Abstract

We propose a transparent plate of a liquid-crystal grating to be used as a light guide for optical interconnection. To this end, we are empowering the connection itself with active functions, such as switching, wavelength division, power adjustment, etc. In experiments, we built a grating based on in-plane switching. It contains vertically-aligned nematic liquid-crystal molecules between a glass plate with a high refractive index (light guide) and another glass plate with a pair of interdigitated electrodes. Entering a TM wave from an edge of the light guide, we have demonstrated that the activation of diffraction and intensity adjustment for the guided light are both possible. Because a TE wave is barely diffracted, the device also exhibits polarization division capability.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. L. Tan, W. A. Crossland, R. J. Mears,“Dynamic holography for optical interconnections: I. Noise floor of low-cross-talk holographic switches,” J. Opt. Soc. Am. A, 18, 195–204 (2001).
    [CrossRef]
  2. S. Reinhorn, R. Oron, Y. Amitai, A. A. Friesen, K. Vinokur, N. Pilossof, “Planar optical dynamic crossbar switch,” Opt. Eng. 38, 1396–1401 (1999).
    [CrossRef]
  3. S. Sinzinger, J. Jahns, Microoptics (Wiley-VCH Verlag GmbH, Germany, 1999).
  4. H. Sasaki, K. Kotani, H. Wada, T. Takamori, T. Ushikubo, “Scalability analysis of diffractive optical element-based free-space photonic circuits for interoptoelectronic chip interconnections,” Appl. Opt. 40, 1843–1855 (2001).
    [CrossRef]
  5. K. H. Brenner, F. Sauer, “Diffractive-reflective optical interconnects,” Appl. Opt. 27, 4251–4254 (1988).
    [CrossRef] [PubMed]
  6. Y. Amitai, J. W. Goodman, “Design of substrate-mode holographic interconnects with different recording and readout wavelengths,” Appl. Opt. 30, 2376–2381 (1991).
    [CrossRef] [PubMed]
  7. Y. Ohmori, H. Ueta, Y. Kurosawa, M. Hikita, K. Yoshino, “Organic EL diode with plastic waveguide devices,” Nonlinear Opt. 22, 461–464 (1999).
  8. L. Robitaille, C. L. Callender, J. P. Noad, F. Gouin, C. A. Almeida, “Integration of optoelectronic switch matrices using metal-semiconductor-metal photodetectors and polyimide waveguide circuitry,” Opt. Eng. 37, 1157–1163 (1998).
    [CrossRef]
  9. R. A. Kashnow, C. R. Stein, “Total-reflection liquid-crystal electrooptic device,” Appl. Opt. 12, 2309–2311 (1973).
    [CrossRef] [PubMed]
  10. R. A. Soref, “Liquid-crystal fiber-optic switch,” Opt. Lett. 4, 155–157 (1979).
    [CrossRef] [PubMed]
  11. R. A. Soref, “Electrooptic 4 × 4 matrix switch for multimode fiber-optic systems,” Appl. Opt. 21, 1386–1393 (1982).
    [CrossRef] [PubMed]
  12. M. Sawada, T. Suhara, H. Nishihara, J. Koyama, “Integrated hologram memory device using liquid-crystal optical switch matrix,” (in Japanese) IEICE Technical ReportOQE81–116, (Institute of Electronics, Information and Communication Engineers, Tokyo, Japan, 1982), pp. 21–28.
  13. M. Takeda, T. Kubota, “Integrated optic array illuminator: a design for efficient and uniform power distribution,” Appl. Opt. 30, 1090–1095 (1991).
    [CrossRef] [PubMed]
  14. I. Fujieda, “Theoretical considerations for arrayed waveguide displays,” Applied Opt. 41, 1391–1399 (2002).
    [CrossRef]
  15. I. Fujieda, “Liquid-crystal phase grating based on in-plane switching,” Appl. Opt. 40, 6252–6259 (2001).
    [CrossRef]

2002

I. Fujieda, “Theoretical considerations for arrayed waveguide displays,” Applied Opt. 41, 1391–1399 (2002).
[CrossRef]

2001

1999

S. Reinhorn, R. Oron, Y. Amitai, A. A. Friesen, K. Vinokur, N. Pilossof, “Planar optical dynamic crossbar switch,” Opt. Eng. 38, 1396–1401 (1999).
[CrossRef]

Y. Ohmori, H. Ueta, Y. Kurosawa, M. Hikita, K. Yoshino, “Organic EL diode with plastic waveguide devices,” Nonlinear Opt. 22, 461–464 (1999).

1998

L. Robitaille, C. L. Callender, J. P. Noad, F. Gouin, C. A. Almeida, “Integration of optoelectronic switch matrices using metal-semiconductor-metal photodetectors and polyimide waveguide circuitry,” Opt. Eng. 37, 1157–1163 (1998).
[CrossRef]

1991

1988

1982

1979

1973

Almeida, C. A.

L. Robitaille, C. L. Callender, J. P. Noad, F. Gouin, C. A. Almeida, “Integration of optoelectronic switch matrices using metal-semiconductor-metal photodetectors and polyimide waveguide circuitry,” Opt. Eng. 37, 1157–1163 (1998).
[CrossRef]

Amitai, Y.

S. Reinhorn, R. Oron, Y. Amitai, A. A. Friesen, K. Vinokur, N. Pilossof, “Planar optical dynamic crossbar switch,” Opt. Eng. 38, 1396–1401 (1999).
[CrossRef]

Y. Amitai, J. W. Goodman, “Design of substrate-mode holographic interconnects with different recording and readout wavelengths,” Appl. Opt. 30, 2376–2381 (1991).
[CrossRef] [PubMed]

Brenner, K. H.

Callender, C. L.

L. Robitaille, C. L. Callender, J. P. Noad, F. Gouin, C. A. Almeida, “Integration of optoelectronic switch matrices using metal-semiconductor-metal photodetectors and polyimide waveguide circuitry,” Opt. Eng. 37, 1157–1163 (1998).
[CrossRef]

Crossland, W. A.

Friesen, A. A.

S. Reinhorn, R. Oron, Y. Amitai, A. A. Friesen, K. Vinokur, N. Pilossof, “Planar optical dynamic crossbar switch,” Opt. Eng. 38, 1396–1401 (1999).
[CrossRef]

Fujieda, I.

I. Fujieda, “Theoretical considerations for arrayed waveguide displays,” Applied Opt. 41, 1391–1399 (2002).
[CrossRef]

I. Fujieda, “Liquid-crystal phase grating based on in-plane switching,” Appl. Opt. 40, 6252–6259 (2001).
[CrossRef]

Goodman, J. W.

Gouin, F.

L. Robitaille, C. L. Callender, J. P. Noad, F. Gouin, C. A. Almeida, “Integration of optoelectronic switch matrices using metal-semiconductor-metal photodetectors and polyimide waveguide circuitry,” Opt. Eng. 37, 1157–1163 (1998).
[CrossRef]

Hikita, M.

Y. Ohmori, H. Ueta, Y. Kurosawa, M. Hikita, K. Yoshino, “Organic EL diode with plastic waveguide devices,” Nonlinear Opt. 22, 461–464 (1999).

Jahns, J.

S. Sinzinger, J. Jahns, Microoptics (Wiley-VCH Verlag GmbH, Germany, 1999).

Kashnow, R. A.

Kotani, K.

Koyama, J.

M. Sawada, T. Suhara, H. Nishihara, J. Koyama, “Integrated hologram memory device using liquid-crystal optical switch matrix,” (in Japanese) IEICE Technical ReportOQE81–116, (Institute of Electronics, Information and Communication Engineers, Tokyo, Japan, 1982), pp. 21–28.

Kubota, T.

Kurosawa, Y.

Y. Ohmori, H. Ueta, Y. Kurosawa, M. Hikita, K. Yoshino, “Organic EL diode with plastic waveguide devices,” Nonlinear Opt. 22, 461–464 (1999).

Mears, R. J.

Nishihara, H.

M. Sawada, T. Suhara, H. Nishihara, J. Koyama, “Integrated hologram memory device using liquid-crystal optical switch matrix,” (in Japanese) IEICE Technical ReportOQE81–116, (Institute of Electronics, Information and Communication Engineers, Tokyo, Japan, 1982), pp. 21–28.

Noad, J. P.

L. Robitaille, C. L. Callender, J. P. Noad, F. Gouin, C. A. Almeida, “Integration of optoelectronic switch matrices using metal-semiconductor-metal photodetectors and polyimide waveguide circuitry,” Opt. Eng. 37, 1157–1163 (1998).
[CrossRef]

Ohmori, Y.

Y. Ohmori, H. Ueta, Y. Kurosawa, M. Hikita, K. Yoshino, “Organic EL diode with plastic waveguide devices,” Nonlinear Opt. 22, 461–464 (1999).

Oron, R.

S. Reinhorn, R. Oron, Y. Amitai, A. A. Friesen, K. Vinokur, N. Pilossof, “Planar optical dynamic crossbar switch,” Opt. Eng. 38, 1396–1401 (1999).
[CrossRef]

Pilossof, N.

S. Reinhorn, R. Oron, Y. Amitai, A. A. Friesen, K. Vinokur, N. Pilossof, “Planar optical dynamic crossbar switch,” Opt. Eng. 38, 1396–1401 (1999).
[CrossRef]

Reinhorn, S.

S. Reinhorn, R. Oron, Y. Amitai, A. A. Friesen, K. Vinokur, N. Pilossof, “Planar optical dynamic crossbar switch,” Opt. Eng. 38, 1396–1401 (1999).
[CrossRef]

Robitaille, L.

L. Robitaille, C. L. Callender, J. P. Noad, F. Gouin, C. A. Almeida, “Integration of optoelectronic switch matrices using metal-semiconductor-metal photodetectors and polyimide waveguide circuitry,” Opt. Eng. 37, 1157–1163 (1998).
[CrossRef]

Sasaki, H.

Sauer, F.

Sawada, M.

M. Sawada, T. Suhara, H. Nishihara, J. Koyama, “Integrated hologram memory device using liquid-crystal optical switch matrix,” (in Japanese) IEICE Technical ReportOQE81–116, (Institute of Electronics, Information and Communication Engineers, Tokyo, Japan, 1982), pp. 21–28.

Sinzinger, S.

S. Sinzinger, J. Jahns, Microoptics (Wiley-VCH Verlag GmbH, Germany, 1999).

Soref, R. A.

Stein, C. R.

Suhara, T.

M. Sawada, T. Suhara, H. Nishihara, J. Koyama, “Integrated hologram memory device using liquid-crystal optical switch matrix,” (in Japanese) IEICE Technical ReportOQE81–116, (Institute of Electronics, Information and Communication Engineers, Tokyo, Japan, 1982), pp. 21–28.

Takamori, T.

Takeda, M.

Tan, K. L.

Ueta, H.

Y. Ohmori, H. Ueta, Y. Kurosawa, M. Hikita, K. Yoshino, “Organic EL diode with plastic waveguide devices,” Nonlinear Opt. 22, 461–464 (1999).

Ushikubo, T.

Vinokur, K.

S. Reinhorn, R. Oron, Y. Amitai, A. A. Friesen, K. Vinokur, N. Pilossof, “Planar optical dynamic crossbar switch,” Opt. Eng. 38, 1396–1401 (1999).
[CrossRef]

Wada, H.

Yoshino, K.

Y. Ohmori, H. Ueta, Y. Kurosawa, M. Hikita, K. Yoshino, “Organic EL diode with plastic waveguide devices,” Nonlinear Opt. 22, 461–464 (1999).

Appl. Opt.

Applied Opt.

I. Fujieda, “Theoretical considerations for arrayed waveguide displays,” Applied Opt. 41, 1391–1399 (2002).
[CrossRef]

J. Opt. Soc. Am. A

Nonlinear Opt.

Y. Ohmori, H. Ueta, Y. Kurosawa, M. Hikita, K. Yoshino, “Organic EL diode with plastic waveguide devices,” Nonlinear Opt. 22, 461–464 (1999).

Opt. Eng.

L. Robitaille, C. L. Callender, J. P. Noad, F. Gouin, C. A. Almeida, “Integration of optoelectronic switch matrices using metal-semiconductor-metal photodetectors and polyimide waveguide circuitry,” Opt. Eng. 37, 1157–1163 (1998).
[CrossRef]

S. Reinhorn, R. Oron, Y. Amitai, A. A. Friesen, K. Vinokur, N. Pilossof, “Planar optical dynamic crossbar switch,” Opt. Eng. 38, 1396–1401 (1999).
[CrossRef]

Opt. Lett.

Other

S. Sinzinger, J. Jahns, Microoptics (Wiley-VCH Verlag GmbH, Germany, 1999).

M. Sawada, T. Suhara, H. Nishihara, J. Koyama, “Integrated hologram memory device using liquid-crystal optical switch matrix,” (in Japanese) IEICE Technical ReportOQE81–116, (Institute of Electronics, Information and Communication Engineers, Tokyo, Japan, 1982), pp. 21–28.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Upper plate of a liquid-crystal grating is used as a light guide for connecting an emitter and a detector optically. Optical path in the light guide and intensity of the guided light can be controlled by the bias applied to the interdigitated electrodes.

Fig. 2
Fig. 2

A liquid-crystal grating is constructed by injecting a liquid-crystal layer between a light guide and a glass substrate on which a pair of interdigitated electrodes is formed.

Fig. 3
Fig. 3

Light enters the upper plate (light guide) of the liquid-crystal grating, and it propagates by repeating total internal reflection. When a bias is applied, a periodic structure is formed and the propagating light is diffracted.

Fig. 4
Fig. 4

Trajectory of the propagating light is illustrated in these plane and cross-sectional views. A diffraction pattern becomes visible by the light scattered at both boundaries of the light guide.

Fig. 5
Fig. 5

Power meter placed near the exiting edge of the light guide monitored the intensity of the guided light as well as the intensity of the diffracted light exiting next to the guided light. The propagation angle was 15 deg.

Fig. 6
Fig. 6

Diffraction patterns are compared for various conditions in which the propagation angle and the bias are varied.

Fig. 7
Fig. 7

Bias and propagation angle are the two important design parameters for the Active OI.

Fig. 8
Fig. 8

From our previous simulation (see Ref. 15), the director distribution inside the liquid-crystal layer is reproduced. The refractive-index distributions near the light guide are plotted for both polarizations incident at a glazing angle.

Tables (1)

Tables Icon

Table 1 Preparation conditions

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

sin φr=mλpn+sin φi, m=0, ±, ±2,.

Metrics