Abstract

A secure optical storage based on a configuration of a joint transform correlator by use of a photorefractive material is presented. A key code designed through the use of an optimized algorithm so that its Fourier transform has a uniform amplitude distribution and a uniformly random phase distribution is introduced. Original two-dimensional data and the key code are placed side-by-side at the input plane. Both of them are stored in a photorefractive material as a joint power spectrum. The retrieval of the original data can be achieved with the same key code. We can record multiple two-dimensional data in the same crystal by angular multiplexing and/or key code multiplexing.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H.-Y. S. Li, Y. Qiao, D. Psaltis, “Optical network for real-time face recognition,” Appl. Opt. 32, 5026–5035 (1993).
    [CrossRef] [PubMed]
  2. P. Réfrégier, B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20, 767–769 (1995).
    [CrossRef] [PubMed]
  3. B. Javidi, T. Nomura, “Securing information by use of digital holography,” Opt. Lett. 25, 28–30 (2000).
    [CrossRef]
  4. T. Nomura, B. Javidi, “Optical encryption system with a binary key code,” Appl. Opt. 39, 4783–4787 (2000).
    [CrossRef]
  5. E. Tajahuerce, O. Matoba, S. C. Verrall, B. Javidi, “Opto-electronic information encryption with phase-shifting interferometry,” Appl. Opt. 39, 2313–2320 (2000).
    [CrossRef]
  6. E. Tajahuerce, B. Javidi, “Encrypting three-dimensional information with digital holography,” Appl. Opt. 39, 6595–6601 (2000).
    [CrossRef]
  7. G. Unnikrishnan, J. Joseph, K. Singh, “Optical encryption by double-random phase encoding in the fractional Fourier domain,” Opt. Lett. 25, 887–889 (2000).
    [CrossRef]
  8. B. Wang, C. Sun, W. Su, A. E. T. Chiou, “Shift-tolerance property of an optical double-random phase-encoding encryption system,” Appl. Opt. 39, 4788–4793 (2000).
    [CrossRef]
  9. J. F. Heanue, M. C. Bashaw, L. Hesselink, “Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Appl. Opt. 34, 6012–6015 (1995).
    [CrossRef] [PubMed]
  10. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993).
    [CrossRef] [PubMed]
  11. O. Matoba, B. Javidi, “Encrypted optical storage with wavelength-key and random phase codes,” Appl. Opt. 38, 6785–6790 (1999).
    [CrossRef]
  12. X. Tan, O. Matoba, T. Shimura, K. Kuroda, B. Javidi, “Secure optical storage that uses fully phase encryption,” Appl. Opt. 35, 6689–6694 (2000).
    [CrossRef]
  13. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).
  14. B. R. Brown, A. W. Lohmann, “Complex spatial filtering with binary masks,” Appl. Opt. 5, 967–969 (1966).
    [CrossRef] [PubMed]
  15. A. W. Lohmann, D. P. Paris, “Binary Fraunhofer holograms, generated by computer,” Appl. Opt. 6, 1739–1746 (1967).
    [CrossRef] [PubMed]
  16. K. Hirokawa, N. Ukezono, K. Itoh, Y. Ichioka, “Digital halftoning for computer generated holograms,” Proc. Photo-Opt. Instrum. Eng. 2778, 529–530 (1996).
  17. E. Aarts, J. Korst, Simulated Annealing and Boltzmann Machines (Wiley, New York, 1989).
  18. M. Levene, G. J. Steckman, D. Psaltis, “Method for controlling the shift invariance of optical correlators,” Appl. Opt. 38, 394–398 (1999).
    [CrossRef]

2000 (7)

1999 (2)

1996 (1)

K. Hirokawa, N. Ukezono, K. Itoh, Y. Ichioka, “Digital halftoning for computer generated holograms,” Proc. Photo-Opt. Instrum. Eng. 2778, 529–530 (1996).

1995 (2)

1993 (2)

1967 (1)

1966 (1)

Aarts, E.

E. Aarts, J. Korst, Simulated Annealing and Boltzmann Machines (Wiley, New York, 1989).

Bashaw, M. C.

Brown, B. R.

Chiou, A. E. T.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).

Heanue, J. F.

Hesselink, L.

Hirokawa, K.

K. Hirokawa, N. Ukezono, K. Itoh, Y. Ichioka, “Digital halftoning for computer generated holograms,” Proc. Photo-Opt. Instrum. Eng. 2778, 529–530 (1996).

Ichioka, Y.

K. Hirokawa, N. Ukezono, K. Itoh, Y. Ichioka, “Digital halftoning for computer generated holograms,” Proc. Photo-Opt. Instrum. Eng. 2778, 529–530 (1996).

Itoh, K.

K. Hirokawa, N. Ukezono, K. Itoh, Y. Ichioka, “Digital halftoning for computer generated holograms,” Proc. Photo-Opt. Instrum. Eng. 2778, 529–530 (1996).

Javidi, B.

Joseph, J.

Korst, J.

E. Aarts, J. Korst, Simulated Annealing and Boltzmann Machines (Wiley, New York, 1989).

Kuroda, K.

X. Tan, O. Matoba, T. Shimura, K. Kuroda, B. Javidi, “Secure optical storage that uses fully phase encryption,” Appl. Opt. 35, 6689–6694 (2000).
[CrossRef]

Levene, M.

Li, H.-Y. S.

Lohmann, A. W.

Matoba, O.

Mok, F. H.

Nomura, T.

Paris, D. P.

Psaltis, D.

Qiao, Y.

Réfrégier, P.

Shimura, T.

X. Tan, O. Matoba, T. Shimura, K. Kuroda, B. Javidi, “Secure optical storage that uses fully phase encryption,” Appl. Opt. 35, 6689–6694 (2000).
[CrossRef]

Singh, K.

Steckman, G. J.

Su, W.

Sun, C.

Tajahuerce, E.

Tan, X.

X. Tan, O. Matoba, T. Shimura, K. Kuroda, B. Javidi, “Secure optical storage that uses fully phase encryption,” Appl. Opt. 35, 6689–6694 (2000).
[CrossRef]

Ukezono, N.

K. Hirokawa, N. Ukezono, K. Itoh, Y. Ichioka, “Digital halftoning for computer generated holograms,” Proc. Photo-Opt. Instrum. Eng. 2778, 529–530 (1996).

Unnikrishnan, G.

Verrall, S. C.

Wang, B.

Appl. Opt. (11)

T. Nomura, B. Javidi, “Optical encryption system with a binary key code,” Appl. Opt. 39, 4783–4787 (2000).
[CrossRef]

E. Tajahuerce, O. Matoba, S. C. Verrall, B. Javidi, “Opto-electronic information encryption with phase-shifting interferometry,” Appl. Opt. 39, 2313–2320 (2000).
[CrossRef]

E. Tajahuerce, B. Javidi, “Encrypting three-dimensional information with digital holography,” Appl. Opt. 39, 6595–6601 (2000).
[CrossRef]

H.-Y. S. Li, Y. Qiao, D. Psaltis, “Optical network for real-time face recognition,” Appl. Opt. 32, 5026–5035 (1993).
[CrossRef] [PubMed]

B. Wang, C. Sun, W. Su, A. E. T. Chiou, “Shift-tolerance property of an optical double-random phase-encoding encryption system,” Appl. Opt. 39, 4788–4793 (2000).
[CrossRef]

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Appl. Opt. 34, 6012–6015 (1995).
[CrossRef] [PubMed]

B. R. Brown, A. W. Lohmann, “Complex spatial filtering with binary masks,” Appl. Opt. 5, 967–969 (1966).
[CrossRef] [PubMed]

A. W. Lohmann, D. P. Paris, “Binary Fraunhofer holograms, generated by computer,” Appl. Opt. 6, 1739–1746 (1967).
[CrossRef] [PubMed]

O. Matoba, B. Javidi, “Encrypted optical storage with wavelength-key and random phase codes,” Appl. Opt. 38, 6785–6790 (1999).
[CrossRef]

X. Tan, O. Matoba, T. Shimura, K. Kuroda, B. Javidi, “Secure optical storage that uses fully phase encryption,” Appl. Opt. 35, 6689–6694 (2000).
[CrossRef]

M. Levene, G. J. Steckman, D. Psaltis, “Method for controlling the shift invariance of optical correlators,” Appl. Opt. 38, 394–398 (1999).
[CrossRef]

Opt. Lett. (4)

Proc. Photo-Opt. Instrum. Eng. (1)

K. Hirokawa, N. Ukezono, K. Itoh, Y. Ichioka, “Digital halftoning for computer generated holograms,” Proc. Photo-Opt. Instrum. Eng. 2778, 529–530 (1996).

Other (2)

E. Aarts, J. Korst, Simulated Annealing and Boltzmann Machines (Wiley, New York, 1989).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Scheme of a secure optical data storage based on a joint transform correlator architecture: (a) write-in system (b) readout system.

Fig. 2
Fig. 2

(a) Designed key code, (b) its Fourier transform.

Fig. 3
Fig. 3

Designed key code consisting of 128 × 128 pixels with 9 gray levels.

Fig. 4
Fig. 4

Fourier transform of the key code shown in Fig. 3: (a) amplitude distribution (black and white denote 0 and 1.7, respectively), (b) phase distribution (black and white denote -π and π, respectively).

Fig. 5
Fig. 5

Histograms of both (a) amplitude, (b) the phase distributions of the Fourier transform of the key code.

Fig. 6
Fig. 6

An original image to be recorded for computer simulation.

Fig. 7
Fig. 7

Readout images with (a) a correct key code, (b) an incorrect key code by computer simulation.

Fig. 8
Fig. 8

Optical setup.

Fig. 9
Fig. 9

An original binary image for optical experiments.

Fig. 10
Fig. 10

Readout images with a correct key code: (a) after binarization, (b) after binarization and a spatial thresholding.

Fig. 11
Fig. 11

Binarized readout image with an incorrect key code.

Fig. 12
Fig. 12

Multiple images for angular multiplexing captured by CCD camera through the photorefractive crystal.

Fig. 13
Fig. 13

Readout images from angular multiplexing holographic memory.

Fig. 14
Fig. 14

Multiple images for key-code multiplexing captured by CCD camera through the photorefractive crystal.

Fig. 15
Fig. 15

Readout images from key-code multiplexing holographic memory.

Tables (1)

Tables Icon

Table 1 The Standard Deviations of Argument of HNi(u)HNj*(u)

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Eu=|Fu|2+|Hu|2+FuH*u +F*uHu,
Du=HuEu,=Hu|Fu|2+Hu|Hu|2+Fu|Hu|2+F*uH2u.
Du=Hu|Fu|2+Hu+Fu+F*uH2u.
dx=hx * fx  fx+hx+fx+fxhx * hx,
E=target area|FThNx, y|-C2,

Metrics