 2 Comparison of Our Measured Dispersion Data with Previously Available Data

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

S˜1ω=|S1ω|expiϕ1ω.
S˜2ω=|S2ω|expiϕ2ω.
ϕCrω=ϕ2ω-ϕ1ω.
ϕCrω=ϕ0+ϕ|ω0ω-ω0+12 ϕ|ω0ω-ω02+16 ϕ|ω0ω-ω03+.
ϕCrω2L=12L2K2+6K3ω-ω0+12K4ω-ω02+20K5ω-ω03,
ϕCrω2L=12L6K3+24K4ω-ω0+60K5ω-ω02,
aPnma  bPbnm bPnma  cPbnm cPnma  aPbnm.

Metrics