Abstract

We have studied the diffuse reflection properties of ceramics in the presence of dielectric thin films on the surface. A simple optical model was proposed in which interference effects in a thin film were considered for light scattered out of a ceramic in various directions. Measurements were performed on angle-resolved reflection spectra of a thin-film-coated alumina ceramic in the case of normal incidence. They showed that the presence of the thin film on the ceramic’s surface modified the angular distributions of scattered radiation from that of a bare ceramic, which suggested a way to tailor the scattering properties of a diffuse reflector as needed.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Twomey, C. F. Bohren, J. L. Mergenthaler, “Reflectance and albedo differences between wet and dry surfaces,” Appl. Opt. 25, 431–437 (1986).
    [CrossRef] [PubMed]
  2. K. C. Jezek, G. Koh, “Effects of water and ice layers on the scattering properties of diffuse reflectors,” Appl. Opt. 26, 5143–5147 (1987).
    [CrossRef] [PubMed]
  3. L. B. Wolff, “Diffuse-reflectance model for smooth dielectric surfaces,” J. Opt. Soc. Am. A 11, 2956–2968 (1994).
    [CrossRef]
  4. K. R. Catchpole, M. J. McCann, K. J. Weber, A. W. Blakers, “A review of thin-film crystalline silicon for solar cell applications. 2. Foreign substrates,” Sol. Energy Mater. Sol. Cells 68, 173–215 (2001), and references therein.
    [CrossRef]
  5. K. Ishii, H. Nishikawa, T. Takahashi, Y. Hayashi, “Sub-5 micron thin film crystalline silicon solar cell on alumina ceramic substrate,” Jpn. J. Appl. Phys. 32, L770–L773 (1993).
    [CrossRef]
  6. T. Takahashi, R. Shimokawa, Y. Matsumoto, K. Ishii, T. Sekigawa, “Recrystallization of polycrystalline silicon films on ceramics by electron beam,” Sol. Energy Mater. Sol. Cells 48, 327–333 (1997).
    [CrossRef]
  7. S. Reber, J. Aschaber, A. Hurrle, “High temperature diffusion of iron in PECVD-SiO2 barrier layers for crystalline silicon thin-film solar cells,” in Second World Conference on PV Solar Energy Conversion, J. Schmid, H. A. Ossenbrink, P. Helm, H. Ehmann, E. D. Dunlop, eds. (European Commission, Ispra, Italy, 1998), pp. 1798–1801.
  8. R. Shimokawa, K. Ishii, T. Takahashi, “Optical confinement in thin film Si solar cells by diffuse reflective substrate,” Jpn. J. Appl. Phys. 35, 3445–3456 (1996).
    [CrossRef]
  9. K. Winz, Th. Eickhoff, C. Beneking, H. Wagner, C. M. Fortmann, H. Fujiwara, I. Shimizu, “Novel light-trapping schemes involving planar junctions and diffuse rear reflectors for thin-film silicon-based solar cells,” Sol. Energy Mater. Sol. Cells 49, 195–203 (1997).
    [CrossRef]
  10. J. E. Cotter, “Optical intensity of light in layers of silicon with rear diffuse reflectors,” J. Appl. Phys. 84, 618–624 (1998).
    [CrossRef]
  11. M. Tazawa, K. Yoshimura, K. Igarashi, S. Tanemura, “Effect of buffer layers on optical confinement in thin film Si solar cell formed on alumina ceramic substrate,” in Second World Conference on PV Solar Energy Conversion, J. Schmid, H. A. Ossenbrink, P. Helm, H. Ehmann, E. D. Dunlop, eds. (European Commission, Ispra, Italy, 1998), pp. 1732–1735.
  12. G. Xu, M. Tazawa, P. Jin, K. Yoshimura, “Optical confinement properties of crystalline silicon film on ceramic substrate,” Jpn. J. Appl. Phys. 41, 4586–4593 (2002).
    [CrossRef]
  13. M. Tazawa, K. Yoshimura, K. Igarashi, S. Tanemura, “Optical properties of alumina ceramics as a substrate of thin film solar cells,” Sol. Energy Mater. Sol. Cells 48, 315–320 (1997).
    [CrossRef]
  14. B. Hapke, Theory of Reflectance and Emittance Spectroscopy (Cambridge U. Press, Cambridge, Mass., 1993).
    [CrossRef]
  15. G. Kortüm, Reflectance Spectroscopy (Springer-Verlag, Berlin, 1969).
    [CrossRef]
  16. P. Jin, S. Tanemura, “Formation and thermochromism of VO2 films deposited by RF magnetron sputtering at low substrate temperature,” Jpn. J. Appl. Phys. 33, 1478–1483 (1994).
    [CrossRef]
  17. H. S. Hou, “Method for optimized design of dielectric multilayer filters,” Appl. Opt. 13, 1863–1866 (1974).
    [CrossRef] [PubMed]
  18. B. Harbecke, “Coherent and incoherent reflection and transmission of multilayer structures,” Appl. Phys. B 39, 165–170 (1986).
    [CrossRef]
  19. O. S. Heavens, Optical Properties of Thin Solid Films (Dover, New York, 1991).

2002

G. Xu, M. Tazawa, P. Jin, K. Yoshimura, “Optical confinement properties of crystalline silicon film on ceramic substrate,” Jpn. J. Appl. Phys. 41, 4586–4593 (2002).
[CrossRef]

2001

K. R. Catchpole, M. J. McCann, K. J. Weber, A. W. Blakers, “A review of thin-film crystalline silicon for solar cell applications. 2. Foreign substrates,” Sol. Energy Mater. Sol. Cells 68, 173–215 (2001), and references therein.
[CrossRef]

1998

J. E. Cotter, “Optical intensity of light in layers of silicon with rear diffuse reflectors,” J. Appl. Phys. 84, 618–624 (1998).
[CrossRef]

1997

K. Winz, Th. Eickhoff, C. Beneking, H. Wagner, C. M. Fortmann, H. Fujiwara, I. Shimizu, “Novel light-trapping schemes involving planar junctions and diffuse rear reflectors for thin-film silicon-based solar cells,” Sol. Energy Mater. Sol. Cells 49, 195–203 (1997).
[CrossRef]

T. Takahashi, R. Shimokawa, Y. Matsumoto, K. Ishii, T. Sekigawa, “Recrystallization of polycrystalline silicon films on ceramics by electron beam,” Sol. Energy Mater. Sol. Cells 48, 327–333 (1997).
[CrossRef]

M. Tazawa, K. Yoshimura, K. Igarashi, S. Tanemura, “Optical properties of alumina ceramics as a substrate of thin film solar cells,” Sol. Energy Mater. Sol. Cells 48, 315–320 (1997).
[CrossRef]

1996

R. Shimokawa, K. Ishii, T. Takahashi, “Optical confinement in thin film Si solar cells by diffuse reflective substrate,” Jpn. J. Appl. Phys. 35, 3445–3456 (1996).
[CrossRef]

1994

P. Jin, S. Tanemura, “Formation and thermochromism of VO2 films deposited by RF magnetron sputtering at low substrate temperature,” Jpn. J. Appl. Phys. 33, 1478–1483 (1994).
[CrossRef]

L. B. Wolff, “Diffuse-reflectance model for smooth dielectric surfaces,” J. Opt. Soc. Am. A 11, 2956–2968 (1994).
[CrossRef]

1993

K. Ishii, H. Nishikawa, T. Takahashi, Y. Hayashi, “Sub-5 micron thin film crystalline silicon solar cell on alumina ceramic substrate,” Jpn. J. Appl. Phys. 32, L770–L773 (1993).
[CrossRef]

1987

1986

S. A. Twomey, C. F. Bohren, J. L. Mergenthaler, “Reflectance and albedo differences between wet and dry surfaces,” Appl. Opt. 25, 431–437 (1986).
[CrossRef] [PubMed]

B. Harbecke, “Coherent and incoherent reflection and transmission of multilayer structures,” Appl. Phys. B 39, 165–170 (1986).
[CrossRef]

1974

Aschaber, J.

S. Reber, J. Aschaber, A. Hurrle, “High temperature diffusion of iron in PECVD-SiO2 barrier layers for crystalline silicon thin-film solar cells,” in Second World Conference on PV Solar Energy Conversion, J. Schmid, H. A. Ossenbrink, P. Helm, H. Ehmann, E. D. Dunlop, eds. (European Commission, Ispra, Italy, 1998), pp. 1798–1801.

Beneking, C.

K. Winz, Th. Eickhoff, C. Beneking, H. Wagner, C. M. Fortmann, H. Fujiwara, I. Shimizu, “Novel light-trapping schemes involving planar junctions and diffuse rear reflectors for thin-film silicon-based solar cells,” Sol. Energy Mater. Sol. Cells 49, 195–203 (1997).
[CrossRef]

Blakers, A. W.

K. R. Catchpole, M. J. McCann, K. J. Weber, A. W. Blakers, “A review of thin-film crystalline silicon for solar cell applications. 2. Foreign substrates,” Sol. Energy Mater. Sol. Cells 68, 173–215 (2001), and references therein.
[CrossRef]

Bohren, C. F.

Catchpole, K. R.

K. R. Catchpole, M. J. McCann, K. J. Weber, A. W. Blakers, “A review of thin-film crystalline silicon for solar cell applications. 2. Foreign substrates,” Sol. Energy Mater. Sol. Cells 68, 173–215 (2001), and references therein.
[CrossRef]

Cotter, J. E.

J. E. Cotter, “Optical intensity of light in layers of silicon with rear diffuse reflectors,” J. Appl. Phys. 84, 618–624 (1998).
[CrossRef]

Eickhoff, Th.

K. Winz, Th. Eickhoff, C. Beneking, H. Wagner, C. M. Fortmann, H. Fujiwara, I. Shimizu, “Novel light-trapping schemes involving planar junctions and diffuse rear reflectors for thin-film silicon-based solar cells,” Sol. Energy Mater. Sol. Cells 49, 195–203 (1997).
[CrossRef]

Fortmann, C. M.

K. Winz, Th. Eickhoff, C. Beneking, H. Wagner, C. M. Fortmann, H. Fujiwara, I. Shimizu, “Novel light-trapping schemes involving planar junctions and diffuse rear reflectors for thin-film silicon-based solar cells,” Sol. Energy Mater. Sol. Cells 49, 195–203 (1997).
[CrossRef]

Fujiwara, H.

K. Winz, Th. Eickhoff, C. Beneking, H. Wagner, C. M. Fortmann, H. Fujiwara, I. Shimizu, “Novel light-trapping schemes involving planar junctions and diffuse rear reflectors for thin-film silicon-based solar cells,” Sol. Energy Mater. Sol. Cells 49, 195–203 (1997).
[CrossRef]

Hapke, B.

B. Hapke, Theory of Reflectance and Emittance Spectroscopy (Cambridge U. Press, Cambridge, Mass., 1993).
[CrossRef]

Harbecke, B.

B. Harbecke, “Coherent and incoherent reflection and transmission of multilayer structures,” Appl. Phys. B 39, 165–170 (1986).
[CrossRef]

Hayashi, Y.

K. Ishii, H. Nishikawa, T. Takahashi, Y. Hayashi, “Sub-5 micron thin film crystalline silicon solar cell on alumina ceramic substrate,” Jpn. J. Appl. Phys. 32, L770–L773 (1993).
[CrossRef]

Heavens, O. S.

O. S. Heavens, Optical Properties of Thin Solid Films (Dover, New York, 1991).

Hou, H. S.

Hurrle, A.

S. Reber, J. Aschaber, A. Hurrle, “High temperature diffusion of iron in PECVD-SiO2 barrier layers for crystalline silicon thin-film solar cells,” in Second World Conference on PV Solar Energy Conversion, J. Schmid, H. A. Ossenbrink, P. Helm, H. Ehmann, E. D. Dunlop, eds. (European Commission, Ispra, Italy, 1998), pp. 1798–1801.

Igarashi, K.

M. Tazawa, K. Yoshimura, K. Igarashi, S. Tanemura, “Optical properties of alumina ceramics as a substrate of thin film solar cells,” Sol. Energy Mater. Sol. Cells 48, 315–320 (1997).
[CrossRef]

M. Tazawa, K. Yoshimura, K. Igarashi, S. Tanemura, “Effect of buffer layers on optical confinement in thin film Si solar cell formed on alumina ceramic substrate,” in Second World Conference on PV Solar Energy Conversion, J. Schmid, H. A. Ossenbrink, P. Helm, H. Ehmann, E. D. Dunlop, eds. (European Commission, Ispra, Italy, 1998), pp. 1732–1735.

Ishii, K.

T. Takahashi, R. Shimokawa, Y. Matsumoto, K. Ishii, T. Sekigawa, “Recrystallization of polycrystalline silicon films on ceramics by electron beam,” Sol. Energy Mater. Sol. Cells 48, 327–333 (1997).
[CrossRef]

R. Shimokawa, K. Ishii, T. Takahashi, “Optical confinement in thin film Si solar cells by diffuse reflective substrate,” Jpn. J. Appl. Phys. 35, 3445–3456 (1996).
[CrossRef]

K. Ishii, H. Nishikawa, T. Takahashi, Y. Hayashi, “Sub-5 micron thin film crystalline silicon solar cell on alumina ceramic substrate,” Jpn. J. Appl. Phys. 32, L770–L773 (1993).
[CrossRef]

Jezek, K. C.

Jin, P.

G. Xu, M. Tazawa, P. Jin, K. Yoshimura, “Optical confinement properties of crystalline silicon film on ceramic substrate,” Jpn. J. Appl. Phys. 41, 4586–4593 (2002).
[CrossRef]

P. Jin, S. Tanemura, “Formation and thermochromism of VO2 films deposited by RF magnetron sputtering at low substrate temperature,” Jpn. J. Appl. Phys. 33, 1478–1483 (1994).
[CrossRef]

Koh, G.

Kortüm, G.

G. Kortüm, Reflectance Spectroscopy (Springer-Verlag, Berlin, 1969).
[CrossRef]

Matsumoto, Y.

T. Takahashi, R. Shimokawa, Y. Matsumoto, K. Ishii, T. Sekigawa, “Recrystallization of polycrystalline silicon films on ceramics by electron beam,” Sol. Energy Mater. Sol. Cells 48, 327–333 (1997).
[CrossRef]

McCann, M. J.

K. R. Catchpole, M. J. McCann, K. J. Weber, A. W. Blakers, “A review of thin-film crystalline silicon for solar cell applications. 2. Foreign substrates,” Sol. Energy Mater. Sol. Cells 68, 173–215 (2001), and references therein.
[CrossRef]

Mergenthaler, J. L.

Nishikawa, H.

K. Ishii, H. Nishikawa, T. Takahashi, Y. Hayashi, “Sub-5 micron thin film crystalline silicon solar cell on alumina ceramic substrate,” Jpn. J. Appl. Phys. 32, L770–L773 (1993).
[CrossRef]

Reber, S.

S. Reber, J. Aschaber, A. Hurrle, “High temperature diffusion of iron in PECVD-SiO2 barrier layers for crystalline silicon thin-film solar cells,” in Second World Conference on PV Solar Energy Conversion, J. Schmid, H. A. Ossenbrink, P. Helm, H. Ehmann, E. D. Dunlop, eds. (European Commission, Ispra, Italy, 1998), pp. 1798–1801.

Sekigawa, T.

T. Takahashi, R. Shimokawa, Y. Matsumoto, K. Ishii, T. Sekigawa, “Recrystallization of polycrystalline silicon films on ceramics by electron beam,” Sol. Energy Mater. Sol. Cells 48, 327–333 (1997).
[CrossRef]

Shimizu, I.

K. Winz, Th. Eickhoff, C. Beneking, H. Wagner, C. M. Fortmann, H. Fujiwara, I. Shimizu, “Novel light-trapping schemes involving planar junctions and diffuse rear reflectors for thin-film silicon-based solar cells,” Sol. Energy Mater. Sol. Cells 49, 195–203 (1997).
[CrossRef]

Shimokawa, R.

T. Takahashi, R. Shimokawa, Y. Matsumoto, K. Ishii, T. Sekigawa, “Recrystallization of polycrystalline silicon films on ceramics by electron beam,” Sol. Energy Mater. Sol. Cells 48, 327–333 (1997).
[CrossRef]

R. Shimokawa, K. Ishii, T. Takahashi, “Optical confinement in thin film Si solar cells by diffuse reflective substrate,” Jpn. J. Appl. Phys. 35, 3445–3456 (1996).
[CrossRef]

Takahashi, T.

T. Takahashi, R. Shimokawa, Y. Matsumoto, K. Ishii, T. Sekigawa, “Recrystallization of polycrystalline silicon films on ceramics by electron beam,” Sol. Energy Mater. Sol. Cells 48, 327–333 (1997).
[CrossRef]

R. Shimokawa, K. Ishii, T. Takahashi, “Optical confinement in thin film Si solar cells by diffuse reflective substrate,” Jpn. J. Appl. Phys. 35, 3445–3456 (1996).
[CrossRef]

K. Ishii, H. Nishikawa, T. Takahashi, Y. Hayashi, “Sub-5 micron thin film crystalline silicon solar cell on alumina ceramic substrate,” Jpn. J. Appl. Phys. 32, L770–L773 (1993).
[CrossRef]

Tanemura, S.

M. Tazawa, K. Yoshimura, K. Igarashi, S. Tanemura, “Optical properties of alumina ceramics as a substrate of thin film solar cells,” Sol. Energy Mater. Sol. Cells 48, 315–320 (1997).
[CrossRef]

P. Jin, S. Tanemura, “Formation and thermochromism of VO2 films deposited by RF magnetron sputtering at low substrate temperature,” Jpn. J. Appl. Phys. 33, 1478–1483 (1994).
[CrossRef]

M. Tazawa, K. Yoshimura, K. Igarashi, S. Tanemura, “Effect of buffer layers on optical confinement in thin film Si solar cell formed on alumina ceramic substrate,” in Second World Conference on PV Solar Energy Conversion, J. Schmid, H. A. Ossenbrink, P. Helm, H. Ehmann, E. D. Dunlop, eds. (European Commission, Ispra, Italy, 1998), pp. 1732–1735.

Tazawa, M.

G. Xu, M. Tazawa, P. Jin, K. Yoshimura, “Optical confinement properties of crystalline silicon film on ceramic substrate,” Jpn. J. Appl. Phys. 41, 4586–4593 (2002).
[CrossRef]

M. Tazawa, K. Yoshimura, K. Igarashi, S. Tanemura, “Optical properties of alumina ceramics as a substrate of thin film solar cells,” Sol. Energy Mater. Sol. Cells 48, 315–320 (1997).
[CrossRef]

M. Tazawa, K. Yoshimura, K. Igarashi, S. Tanemura, “Effect of buffer layers on optical confinement in thin film Si solar cell formed on alumina ceramic substrate,” in Second World Conference on PV Solar Energy Conversion, J. Schmid, H. A. Ossenbrink, P. Helm, H. Ehmann, E. D. Dunlop, eds. (European Commission, Ispra, Italy, 1998), pp. 1732–1735.

Twomey, S. A.

Wagner, H.

K. Winz, Th. Eickhoff, C. Beneking, H. Wagner, C. M. Fortmann, H. Fujiwara, I. Shimizu, “Novel light-trapping schemes involving planar junctions and diffuse rear reflectors for thin-film silicon-based solar cells,” Sol. Energy Mater. Sol. Cells 49, 195–203 (1997).
[CrossRef]

Weber, K. J.

K. R. Catchpole, M. J. McCann, K. J. Weber, A. W. Blakers, “A review of thin-film crystalline silicon for solar cell applications. 2. Foreign substrates,” Sol. Energy Mater. Sol. Cells 68, 173–215 (2001), and references therein.
[CrossRef]

Winz, K.

K. Winz, Th. Eickhoff, C. Beneking, H. Wagner, C. M. Fortmann, H. Fujiwara, I. Shimizu, “Novel light-trapping schemes involving planar junctions and diffuse rear reflectors for thin-film silicon-based solar cells,” Sol. Energy Mater. Sol. Cells 49, 195–203 (1997).
[CrossRef]

Wolff, L. B.

Xu, G.

G. Xu, M. Tazawa, P. Jin, K. Yoshimura, “Optical confinement properties of crystalline silicon film on ceramic substrate,” Jpn. J. Appl. Phys. 41, 4586–4593 (2002).
[CrossRef]

Yoshimura, K.

G. Xu, M. Tazawa, P. Jin, K. Yoshimura, “Optical confinement properties of crystalline silicon film on ceramic substrate,” Jpn. J. Appl. Phys. 41, 4586–4593 (2002).
[CrossRef]

M. Tazawa, K. Yoshimura, K. Igarashi, S. Tanemura, “Optical properties of alumina ceramics as a substrate of thin film solar cells,” Sol. Energy Mater. Sol. Cells 48, 315–320 (1997).
[CrossRef]

M. Tazawa, K. Yoshimura, K. Igarashi, S. Tanemura, “Effect of buffer layers on optical confinement in thin film Si solar cell formed on alumina ceramic substrate,” in Second World Conference on PV Solar Energy Conversion, J. Schmid, H. A. Ossenbrink, P. Helm, H. Ehmann, E. D. Dunlop, eds. (European Commission, Ispra, Italy, 1998), pp. 1732–1735.

Appl. Opt.

Appl. Phys. B

B. Harbecke, “Coherent and incoherent reflection and transmission of multilayer structures,” Appl. Phys. B 39, 165–170 (1986).
[CrossRef]

J. Appl. Phys.

J. E. Cotter, “Optical intensity of light in layers of silicon with rear diffuse reflectors,” J. Appl. Phys. 84, 618–624 (1998).
[CrossRef]

J. Opt. Soc. Am. A

Jpn. J. Appl. Phys.

P. Jin, S. Tanemura, “Formation and thermochromism of VO2 films deposited by RF magnetron sputtering at low substrate temperature,” Jpn. J. Appl. Phys. 33, 1478–1483 (1994).
[CrossRef]

K. Ishii, H. Nishikawa, T. Takahashi, Y. Hayashi, “Sub-5 micron thin film crystalline silicon solar cell on alumina ceramic substrate,” Jpn. J. Appl. Phys. 32, L770–L773 (1993).
[CrossRef]

R. Shimokawa, K. Ishii, T. Takahashi, “Optical confinement in thin film Si solar cells by diffuse reflective substrate,” Jpn. J. Appl. Phys. 35, 3445–3456 (1996).
[CrossRef]

G. Xu, M. Tazawa, P. Jin, K. Yoshimura, “Optical confinement properties of crystalline silicon film on ceramic substrate,” Jpn. J. Appl. Phys. 41, 4586–4593 (2002).
[CrossRef]

Sol. Energy Mater. Sol. Cells

M. Tazawa, K. Yoshimura, K. Igarashi, S. Tanemura, “Optical properties of alumina ceramics as a substrate of thin film solar cells,” Sol. Energy Mater. Sol. Cells 48, 315–320 (1997).
[CrossRef]

K. Winz, Th. Eickhoff, C. Beneking, H. Wagner, C. M. Fortmann, H. Fujiwara, I. Shimizu, “Novel light-trapping schemes involving planar junctions and diffuse rear reflectors for thin-film silicon-based solar cells,” Sol. Energy Mater. Sol. Cells 49, 195–203 (1997).
[CrossRef]

T. Takahashi, R. Shimokawa, Y. Matsumoto, K. Ishii, T. Sekigawa, “Recrystallization of polycrystalline silicon films on ceramics by electron beam,” Sol. Energy Mater. Sol. Cells 48, 327–333 (1997).
[CrossRef]

K. R. Catchpole, M. J. McCann, K. J. Weber, A. W. Blakers, “A review of thin-film crystalline silicon for solar cell applications. 2. Foreign substrates,” Sol. Energy Mater. Sol. Cells 68, 173–215 (2001), and references therein.
[CrossRef]

Other

M. Tazawa, K. Yoshimura, K. Igarashi, S. Tanemura, “Effect of buffer layers on optical confinement in thin film Si solar cell formed on alumina ceramic substrate,” in Second World Conference on PV Solar Energy Conversion, J. Schmid, H. A. Ossenbrink, P. Helm, H. Ehmann, E. D. Dunlop, eds. (European Commission, Ispra, Italy, 1998), pp. 1732–1735.

O. S. Heavens, Optical Properties of Thin Solid Films (Dover, New York, 1991).

S. Reber, J. Aschaber, A. Hurrle, “High temperature diffusion of iron in PECVD-SiO2 barrier layers for crystalline silicon thin-film solar cells,” in Second World Conference on PV Solar Energy Conversion, J. Schmid, H. A. Ossenbrink, P. Helm, H. Ehmann, E. D. Dunlop, eds. (European Commission, Ispra, Italy, 1998), pp. 1798–1801.

B. Hapke, Theory of Reflectance and Emittance Spectroscopy (Cambridge U. Press, Cambridge, Mass., 1993).
[CrossRef]

G. Kortüm, Reflectance Spectroscopy (Springer-Verlag, Berlin, 1969).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of bidirectional reflectance of a ceramic overcoated with a dielectric thin film. Three processes are illustrated: specular reflectance, volume scattering inside the ceramic, and emission of scattering light from the ceramic to air.

Fig. 2
Fig. 2

Experimental apparatus for automatic measurement of wavelength-dependent angular scattering.

Fig. 3
Fig. 3

Optical arrangement of the apparatus used for measuring the wavelength-dependent angular scattering. The light source was a tungsten iodine lamp followed by a monochromator. The output light was collimated and normally incident upon the sample surface. We measured the angular distribution of the scattering light by rotating the goniometer arm that bore a photomultiplier.

Fig. 4
Fig. 4

Angle-resolved spectra of a Spectralon standard diffuser measured at numerous scattering angles from 30° to 90° in incremental steps of 5°. Inset, the measurement configuration. The source light was normally incident (i = 0°), and at each scattering angle the scattering was measured as a function of wavelength scanned from 450 to 830 nm in steps of 5 nm. This configuration is the same for all angle-resolved spectrum measurements of other samples.

Fig. 5
Fig. 5

Angle-resolved spectra of a bare alumina ceramic measured at several scattering angles from 30° to 90° in incremental steps of 5°.

Fig. 6
Fig. 6

(a) Angle-resolved spectra of an alumina ceramic overcoated with TiO2 (600 nm thick) measured at many scattering angles from 30° to 90° in incremental steps of 5°. Dashed lines were drawn to show blueshifts of the peak wavelengths. (b) Spectra of the coated alumina ceramic normalized to those of the standard diffuser at scattering angles of e = 30°, 45°, 60°. The wavelengths for which we chose to examine angular distributions are indicated by arrows above the abscissa axis and are located about the three peaks (P1–P3) and on the left sides of the peaks (L1–L3).

Fig. 7
Fig. 7

Angular distributions of the scattering signal of a Spectralon standard white diffuser at wavelengths λ = 600 and λ = 750 nm. Filled and open circles are the experimental data taken from Fig. 4, and the two solid curves represent the cosine law.

Fig. 8
Fig. 8

Angular distributions of the scattering signal of an alumina ceramic at wavelengths λ = 600 and λ = 750 nm. Filled and open circles are the experimental data taken from Fig. 5, and the two solid curves represent the cosine law.

Fig. 9
Fig. 9

Angular distributions of the coated alumina ceramic at wavelengths located about the three peaks (P1–P3). Filled circles, experimental data taken from Fig. 6(a). Dashed curves represent the cosine law; solid curves are the theoretical calculations with Eq. (6) in the text.

Fig. 10
Fig. 10

Angular distributions of the coated alumina ceramic at wavelengths located on the left sides of the three peaks (L1–L3). Filled circles, experimental data taken from Fig. 6(a). Dashed curves represent the cosine law; solid curves are the theoretical calculations with Eq. (6) in the text.

Fig. 11
Fig. 11

Calculated spectra of an alumina ceramic overcoated with TiO2 (600 nm thick) at scattering angles from 30° to 90° in increments of 10°. The calculation was performed according to Eq. (10) in the text. Dashed lines were drawn to show blueshifts of the peak wavelengths.

Tables (1)

Tables Icon

Table 1 Deposition Conditions and Optical Parameters for TiO2 Film

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Psr=P0Ri,
Pst=P0Ti,
PdiffdΩ=P0Tiri, ecosedΩ,
dΩ=cosen2 cose dΩ,
PdiffdΩ=PdiffdΩ=1n2 P0Tiri, eTecosedΩ.
PsddΩ=P0Riδe-i+Kn2 P0Tiri, eTecosedΩ,
Pobs=ΔaKn2 P0TiTecosedΩ=CTecose.
PLame=B cose,
Te  t012t1221+2r01r12 cos2δ+r012r122,
δ=2πnfd cosθλ.
Pobs=CρλTiTecose,

Metrics