Abstract

We present the design and proof-of-concept demonstration of an optical device capable of producing true-time delay(s) (TTD)(s) for phased array antennas. This TTD device uses a free-space approach consisting of a single microelectromechanical systems (MEMS) mirror array in a multiple reflection spherical mirror configuration based on the White cell. Divergence is avoided by periodic refocusing by the mirrors. By using the MEMS mirror to switch between paths of different lengths, time delays are generated. Six different delays in 1-ns increments were demonstrated by using the Texas Instruments Digital Micromirror Device® as the switching element. Losses of 1.6 to 5.2 dB per bounce and crosstalk of -27 dB were also measured, both resulting primarily from diffraction from holes in each pixel and the inter-pixel gaps of the MEMS.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Zmuda, E. N. Toughlian, “Photonic aspects of modern radar,” in The Artech House Optoelectronics Library, B. Culshaw, A. Rogers, H. Taylor, eds., (Artech House, Norwood, Mass., 1994) pp. 550.
  2. W. Ng, A. A. Watson, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol. 8, 1124–1131 (1991).
    [CrossRef]
  3. A. P. Goutzoulis, D. K. Davies, “Hardware-compressive 2-D fiber optic delay line architecture for time steering of phased-array antennas,” Appl. Opt. 29, 5353–5359 (1990).
    [CrossRef] [PubMed]
  4. P. J. Matthews, M. Y. Frankel, R. D. Esman, “A wide-band fiber-optic true time-steered array receiver capable of multiple independent simultaneous beams,” IEEE Photon. Technol. Lett. 10, 722–724 (1998).
    [CrossRef]
  5. H. Zmuda, E. N. Toughlian, P. Payson, H. W. Klumpke, “A photonic implementation of a wide-band nulling system for phased arrays,” IEEE Photon. Technol. Lett. 10, 725–727 (1998).
    [CrossRef]
  6. A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiber optic wavelength-multiplexed system for true time-delay steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
    [CrossRef]
  7. A. P. Goutzoulis, J. M. Zomp, “Development and field demonstration of an eight-element receive wavelength-multiplexed true-time-delay steering system,” Appl. Opt. 36, 7315–7326 (1997).
    [CrossRef]
  8. R. Taylor, S. Forrest, “Steering of an optically-driven true-time delay phased-array antenna based on a broad-band coherent WDM architecture,” IEEE Photon. Technol. Lett. 10, 144–146 (1998).
    [CrossRef]
  9. G. A. Ball, W. H. Glenn, W. W. Morey, “Programmable fiber optic delay line,” IEEE Photon. Technol. Lett. 6, 741–743 (1994).
    [CrossRef]
  10. D. A. Cohen, Y. Chang, A. G. J. Levi, H. R. Fetterman, I. L. Newberg, “Optically controlled serially fed phased array sensor,” IEEE Photon. Technol. Lett. 8, 1683–1685 (1996).
    [CrossRef]
  11. B. Tsap, Y. Chang, H. R. Fetterman, A. F. J. Levi, D. A. Cohen, I. Newberg, “Phased-array optically controlled receiver using a serial feed,” IEEE Photon. Technol. Lett. 10, 267–269 (1998).
    [CrossRef]
  12. J. L. Cruz, L. Dong, S. Barcelso, L. Reekie, “Fiber Bragg gratings with various chirp profiles made in etched tapers,” Appl. Opt. 35, 6781–6787 (1996).
    [CrossRef] [PubMed]
  13. M. Tamburrini, M. Parent, L. Goldberg, D. Stillwell, “Optical feed for a phased array microwave antenna,” Electron. Lett. 23, 680–681 (1987).
    [CrossRef]
  14. Z. Fu, C. Zhou, R. T. Chen, “Waveguide-hologram-based wavelength-division multiplexed pseudoanalog true-time-delay module for wide-band phased array antennas,” Appl. Opt. 38, 3053–3059 (1999).
    [CrossRef]
  15. R. L. Q. Li, X. Fu, R. Chen, “High packing density 2.5 THz truetime delay lines using spatially multiplexed substrate guided waves in conjunction with volume holograms on a single substrate,” J. Lightwave Technol. 15, 2253–2258 (1997).
    [CrossRef]
  16. L. Eldada, “Laser-fabricated delay lines in GaAs for optically steered phased-array radar,” J. Lightwave Technol. 13, 2034–2039 (1995).
    [CrossRef]
  17. X. S. Yao, L. Maleki, “A novel 2-D programmable photonic time-delay device for millimeter-wave signal processing applications,” IEEE Photon. Technol. Lett. 6, 1463–1465 (1994).
    [CrossRef]
  18. N. Madamopoulos, N. Riza, “Directly modulated semiconductor-laser-fed photonic delay line with ferroelectric liquid crystals,” Appl. Opt. 37, 1407–1416 (1998).
    [CrossRef]
  19. N. A. Riza, “25-Channel nematic liquid-crystal optical time-delay unit characterization,” IEEE Photon. Technol. Lett. 7, 1285–1287 (1995).
    [CrossRef]
  20. D. Dolfi, P. Joffre, “Experimental demonstration of a phased-array antenna optically controlled with phase and time delays,” Appl. Opt. 8, 1824–1828 (1996).
  21. E. N. Toughlian, H. Zmuda, “A photonic variable RF delay line for phased array antennas,” J. Lightwave Technol. 8, 1824–1828 (1990).
    [CrossRef]
  22. B. L. Anderson, S. A. Collins, C. A. Klein, E. A. Beecher, S. B. Brown, “Optically produced true-time delays for phased antenna arrays,” Appl. Opt. 36, 8493–8503 (1997).
    [CrossRef]
  23. B. L. Anderson, C. D. Liddle, “Optical true-time delay for phased array antennas: demonstration of a quadratic White cell,” Appl. Opt. 41, 4912–4921 (2002).
    [CrossRef] [PubMed]
  24. B. L. Anderson, R. Mital, “Polynomial-based optical true-time delay devices with microelectromechanical mirror arrays,” Appl. Opt. 41, 5449–5461 (2002).
    [CrossRef] [PubMed]
  25. J. White, “Long optical paths of large aperture,” J. Opt. Soc. Am. 32, 285–288 (1942).
    [CrossRef]
  26. Texas Instruments, DLP™ newsletters. http://www.dlp.com/about_dlp/about_dlp_images_pixels_micro.asp .
  27. L. J. Hornbeck, “Digital Light Processing™ for high-brightness, high-resolution applications,” presented at Electronic Imaging ’97, San Jose, California, 1997.
  28. O. Blum Spahn, E. J. Garcia, V. Easch, G. Grossetete, F. Bitsie, S. Mani, J. Jakubsczak, “Optical performance of pivoting micromirrors,” in Proc. SPIE Micromachining and Microfabrication Process Technology VII, 4561, Jean Michel Karam, John Yasaitis, eds., 283–292 (2001).

2002 (2)

1999 (1)

1998 (5)

N. Madamopoulos, N. Riza, “Directly modulated semiconductor-laser-fed photonic delay line with ferroelectric liquid crystals,” Appl. Opt. 37, 1407–1416 (1998).
[CrossRef]

P. J. Matthews, M. Y. Frankel, R. D. Esman, “A wide-band fiber-optic true time-steered array receiver capable of multiple independent simultaneous beams,” IEEE Photon. Technol. Lett. 10, 722–724 (1998).
[CrossRef]

H. Zmuda, E. N. Toughlian, P. Payson, H. W. Klumpke, “A photonic implementation of a wide-band nulling system for phased arrays,” IEEE Photon. Technol. Lett. 10, 725–727 (1998).
[CrossRef]

R. Taylor, S. Forrest, “Steering of an optically-driven true-time delay phased-array antenna based on a broad-band coherent WDM architecture,” IEEE Photon. Technol. Lett. 10, 144–146 (1998).
[CrossRef]

B. Tsap, Y. Chang, H. R. Fetterman, A. F. J. Levi, D. A. Cohen, I. Newberg, “Phased-array optically controlled receiver using a serial feed,” IEEE Photon. Technol. Lett. 10, 267–269 (1998).
[CrossRef]

1997 (3)

1996 (3)

J. L. Cruz, L. Dong, S. Barcelso, L. Reekie, “Fiber Bragg gratings with various chirp profiles made in etched tapers,” Appl. Opt. 35, 6781–6787 (1996).
[CrossRef] [PubMed]

D. A. Cohen, Y. Chang, A. G. J. Levi, H. R. Fetterman, I. L. Newberg, “Optically controlled serially fed phased array sensor,” IEEE Photon. Technol. Lett. 8, 1683–1685 (1996).
[CrossRef]

D. Dolfi, P. Joffre, “Experimental demonstration of a phased-array antenna optically controlled with phase and time delays,” Appl. Opt. 8, 1824–1828 (1996).

1995 (2)

N. A. Riza, “25-Channel nematic liquid-crystal optical time-delay unit characterization,” IEEE Photon. Technol. Lett. 7, 1285–1287 (1995).
[CrossRef]

L. Eldada, “Laser-fabricated delay lines in GaAs for optically steered phased-array radar,” J. Lightwave Technol. 13, 2034–2039 (1995).
[CrossRef]

1994 (2)

X. S. Yao, L. Maleki, “A novel 2-D programmable photonic time-delay device for millimeter-wave signal processing applications,” IEEE Photon. Technol. Lett. 6, 1463–1465 (1994).
[CrossRef]

G. A. Ball, W. H. Glenn, W. W. Morey, “Programmable fiber optic delay line,” IEEE Photon. Technol. Lett. 6, 741–743 (1994).
[CrossRef]

1992 (1)

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiber optic wavelength-multiplexed system for true time-delay steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
[CrossRef]

1991 (1)

W. Ng, A. A. Watson, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol. 8, 1124–1131 (1991).
[CrossRef]

1990 (2)

E. N. Toughlian, H. Zmuda, “A photonic variable RF delay line for phased array antennas,” J. Lightwave Technol. 8, 1824–1828 (1990).
[CrossRef]

A. P. Goutzoulis, D. K. Davies, “Hardware-compressive 2-D fiber optic delay line architecture for time steering of phased-array antennas,” Appl. Opt. 29, 5353–5359 (1990).
[CrossRef] [PubMed]

1987 (1)

M. Tamburrini, M. Parent, L. Goldberg, D. Stillwell, “Optical feed for a phased array microwave antenna,” Electron. Lett. 23, 680–681 (1987).
[CrossRef]

1942 (1)

Anderson, B. L.

Ball, G. A.

G. A. Ball, W. H. Glenn, W. W. Morey, “Programmable fiber optic delay line,” IEEE Photon. Technol. Lett. 6, 741–743 (1994).
[CrossRef]

Barcelso, S.

Beecher, E. A.

Bitsie, F.

O. Blum Spahn, E. J. Garcia, V. Easch, G. Grossetete, F. Bitsie, S. Mani, J. Jakubsczak, “Optical performance of pivoting micromirrors,” in Proc. SPIE Micromachining and Microfabrication Process Technology VII, 4561, Jean Michel Karam, John Yasaitis, eds., 283–292 (2001).

Blum Spahn, O.

O. Blum Spahn, E. J. Garcia, V. Easch, G. Grossetete, F. Bitsie, S. Mani, J. Jakubsczak, “Optical performance of pivoting micromirrors,” in Proc. SPIE Micromachining and Microfabrication Process Technology VII, 4561, Jean Michel Karam, John Yasaitis, eds., 283–292 (2001).

Brown, S. B.

Chang, Y.

B. Tsap, Y. Chang, H. R. Fetterman, A. F. J. Levi, D. A. Cohen, I. Newberg, “Phased-array optically controlled receiver using a serial feed,” IEEE Photon. Technol. Lett. 10, 267–269 (1998).
[CrossRef]

D. A. Cohen, Y. Chang, A. G. J. Levi, H. R. Fetterman, I. L. Newberg, “Optically controlled serially fed phased array sensor,” IEEE Photon. Technol. Lett. 8, 1683–1685 (1996).
[CrossRef]

Chen, R.

R. L. Q. Li, X. Fu, R. Chen, “High packing density 2.5 THz truetime delay lines using spatially multiplexed substrate guided waves in conjunction with volume holograms on a single substrate,” J. Lightwave Technol. 15, 2253–2258 (1997).
[CrossRef]

Chen, R. T.

Cohen, D. A.

B. Tsap, Y. Chang, H. R. Fetterman, A. F. J. Levi, D. A. Cohen, I. Newberg, “Phased-array optically controlled receiver using a serial feed,” IEEE Photon. Technol. Lett. 10, 267–269 (1998).
[CrossRef]

D. A. Cohen, Y. Chang, A. G. J. Levi, H. R. Fetterman, I. L. Newberg, “Optically controlled serially fed phased array sensor,” IEEE Photon. Technol. Lett. 8, 1683–1685 (1996).
[CrossRef]

Collins, S. A.

Cruz, J. L.

Davies, D. K.

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiber optic wavelength-multiplexed system for true time-delay steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
[CrossRef]

A. P. Goutzoulis, D. K. Davies, “Hardware-compressive 2-D fiber optic delay line architecture for time steering of phased-array antennas,” Appl. Opt. 29, 5353–5359 (1990).
[CrossRef] [PubMed]

Dolfi, D.

D. Dolfi, P. Joffre, “Experimental demonstration of a phased-array antenna optically controlled with phase and time delays,” Appl. Opt. 8, 1824–1828 (1996).

Dong, L.

Easch, V.

O. Blum Spahn, E. J. Garcia, V. Easch, G. Grossetete, F. Bitsie, S. Mani, J. Jakubsczak, “Optical performance of pivoting micromirrors,” in Proc. SPIE Micromachining and Microfabrication Process Technology VII, 4561, Jean Michel Karam, John Yasaitis, eds., 283–292 (2001).

Eldada, L.

L. Eldada, “Laser-fabricated delay lines in GaAs for optically steered phased-array radar,” J. Lightwave Technol. 13, 2034–2039 (1995).
[CrossRef]

Esman, R. D.

P. J. Matthews, M. Y. Frankel, R. D. Esman, “A wide-band fiber-optic true time-steered array receiver capable of multiple independent simultaneous beams,” IEEE Photon. Technol. Lett. 10, 722–724 (1998).
[CrossRef]

Fetterman, H. R.

B. Tsap, Y. Chang, H. R. Fetterman, A. F. J. Levi, D. A. Cohen, I. Newberg, “Phased-array optically controlled receiver using a serial feed,” IEEE Photon. Technol. Lett. 10, 267–269 (1998).
[CrossRef]

D. A. Cohen, Y. Chang, A. G. J. Levi, H. R. Fetterman, I. L. Newberg, “Optically controlled serially fed phased array sensor,” IEEE Photon. Technol. Lett. 8, 1683–1685 (1996).
[CrossRef]

Forrest, S.

R. Taylor, S. Forrest, “Steering of an optically-driven true-time delay phased-array antenna based on a broad-band coherent WDM architecture,” IEEE Photon. Technol. Lett. 10, 144–146 (1998).
[CrossRef]

Frankel, M. Y.

P. J. Matthews, M. Y. Frankel, R. D. Esman, “A wide-band fiber-optic true time-steered array receiver capable of multiple independent simultaneous beams,” IEEE Photon. Technol. Lett. 10, 722–724 (1998).
[CrossRef]

Fu, X.

R. L. Q. Li, X. Fu, R. Chen, “High packing density 2.5 THz truetime delay lines using spatially multiplexed substrate guided waves in conjunction with volume holograms on a single substrate,” J. Lightwave Technol. 15, 2253–2258 (1997).
[CrossRef]

Fu, Z.

Garcia, E. J.

O. Blum Spahn, E. J. Garcia, V. Easch, G. Grossetete, F. Bitsie, S. Mani, J. Jakubsczak, “Optical performance of pivoting micromirrors,” in Proc. SPIE Micromachining and Microfabrication Process Technology VII, 4561, Jean Michel Karam, John Yasaitis, eds., 283–292 (2001).

Glenn, W. H.

G. A. Ball, W. H. Glenn, W. W. Morey, “Programmable fiber optic delay line,” IEEE Photon. Technol. Lett. 6, 741–743 (1994).
[CrossRef]

Goldberg, L.

M. Tamburrini, M. Parent, L. Goldberg, D. Stillwell, “Optical feed for a phased array microwave antenna,” Electron. Lett. 23, 680–681 (1987).
[CrossRef]

Goutzoulis, A. P.

Grossetete, G.

O. Blum Spahn, E. J. Garcia, V. Easch, G. Grossetete, F. Bitsie, S. Mani, J. Jakubsczak, “Optical performance of pivoting micromirrors,” in Proc. SPIE Micromachining and Microfabrication Process Technology VII, 4561, Jean Michel Karam, John Yasaitis, eds., 283–292 (2001).

Hornbeck, L. J.

L. J. Hornbeck, “Digital Light Processing™ for high-brightness, high-resolution applications,” presented at Electronic Imaging ’97, San Jose, California, 1997.

Jakubsczak, J.

O. Blum Spahn, E. J. Garcia, V. Easch, G. Grossetete, F. Bitsie, S. Mani, J. Jakubsczak, “Optical performance of pivoting micromirrors,” in Proc. SPIE Micromachining and Microfabrication Process Technology VII, 4561, Jean Michel Karam, John Yasaitis, eds., 283–292 (2001).

Joffre, P.

D. Dolfi, P. Joffre, “Experimental demonstration of a phased-array antenna optically controlled with phase and time delays,” Appl. Opt. 8, 1824–1828 (1996).

Klein, C. A.

Klumpke, H. W.

H. Zmuda, E. N. Toughlian, P. Payson, H. W. Klumpke, “A photonic implementation of a wide-band nulling system for phased arrays,” IEEE Photon. Technol. Lett. 10, 725–727 (1998).
[CrossRef]

Levi, A. F. J.

B. Tsap, Y. Chang, H. R. Fetterman, A. F. J. Levi, D. A. Cohen, I. Newberg, “Phased-array optically controlled receiver using a serial feed,” IEEE Photon. Technol. Lett. 10, 267–269 (1998).
[CrossRef]

Levi, A. G. J.

D. A. Cohen, Y. Chang, A. G. J. Levi, H. R. Fetterman, I. L. Newberg, “Optically controlled serially fed phased array sensor,” IEEE Photon. Technol. Lett. 8, 1683–1685 (1996).
[CrossRef]

Li, R. L. Q.

R. L. Q. Li, X. Fu, R. Chen, “High packing density 2.5 THz truetime delay lines using spatially multiplexed substrate guided waves in conjunction with volume holograms on a single substrate,” J. Lightwave Technol. 15, 2253–2258 (1997).
[CrossRef]

Liddle, C. D.

Madamopoulos, N.

Maleki, L.

X. S. Yao, L. Maleki, “A novel 2-D programmable photonic time-delay device for millimeter-wave signal processing applications,” IEEE Photon. Technol. Lett. 6, 1463–1465 (1994).
[CrossRef]

Mani, S.

O. Blum Spahn, E. J. Garcia, V. Easch, G. Grossetete, F. Bitsie, S. Mani, J. Jakubsczak, “Optical performance of pivoting micromirrors,” in Proc. SPIE Micromachining and Microfabrication Process Technology VII, 4561, Jean Michel Karam, John Yasaitis, eds., 283–292 (2001).

Matthews, P. J.

P. J. Matthews, M. Y. Frankel, R. D. Esman, “A wide-band fiber-optic true time-steered array receiver capable of multiple independent simultaneous beams,” IEEE Photon. Technol. Lett. 10, 722–724 (1998).
[CrossRef]

Mital, R.

Morey, W. W.

G. A. Ball, W. H. Glenn, W. W. Morey, “Programmable fiber optic delay line,” IEEE Photon. Technol. Lett. 6, 741–743 (1994).
[CrossRef]

Newberg, I.

B. Tsap, Y. Chang, H. R. Fetterman, A. F. J. Levi, D. A. Cohen, I. Newberg, “Phased-array optically controlled receiver using a serial feed,” IEEE Photon. Technol. Lett. 10, 267–269 (1998).
[CrossRef]

Newberg, I. L.

D. A. Cohen, Y. Chang, A. G. J. Levi, H. R. Fetterman, I. L. Newberg, “Optically controlled serially fed phased array sensor,” IEEE Photon. Technol. Lett. 8, 1683–1685 (1996).
[CrossRef]

Ng, W.

W. Ng, A. A. Watson, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol. 8, 1124–1131 (1991).
[CrossRef]

Parent, M.

M. Tamburrini, M. Parent, L. Goldberg, D. Stillwell, “Optical feed for a phased array microwave antenna,” Electron. Lett. 23, 680–681 (1987).
[CrossRef]

Payson, P.

H. Zmuda, E. N. Toughlian, P. Payson, H. W. Klumpke, “A photonic implementation of a wide-band nulling system for phased arrays,” IEEE Photon. Technol. Lett. 10, 725–727 (1998).
[CrossRef]

Reekie, L.

Riza, N.

Riza, N. A.

N. A. Riza, “25-Channel nematic liquid-crystal optical time-delay unit characterization,” IEEE Photon. Technol. Lett. 7, 1285–1287 (1995).
[CrossRef]

Stillwell, D.

M. Tamburrini, M. Parent, L. Goldberg, D. Stillwell, “Optical feed for a phased array microwave antenna,” Electron. Lett. 23, 680–681 (1987).
[CrossRef]

Tamburrini, M.

M. Tamburrini, M. Parent, L. Goldberg, D. Stillwell, “Optical feed for a phased array microwave antenna,” Electron. Lett. 23, 680–681 (1987).
[CrossRef]

Taylor, R.

R. Taylor, S. Forrest, “Steering of an optically-driven true-time delay phased-array antenna based on a broad-band coherent WDM architecture,” IEEE Photon. Technol. Lett. 10, 144–146 (1998).
[CrossRef]

Toughlian, E. N.

H. Zmuda, E. N. Toughlian, P. Payson, H. W. Klumpke, “A photonic implementation of a wide-band nulling system for phased arrays,” IEEE Photon. Technol. Lett. 10, 725–727 (1998).
[CrossRef]

E. N. Toughlian, H. Zmuda, “A photonic variable RF delay line for phased array antennas,” J. Lightwave Technol. 8, 1824–1828 (1990).
[CrossRef]

H. Zmuda, E. N. Toughlian, “Photonic aspects of modern radar,” in The Artech House Optoelectronics Library, B. Culshaw, A. Rogers, H. Taylor, eds., (Artech House, Norwood, Mass., 1994) pp. 550.

Tsap, B.

B. Tsap, Y. Chang, H. R. Fetterman, A. F. J. Levi, D. A. Cohen, I. Newberg, “Phased-array optically controlled receiver using a serial feed,” IEEE Photon. Technol. Lett. 10, 267–269 (1998).
[CrossRef]

Watson, A. A.

W. Ng, A. A. Watson, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol. 8, 1124–1131 (1991).
[CrossRef]

White, J.

Yao, X. S.

X. S. Yao, L. Maleki, “A novel 2-D programmable photonic time-delay device for millimeter-wave signal processing applications,” IEEE Photon. Technol. Lett. 6, 1463–1465 (1994).
[CrossRef]

Zhou, C.

Zmuda, H.

H. Zmuda, E. N. Toughlian, P. Payson, H. W. Klumpke, “A photonic implementation of a wide-band nulling system for phased arrays,” IEEE Photon. Technol. Lett. 10, 725–727 (1998).
[CrossRef]

E. N. Toughlian, H. Zmuda, “A photonic variable RF delay line for phased array antennas,” J. Lightwave Technol. 8, 1824–1828 (1990).
[CrossRef]

H. Zmuda, E. N. Toughlian, “Photonic aspects of modern radar,” in The Artech House Optoelectronics Library, B. Culshaw, A. Rogers, H. Taylor, eds., (Artech House, Norwood, Mass., 1994) pp. 550.

Zomp, J. M.

A. P. Goutzoulis, J. M. Zomp, “Development and field demonstration of an eight-element receive wavelength-multiplexed true-time-delay steering system,” Appl. Opt. 36, 7315–7326 (1997).
[CrossRef]

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiber optic wavelength-multiplexed system for true time-delay steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
[CrossRef]

Appl. Opt. (9)

D. Dolfi, P. Joffre, “Experimental demonstration of a phased-array antenna optically controlled with phase and time delays,” Appl. Opt. 8, 1824–1828 (1996).

A. P. Goutzoulis, D. K. Davies, “Hardware-compressive 2-D fiber optic delay line architecture for time steering of phased-array antennas,” Appl. Opt. 29, 5353–5359 (1990).
[CrossRef] [PubMed]

B. L. Anderson, S. A. Collins, C. A. Klein, E. A. Beecher, S. B. Brown, “Optically produced true-time delays for phased antenna arrays,” Appl. Opt. 36, 8493–8503 (1997).
[CrossRef]

N. Madamopoulos, N. Riza, “Directly modulated semiconductor-laser-fed photonic delay line with ferroelectric liquid crystals,” Appl. Opt. 37, 1407–1416 (1998).
[CrossRef]

Z. Fu, C. Zhou, R. T. Chen, “Waveguide-hologram-based wavelength-division multiplexed pseudoanalog true-time-delay module for wide-band phased array antennas,” Appl. Opt. 38, 3053–3059 (1999).
[CrossRef]

J. L. Cruz, L. Dong, S. Barcelso, L. Reekie, “Fiber Bragg gratings with various chirp profiles made in etched tapers,” Appl. Opt. 35, 6781–6787 (1996).
[CrossRef] [PubMed]

A. P. Goutzoulis, J. M. Zomp, “Development and field demonstration of an eight-element receive wavelength-multiplexed true-time-delay steering system,” Appl. Opt. 36, 7315–7326 (1997).
[CrossRef]

B. L. Anderson, C. D. Liddle, “Optical true-time delay for phased array antennas: demonstration of a quadratic White cell,” Appl. Opt. 41, 4912–4921 (2002).
[CrossRef] [PubMed]

B. L. Anderson, R. Mital, “Polynomial-based optical true-time delay devices with microelectromechanical mirror arrays,” Appl. Opt. 41, 5449–5461 (2002).
[CrossRef] [PubMed]

Electron. Lett. (1)

M. Tamburrini, M. Parent, L. Goldberg, D. Stillwell, “Optical feed for a phased array microwave antenna,” Electron. Lett. 23, 680–681 (1987).
[CrossRef]

IEEE Photon. Technol. Lett. (8)

P. J. Matthews, M. Y. Frankel, R. D. Esman, “A wide-band fiber-optic true time-steered array receiver capable of multiple independent simultaneous beams,” IEEE Photon. Technol. Lett. 10, 722–724 (1998).
[CrossRef]

H. Zmuda, E. N. Toughlian, P. Payson, H. W. Klumpke, “A photonic implementation of a wide-band nulling system for phased arrays,” IEEE Photon. Technol. Lett. 10, 725–727 (1998).
[CrossRef]

R. Taylor, S. Forrest, “Steering of an optically-driven true-time delay phased-array antenna based on a broad-band coherent WDM architecture,” IEEE Photon. Technol. Lett. 10, 144–146 (1998).
[CrossRef]

G. A. Ball, W. H. Glenn, W. W. Morey, “Programmable fiber optic delay line,” IEEE Photon. Technol. Lett. 6, 741–743 (1994).
[CrossRef]

D. A. Cohen, Y. Chang, A. G. J. Levi, H. R. Fetterman, I. L. Newberg, “Optically controlled serially fed phased array sensor,” IEEE Photon. Technol. Lett. 8, 1683–1685 (1996).
[CrossRef]

B. Tsap, Y. Chang, H. R. Fetterman, A. F. J. Levi, D. A. Cohen, I. Newberg, “Phased-array optically controlled receiver using a serial feed,” IEEE Photon. Technol. Lett. 10, 267–269 (1998).
[CrossRef]

X. S. Yao, L. Maleki, “A novel 2-D programmable photonic time-delay device for millimeter-wave signal processing applications,” IEEE Photon. Technol. Lett. 6, 1463–1465 (1994).
[CrossRef]

N. A. Riza, “25-Channel nematic liquid-crystal optical time-delay unit characterization,” IEEE Photon. Technol. Lett. 7, 1285–1287 (1995).
[CrossRef]

J. Lightwave Technol. (4)

W. Ng, A. A. Watson, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol. 8, 1124–1131 (1991).
[CrossRef]

R. L. Q. Li, X. Fu, R. Chen, “High packing density 2.5 THz truetime delay lines using spatially multiplexed substrate guided waves in conjunction with volume holograms on a single substrate,” J. Lightwave Technol. 15, 2253–2258 (1997).
[CrossRef]

L. Eldada, “Laser-fabricated delay lines in GaAs for optically steered phased-array radar,” J. Lightwave Technol. 13, 2034–2039 (1995).
[CrossRef]

E. N. Toughlian, H. Zmuda, “A photonic variable RF delay line for phased array antennas,” J. Lightwave Technol. 8, 1824–1828 (1990).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Eng. (1)

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiber optic wavelength-multiplexed system for true time-delay steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
[CrossRef]

Other (4)

H. Zmuda, E. N. Toughlian, “Photonic aspects of modern radar,” in The Artech House Optoelectronics Library, B. Culshaw, A. Rogers, H. Taylor, eds., (Artech House, Norwood, Mass., 1994) pp. 550.

Texas Instruments, DLP™ newsletters. http://www.dlp.com/about_dlp/about_dlp_images_pixels_micro.asp .

L. J. Hornbeck, “Digital Light Processing™ for high-brightness, high-resolution applications,” presented at Electronic Imaging ’97, San Jose, California, 1997.

O. Blum Spahn, E. J. Garcia, V. Easch, G. Grossetete, F. Bitsie, S. Mani, J. Jakubsczak, “Optical performance of pivoting micromirrors,” in Proc. SPIE Micromachining and Microfabrication Process Technology VII, 4561, Jean Michel Karam, John Yasaitis, eds., 283–292 (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Original White cell. The mirrors are separated by a distance equal to their radii of curvature R. The centers of curvature are shown. A spot on the input turning mirror is re-imaged by mirror B onto mirror A at the first image spot shown. From there the light goes to C, which creates a second image as indicated.

Fig. 2
Fig. 2

Spot pattern for 36 spots, each making nine bounces on mirror A. A particular input spot is highlighted. Each spot appears an equal and opposite distance from the center of curvature of the spherical mirror from which the beam came last.

Fig. 3
Fig. 3

(a) White cell is formed by the flat MEMS micromirror array, two field lenses, and two spherical mirrors. In this picture, if every pixel is tipped to -10°, the beams circulate in this White cell, striking a new pixel on every bounce. (b) Linear cell optical TTD cell using a 2-state MEMS tip/tilt micromirror array. Mirrors B and C form one White cell with the MEMS device, and mirrors C and E form another. The CC of mirrors B and E are co-aligned, so the spot pattern is the same regardless of which White cell is visited on any particular bounce.

Fig. 4
Fig. 4

Photomicrograph of a section of the MEM (Texas Instruments DMD®) micromirror array. The entire chip has 400 × 600 pixels.26

Fig. 5
Fig. 5

The apparatus.

Fig. 6
Fig. 6

Timing of the pixels in the computer projector.

Fig. 7
Fig. 7

Time delay measurements, showing delays of zero through 4 ns. Delay of 5 ns not shown.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Tdelay=nTlong-Tshort=nΔ,
N=m2.

Metrics