Abstract

We show that an array of optically actuated biased cantilevers can work as an optical data storage, able to encode data stored as arrays of optical pixels (images). Each of these optical pixels can, in addition, have a predetermined pixel depth, expressed as a certain number of gray levels. This new optical memory is able to work at a data rate of approximately 7 GB/s for an image with 128 × 128 pixels.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Mansuripur, G. G. Sincerbox, “Principles and techniques of optical data storage,” Proc. IEEE 85, 1780–1796 (1997).
    [CrossRef]
  2. D. Dragoman, M. Dragoman, “Micro/Nano-Optoelectromechanical systems,” Prog. Quantum Electron. 25, 229–229 (2001).
    [CrossRef]
  3. L. R. Carley, J. A. Bain, G. K. Fedder, D. W. Greve, D. F. Guillou, M. S. C. Lu, T. Kukherjee, S. Santhanam, L. Abelmann, S. Min, “Single-chip computers with microelectromechanical systems-based magnetic memory,” J. Appl. Phys. 87, 6680–6685 (2000).
    [CrossRef]
  4. M. E. J. Friese, H. Rubinsztein-Dunlop, P. Hagberg, D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78, 547–549 (2001).
    [CrossRef]
  5. T. D. Stowe, K. Yasumura, T. W. Kenny, D. Botkin, K. Wago, D. Rugar, “Attonewton force detection using ultrathin silicon cantilevers,” Appl. Phys. Lett. 71, 288–290 (1997).
    [CrossRef]
  6. D. Dragoman, M. Dragoman, “Optical actuation of micromechanical tunneling structures with applications in spectrum analysis and optical computing,” Appl. Opt. 38, 6773–6778 (1999).
    [CrossRef]
  7. D. Dragoman, M. Dragoman, “Single device for laser source measurements from the ultraviolet to the far infrared,” Appl. Opt. 39, 4361–4365 (2000).
    [CrossRef]
  8. D. Dragoman, M. Dragoman, “Characterization of wave fronts of light beams by use of tunneling cantilevers,” Appl. Opt. 40, 678–682 (2001).
    [CrossRef]
  9. T. Yang, T. Ono, M. Esashi, “Surface effects and high quality factors in ultrathin single-crystal silicon cantilevers,” Appl. Phys. Lett. 77, 3860–3862 (2000).
    [CrossRef]
  10. K. E. Petersen, “Dynamic micromechanics on silicon: techniques and devices,” IEEE Trans. Electron. Devices 25, 1241–1250 (1978).
    [CrossRef]
  11. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
    [CrossRef]
  12. H. Kawakatsu, D. Saya, A. Kato, K. Fukushima, H. Toshiyoshi, H. Fujita, “Millions of cantilevers for atomic force microscopy,” Rev. Sci. Instrum. 73, 1188–1192 (2002).
    [CrossRef]
  13. O. Marti, A. Ruf, M. Hipp, H. Bielefeldt, J. Colchero, J. Myynek, “Micromechanical and thermal effects on force microscope cantilevers,” Ultramicroscopy 345, 42–44 (1992).
  14. M. A. Mignardi, R. O. Gale, D. J. Dawson, J. C. Smith, in MEMS and MOEMS Technology and Applications, P. Rai-Choudhury, ed. (SPIE Press, Bellingham, Wash., 2000) pp. 169–208.
  15. D. Dragoman, M. Dragoman, “Time-frequency modeling of atomic force microscopy,” Opt. Commun. 140, 220–225 (1997).
    [CrossRef]
  16. S. Akamine, H. Kuwano, H. Yamada, “Scanning near-field optical microscope using an atomic force microscope cantilever with integrated photodiode,” Appl. Phys. Lett. 68, 579–581 (1996).
    [CrossRef]

2002 (1)

H. Kawakatsu, D. Saya, A. Kato, K. Fukushima, H. Toshiyoshi, H. Fujita, “Millions of cantilevers for atomic force microscopy,” Rev. Sci. Instrum. 73, 1188–1192 (2002).
[CrossRef]

2001 (3)

D. Dragoman, M. Dragoman, “Characterization of wave fronts of light beams by use of tunneling cantilevers,” Appl. Opt. 40, 678–682 (2001).
[CrossRef]

D. Dragoman, M. Dragoman, “Micro/Nano-Optoelectromechanical systems,” Prog. Quantum Electron. 25, 229–229 (2001).
[CrossRef]

M. E. J. Friese, H. Rubinsztein-Dunlop, P. Hagberg, D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78, 547–549 (2001).
[CrossRef]

2000 (4)

L. R. Carley, J. A. Bain, G. K. Fedder, D. W. Greve, D. F. Guillou, M. S. C. Lu, T. Kukherjee, S. Santhanam, L. Abelmann, S. Min, “Single-chip computers with microelectromechanical systems-based magnetic memory,” J. Appl. Phys. 87, 6680–6685 (2000).
[CrossRef]

T. Yang, T. Ono, M. Esashi, “Surface effects and high quality factors in ultrathin single-crystal silicon cantilevers,” Appl. Phys. Lett. 77, 3860–3862 (2000).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

D. Dragoman, M. Dragoman, “Single device for laser source measurements from the ultraviolet to the far infrared,” Appl. Opt. 39, 4361–4365 (2000).
[CrossRef]

1999 (1)

1997 (3)

D. Dragoman, M. Dragoman, “Time-frequency modeling of atomic force microscopy,” Opt. Commun. 140, 220–225 (1997).
[CrossRef]

M. Mansuripur, G. G. Sincerbox, “Principles and techniques of optical data storage,” Proc. IEEE 85, 1780–1796 (1997).
[CrossRef]

T. D. Stowe, K. Yasumura, T. W. Kenny, D. Botkin, K. Wago, D. Rugar, “Attonewton force detection using ultrathin silicon cantilevers,” Appl. Phys. Lett. 71, 288–290 (1997).
[CrossRef]

1996 (1)

S. Akamine, H. Kuwano, H. Yamada, “Scanning near-field optical microscope using an atomic force microscope cantilever with integrated photodiode,” Appl. Phys. Lett. 68, 579–581 (1996).
[CrossRef]

1992 (1)

O. Marti, A. Ruf, M. Hipp, H. Bielefeldt, J. Colchero, J. Myynek, “Micromechanical and thermal effects on force microscope cantilevers,” Ultramicroscopy 345, 42–44 (1992).

1978 (1)

K. E. Petersen, “Dynamic micromechanics on silicon: techniques and devices,” IEEE Trans. Electron. Devices 25, 1241–1250 (1978).
[CrossRef]

Abelmann, L.

L. R. Carley, J. A. Bain, G. K. Fedder, D. W. Greve, D. F. Guillou, M. S. C. Lu, T. Kukherjee, S. Santhanam, L. Abelmann, S. Min, “Single-chip computers with microelectromechanical systems-based magnetic memory,” J. Appl. Phys. 87, 6680–6685 (2000).
[CrossRef]

Akamine, S.

S. Akamine, H. Kuwano, H. Yamada, “Scanning near-field optical microscope using an atomic force microscope cantilever with integrated photodiode,” Appl. Phys. Lett. 68, 579–581 (1996).
[CrossRef]

Bain, J. A.

L. R. Carley, J. A. Bain, G. K. Fedder, D. W. Greve, D. F. Guillou, M. S. C. Lu, T. Kukherjee, S. Santhanam, L. Abelmann, S. Min, “Single-chip computers with microelectromechanical systems-based magnetic memory,” J. Appl. Phys. 87, 6680–6685 (2000).
[CrossRef]

Bielefeldt, H.

O. Marti, A. Ruf, M. Hipp, H. Bielefeldt, J. Colchero, J. Myynek, “Micromechanical and thermal effects on force microscope cantilevers,” Ultramicroscopy 345, 42–44 (1992).

Botkin, D.

T. D. Stowe, K. Yasumura, T. W. Kenny, D. Botkin, K. Wago, D. Rugar, “Attonewton force detection using ultrathin silicon cantilevers,” Appl. Phys. Lett. 71, 288–290 (1997).
[CrossRef]

Carley, L. R.

L. R. Carley, J. A. Bain, G. K. Fedder, D. W. Greve, D. F. Guillou, M. S. C. Lu, T. Kukherjee, S. Santhanam, L. Abelmann, S. Min, “Single-chip computers with microelectromechanical systems-based magnetic memory,” J. Appl. Phys. 87, 6680–6685 (2000).
[CrossRef]

Colchero, J.

O. Marti, A. Ruf, M. Hipp, H. Bielefeldt, J. Colchero, J. Myynek, “Micromechanical and thermal effects on force microscope cantilevers,” Ultramicroscopy 345, 42–44 (1992).

Dawson, D. J.

M. A. Mignardi, R. O. Gale, D. J. Dawson, J. C. Smith, in MEMS and MOEMS Technology and Applications, P. Rai-Choudhury, ed. (SPIE Press, Bellingham, Wash., 2000) pp. 169–208.

Dorn, R.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Dragoman, D.

Dragoman, M.

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Esashi, M.

T. Yang, T. Ono, M. Esashi, “Surface effects and high quality factors in ultrathin single-crystal silicon cantilevers,” Appl. Phys. Lett. 77, 3860–3862 (2000).
[CrossRef]

Fedder, G. K.

L. R. Carley, J. A. Bain, G. K. Fedder, D. W. Greve, D. F. Guillou, M. S. C. Lu, T. Kukherjee, S. Santhanam, L. Abelmann, S. Min, “Single-chip computers with microelectromechanical systems-based magnetic memory,” J. Appl. Phys. 87, 6680–6685 (2000).
[CrossRef]

Friese, M. E. J.

M. E. J. Friese, H. Rubinsztein-Dunlop, P. Hagberg, D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78, 547–549 (2001).
[CrossRef]

Fujita, H.

H. Kawakatsu, D. Saya, A. Kato, K. Fukushima, H. Toshiyoshi, H. Fujita, “Millions of cantilevers for atomic force microscopy,” Rev. Sci. Instrum. 73, 1188–1192 (2002).
[CrossRef]

Fukushima, K.

H. Kawakatsu, D. Saya, A. Kato, K. Fukushima, H. Toshiyoshi, H. Fujita, “Millions of cantilevers for atomic force microscopy,” Rev. Sci. Instrum. 73, 1188–1192 (2002).
[CrossRef]

Gale, R. O.

M. A. Mignardi, R. O. Gale, D. J. Dawson, J. C. Smith, in MEMS and MOEMS Technology and Applications, P. Rai-Choudhury, ed. (SPIE Press, Bellingham, Wash., 2000) pp. 169–208.

Glöckl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Greve, D. W.

L. R. Carley, J. A. Bain, G. K. Fedder, D. W. Greve, D. F. Guillou, M. S. C. Lu, T. Kukherjee, S. Santhanam, L. Abelmann, S. Min, “Single-chip computers with microelectromechanical systems-based magnetic memory,” J. Appl. Phys. 87, 6680–6685 (2000).
[CrossRef]

Guillou, D. F.

L. R. Carley, J. A. Bain, G. K. Fedder, D. W. Greve, D. F. Guillou, M. S. C. Lu, T. Kukherjee, S. Santhanam, L. Abelmann, S. Min, “Single-chip computers with microelectromechanical systems-based magnetic memory,” J. Appl. Phys. 87, 6680–6685 (2000).
[CrossRef]

Hagberg, P.

M. E. J. Friese, H. Rubinsztein-Dunlop, P. Hagberg, D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78, 547–549 (2001).
[CrossRef]

Hanstorp, D.

M. E. J. Friese, H. Rubinsztein-Dunlop, P. Hagberg, D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78, 547–549 (2001).
[CrossRef]

Hipp, M.

O. Marti, A. Ruf, M. Hipp, H. Bielefeldt, J. Colchero, J. Myynek, “Micromechanical and thermal effects on force microscope cantilevers,” Ultramicroscopy 345, 42–44 (1992).

Kato, A.

H. Kawakatsu, D. Saya, A. Kato, K. Fukushima, H. Toshiyoshi, H. Fujita, “Millions of cantilevers for atomic force microscopy,” Rev. Sci. Instrum. 73, 1188–1192 (2002).
[CrossRef]

Kawakatsu, H.

H. Kawakatsu, D. Saya, A. Kato, K. Fukushima, H. Toshiyoshi, H. Fujita, “Millions of cantilevers for atomic force microscopy,” Rev. Sci. Instrum. 73, 1188–1192 (2002).
[CrossRef]

Kenny, T. W.

T. D. Stowe, K. Yasumura, T. W. Kenny, D. Botkin, K. Wago, D. Rugar, “Attonewton force detection using ultrathin silicon cantilevers,” Appl. Phys. Lett. 71, 288–290 (1997).
[CrossRef]

Kukherjee, T.

L. R. Carley, J. A. Bain, G. K. Fedder, D. W. Greve, D. F. Guillou, M. S. C. Lu, T. Kukherjee, S. Santhanam, L. Abelmann, S. Min, “Single-chip computers with microelectromechanical systems-based magnetic memory,” J. Appl. Phys. 87, 6680–6685 (2000).
[CrossRef]

Kuwano, H.

S. Akamine, H. Kuwano, H. Yamada, “Scanning near-field optical microscope using an atomic force microscope cantilever with integrated photodiode,” Appl. Phys. Lett. 68, 579–581 (1996).
[CrossRef]

Leuchs, G.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Lu, M. S. C.

L. R. Carley, J. A. Bain, G. K. Fedder, D. W. Greve, D. F. Guillou, M. S. C. Lu, T. Kukherjee, S. Santhanam, L. Abelmann, S. Min, “Single-chip computers with microelectromechanical systems-based magnetic memory,” J. Appl. Phys. 87, 6680–6685 (2000).
[CrossRef]

Mansuripur, M.

M. Mansuripur, G. G. Sincerbox, “Principles and techniques of optical data storage,” Proc. IEEE 85, 1780–1796 (1997).
[CrossRef]

Marti, O.

O. Marti, A. Ruf, M. Hipp, H. Bielefeldt, J. Colchero, J. Myynek, “Micromechanical and thermal effects on force microscope cantilevers,” Ultramicroscopy 345, 42–44 (1992).

Mignardi, M. A.

M. A. Mignardi, R. O. Gale, D. J. Dawson, J. C. Smith, in MEMS and MOEMS Technology and Applications, P. Rai-Choudhury, ed. (SPIE Press, Bellingham, Wash., 2000) pp. 169–208.

Min, S.

L. R. Carley, J. A. Bain, G. K. Fedder, D. W. Greve, D. F. Guillou, M. S. C. Lu, T. Kukherjee, S. Santhanam, L. Abelmann, S. Min, “Single-chip computers with microelectromechanical systems-based magnetic memory,” J. Appl. Phys. 87, 6680–6685 (2000).
[CrossRef]

Myynek, J.

O. Marti, A. Ruf, M. Hipp, H. Bielefeldt, J. Colchero, J. Myynek, “Micromechanical and thermal effects on force microscope cantilevers,” Ultramicroscopy 345, 42–44 (1992).

Ono, T.

T. Yang, T. Ono, M. Esashi, “Surface effects and high quality factors in ultrathin single-crystal silicon cantilevers,” Appl. Phys. Lett. 77, 3860–3862 (2000).
[CrossRef]

Petersen, K. E.

K. E. Petersen, “Dynamic micromechanics on silicon: techniques and devices,” IEEE Trans. Electron. Devices 25, 1241–1250 (1978).
[CrossRef]

Quabis, S.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Rubinsztein-Dunlop, H.

M. E. J. Friese, H. Rubinsztein-Dunlop, P. Hagberg, D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78, 547–549 (2001).
[CrossRef]

Ruf, A.

O. Marti, A. Ruf, M. Hipp, H. Bielefeldt, J. Colchero, J. Myynek, “Micromechanical and thermal effects on force microscope cantilevers,” Ultramicroscopy 345, 42–44 (1992).

Rugar, D.

T. D. Stowe, K. Yasumura, T. W. Kenny, D. Botkin, K. Wago, D. Rugar, “Attonewton force detection using ultrathin silicon cantilevers,” Appl. Phys. Lett. 71, 288–290 (1997).
[CrossRef]

Santhanam, S.

L. R. Carley, J. A. Bain, G. K. Fedder, D. W. Greve, D. F. Guillou, M. S. C. Lu, T. Kukherjee, S. Santhanam, L. Abelmann, S. Min, “Single-chip computers with microelectromechanical systems-based magnetic memory,” J. Appl. Phys. 87, 6680–6685 (2000).
[CrossRef]

Saya, D.

H. Kawakatsu, D. Saya, A. Kato, K. Fukushima, H. Toshiyoshi, H. Fujita, “Millions of cantilevers for atomic force microscopy,” Rev. Sci. Instrum. 73, 1188–1192 (2002).
[CrossRef]

Sincerbox, G. G.

M. Mansuripur, G. G. Sincerbox, “Principles and techniques of optical data storage,” Proc. IEEE 85, 1780–1796 (1997).
[CrossRef]

Smith, J. C.

M. A. Mignardi, R. O. Gale, D. J. Dawson, J. C. Smith, in MEMS and MOEMS Technology and Applications, P. Rai-Choudhury, ed. (SPIE Press, Bellingham, Wash., 2000) pp. 169–208.

Stowe, T. D.

T. D. Stowe, K. Yasumura, T. W. Kenny, D. Botkin, K. Wago, D. Rugar, “Attonewton force detection using ultrathin silicon cantilevers,” Appl. Phys. Lett. 71, 288–290 (1997).
[CrossRef]

Toshiyoshi, H.

H. Kawakatsu, D. Saya, A. Kato, K. Fukushima, H. Toshiyoshi, H. Fujita, “Millions of cantilevers for atomic force microscopy,” Rev. Sci. Instrum. 73, 1188–1192 (2002).
[CrossRef]

Wago, K.

T. D. Stowe, K. Yasumura, T. W. Kenny, D. Botkin, K. Wago, D. Rugar, “Attonewton force detection using ultrathin silicon cantilevers,” Appl. Phys. Lett. 71, 288–290 (1997).
[CrossRef]

Yamada, H.

S. Akamine, H. Kuwano, H. Yamada, “Scanning near-field optical microscope using an atomic force microscope cantilever with integrated photodiode,” Appl. Phys. Lett. 68, 579–581 (1996).
[CrossRef]

Yang, T.

T. Yang, T. Ono, M. Esashi, “Surface effects and high quality factors in ultrathin single-crystal silicon cantilevers,” Appl. Phys. Lett. 77, 3860–3862 (2000).
[CrossRef]

Yasumura, K.

T. D. Stowe, K. Yasumura, T. W. Kenny, D. Botkin, K. Wago, D. Rugar, “Attonewton force detection using ultrathin silicon cantilevers,” Appl. Phys. Lett. 71, 288–290 (1997).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (4)

S. Akamine, H. Kuwano, H. Yamada, “Scanning near-field optical microscope using an atomic force microscope cantilever with integrated photodiode,” Appl. Phys. Lett. 68, 579–581 (1996).
[CrossRef]

M. E. J. Friese, H. Rubinsztein-Dunlop, P. Hagberg, D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78, 547–549 (2001).
[CrossRef]

T. D. Stowe, K. Yasumura, T. W. Kenny, D. Botkin, K. Wago, D. Rugar, “Attonewton force detection using ultrathin silicon cantilevers,” Appl. Phys. Lett. 71, 288–290 (1997).
[CrossRef]

T. Yang, T. Ono, M. Esashi, “Surface effects and high quality factors in ultrathin single-crystal silicon cantilevers,” Appl. Phys. Lett. 77, 3860–3862 (2000).
[CrossRef]

IEEE Trans. Electron. Devices (1)

K. E. Petersen, “Dynamic micromechanics on silicon: techniques and devices,” IEEE Trans. Electron. Devices 25, 1241–1250 (1978).
[CrossRef]

J. Appl. Phys. (1)

L. R. Carley, J. A. Bain, G. K. Fedder, D. W. Greve, D. F. Guillou, M. S. C. Lu, T. Kukherjee, S. Santhanam, L. Abelmann, S. Min, “Single-chip computers with microelectromechanical systems-based magnetic memory,” J. Appl. Phys. 87, 6680–6685 (2000).
[CrossRef]

Opt. Commun. (2)

D. Dragoman, M. Dragoman, “Time-frequency modeling of atomic force microscopy,” Opt. Commun. 140, 220–225 (1997).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Proc. IEEE (1)

M. Mansuripur, G. G. Sincerbox, “Principles and techniques of optical data storage,” Proc. IEEE 85, 1780–1796 (1997).
[CrossRef]

Prog. Quantum Electron. (1)

D. Dragoman, M. Dragoman, “Micro/Nano-Optoelectromechanical systems,” Prog. Quantum Electron. 25, 229–229 (2001).
[CrossRef]

Rev. Sci. Instrum. (1)

H. Kawakatsu, D. Saya, A. Kato, K. Fukushima, H. Toshiyoshi, H. Fujita, “Millions of cantilevers for atomic force microscopy,” Rev. Sci. Instrum. 73, 1188–1192 (2002).
[CrossRef]

Ultramicroscopy (1)

O. Marti, A. Ruf, M. Hipp, H. Bielefeldt, J. Colchero, J. Myynek, “Micromechanical and thermal effects on force microscope cantilevers,” Ultramicroscopy 345, 42–44 (1992).

Other (1)

M. A. Mignardi, R. O. Gale, D. J. Dawson, J. C. Smith, in MEMS and MOEMS Technology and Applications, P. Rai-Choudhury, ed. (SPIE Press, Bellingham, Wash., 2000) pp. 169–208.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Nonstuck biased cantilever (left) can be stuck in the presence of an incident light (right-hand side) due to the additional optical actuation. These two cantilever states can represent the logical 0 and 1 states.

Fig. 2
Fig. 2

Bias required to produce a normalized deflection Δ = δ T /d in the absence (solid curve) and presence of an optical pressure of P = 0.1 mW (dashed curve). After attaining the threshold (maximum) voltage, the cantilever sticks to the bottom electrode.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

δT=b 0l3l-x6EI x2qx,
qx=qelx+popt= ε02Vd-δx2+popt,
popt= FoptA= 2RPblc.
VΔ, popt=8EId3bε0l4 ΔΔ- RPl34EIdc231-Δ- tanh-1ΔΔ- ln1-Δ3Δ1/2.
τ=C3mε0AT21/2V-1,

Metrics