Abstract

A mechanism is established for the automatic addition and deletion of optical elements during the course of lens optimization. Two lens-form parameters, quantifying the symmetry of the optical system and the optical-power distribution among the individual lens elements, are used as criteria in this automatic procedure. Design examples are provided that demonstrate the practicability of the scheme.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. G. Kuper, T. I. Harris, R. S. Hilbert, “Practical lens design using a global method,” in International Optical Design Conference, G. Farhe, ed., Vol. 22 of OSA Proceedings Series (Optical Society of America, Washington D.C., 1994), pp. 46–51.
  2. “Global optimization,” in OSLO Optics Reference Manual (Lambda Research Corporation, Littleton, Mass.2001), Chap. 8, pp. 220–226.
  3. J. M. Sasian, M. R. Descour, “Power distribution and symmetry in lens system,” Opt. Eng. 37, 1001–1004 (1998).
    [CrossRef]
  4. code vReference Manual (Optical Research Associates, Pasadena, Calif., 2002), Vol. 3, Chap. 11, pp. 3–17.
  5. R. Ogawa, S. Okudaira, T. Itoh, S. Tachihara, “Zoom lenses,” U.S. patent4,185,893 (29January1980).
  6. H.D. Taylor, “Cooke anastigmat,” in The Zeiss Index of Photographic Lenses, W. Mert, ed. (The Central Air Documents Office, Wright-Patterson Air Force Base, Dayton, Ohio, 1950).
  7. S. Nakamura, “Wide angle lens system,” U.S. patent4,155,629 (22May1979).
  8. A. W. Tronnier, “Photographic objective lens of high speed with wide field of view,” U.S. patent2,955,513 (11October1960)
  9. K. Kokichi, T. Yoshiko, “Projection exposing method,” Japanese patent10,319,603 (12April1998).
  10. A. Shibayama, “High zoom ratio zoom lens,” U.S. patent5,694,253 (2December1997).
  11. D. W. Williamson, “The monochromatic quartet explained,” in Lens Design, W. J. Smith, ed. (SPIE Press, Bellingham, Wash., 1992), CR41, pp. 72–87.

1998 (1)

J. M. Sasian, M. R. Descour, “Power distribution and symmetry in lens system,” Opt. Eng. 37, 1001–1004 (1998).
[CrossRef]

Descour, M. R.

J. M. Sasian, M. R. Descour, “Power distribution and symmetry in lens system,” Opt. Eng. 37, 1001–1004 (1998).
[CrossRef]

Harris, T. I.

T. G. Kuper, T. I. Harris, R. S. Hilbert, “Practical lens design using a global method,” in International Optical Design Conference, G. Farhe, ed., Vol. 22 of OSA Proceedings Series (Optical Society of America, Washington D.C., 1994), pp. 46–51.

Hilbert, R. S.

T. G. Kuper, T. I. Harris, R. S. Hilbert, “Practical lens design using a global method,” in International Optical Design Conference, G. Farhe, ed., Vol. 22 of OSA Proceedings Series (Optical Society of America, Washington D.C., 1994), pp. 46–51.

Itoh, T.

R. Ogawa, S. Okudaira, T. Itoh, S. Tachihara, “Zoom lenses,” U.S. patent4,185,893 (29January1980).

Kokichi, K.

K. Kokichi, T. Yoshiko, “Projection exposing method,” Japanese patent10,319,603 (12April1998).

Kuper, T. G.

T. G. Kuper, T. I. Harris, R. S. Hilbert, “Practical lens design using a global method,” in International Optical Design Conference, G. Farhe, ed., Vol. 22 of OSA Proceedings Series (Optical Society of America, Washington D.C., 1994), pp. 46–51.

Nakamura, S.

S. Nakamura, “Wide angle lens system,” U.S. patent4,155,629 (22May1979).

Ogawa, R.

R. Ogawa, S. Okudaira, T. Itoh, S. Tachihara, “Zoom lenses,” U.S. patent4,185,893 (29January1980).

Okudaira, S.

R. Ogawa, S. Okudaira, T. Itoh, S. Tachihara, “Zoom lenses,” U.S. patent4,185,893 (29January1980).

Sasian, J. M.

J. M. Sasian, M. R. Descour, “Power distribution and symmetry in lens system,” Opt. Eng. 37, 1001–1004 (1998).
[CrossRef]

Shibayama, A.

A. Shibayama, “High zoom ratio zoom lens,” U.S. patent5,694,253 (2December1997).

Tachihara, S.

R. Ogawa, S. Okudaira, T. Itoh, S. Tachihara, “Zoom lenses,” U.S. patent4,185,893 (29January1980).

Taylor, H.D.

H.D. Taylor, “Cooke anastigmat,” in The Zeiss Index of Photographic Lenses, W. Mert, ed. (The Central Air Documents Office, Wright-Patterson Air Force Base, Dayton, Ohio, 1950).

Tronnier, A. W.

A. W. Tronnier, “Photographic objective lens of high speed with wide field of view,” U.S. patent2,955,513 (11October1960)

Williamson, D. W.

D. W. Williamson, “The monochromatic quartet explained,” in Lens Design, W. J. Smith, ed. (SPIE Press, Bellingham, Wash., 1992), CR41, pp. 72–87.

Yoshiko, T.

K. Kokichi, T. Yoshiko, “Projection exposing method,” Japanese patent10,319,603 (12April1998).

Opt. Eng. (1)

J. M. Sasian, M. R. Descour, “Power distribution and symmetry in lens system,” Opt. Eng. 37, 1001–1004 (1998).
[CrossRef]

Other (10)

code vReference Manual (Optical Research Associates, Pasadena, Calif., 2002), Vol. 3, Chap. 11, pp. 3–17.

R. Ogawa, S. Okudaira, T. Itoh, S. Tachihara, “Zoom lenses,” U.S. patent4,185,893 (29January1980).

H.D. Taylor, “Cooke anastigmat,” in The Zeiss Index of Photographic Lenses, W. Mert, ed. (The Central Air Documents Office, Wright-Patterson Air Force Base, Dayton, Ohio, 1950).

S. Nakamura, “Wide angle lens system,” U.S. patent4,155,629 (22May1979).

A. W. Tronnier, “Photographic objective lens of high speed with wide field of view,” U.S. patent2,955,513 (11October1960)

K. Kokichi, T. Yoshiko, “Projection exposing method,” Japanese patent10,319,603 (12April1998).

A. Shibayama, “High zoom ratio zoom lens,” U.S. patent5,694,253 (2December1997).

D. W. Williamson, “The monochromatic quartet explained,” in Lens Design, W. J. Smith, ed. (SPIE Press, Bellingham, Wash., 1992), CR41, pp. 72–87.

T. G. Kuper, T. I. Harris, R. S. Hilbert, “Practical lens design using a global method,” in International Optical Design Conference, G. Farhe, ed., Vol. 22 of OSA Proceedings Series (Optical Society of America, Washington D.C., 1994), pp. 46–51.

“Global optimization,” in OSLO Optics Reference Manual (Lambda Research Corporation, Littleton, Mass.2001), Chap. 8, pp. 220–226.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

System layout of (a) the initial lens and (b) the optimization result after adding W and S to the error function.

Fig. 2
Fig. 2

Modulation-transfer-function (rms values for the on-axis 0.7 and 1.0 fields) curves of the initial and optimized systems: ——, initial system; –·–·, optimized system.

Fig. 3
Fig. 3

(a) System layout and (b) MTF curves of the initial Cooke triplet (f/4.5).

Fig. 4
Fig. 4

(a) System layout and (b) MTF curves of the optimized system with an element added at surface 1.

Fig. 5
Fig. 5

(a) System layout and (b) MTF curves of the initial wide-angle lens.

Fig. 6
Fig. 6

(a) System layout and (b) MTF curves of the optimized system with an element added at surface 15.

Fig. 7
Fig. 7

(a) Initial system and (b) optimization result after splitting the first doublet.

Fig. 8
Fig. 8

Root mean square MTF and distortion curves of the initial and optimized systems: ——, initial system; · · · ·, system with the first doublet split; –·–·, system with the second doublet split; – – –, system with the third doublet split.

Fig. 9
Fig. 9

(a) Initial system and (b) its MTF curves.

Fig. 10
Fig. 10

(a) Optimized system with the third doublet split and (b) its MTF curves.

Fig. 11
Fig. 11

Modulation-transfer-function (rms values for the on-axis 0.7 and 1.0 fields) curves of the initial and optimized systems: ——, initial system; · · · ·, system with the first doublet split; –·–·, system with the second doublet split; – – –, system with the third doublet split.

Fig. 12
Fig. 12

System layout of (a) the initial zoom lens and (b) the optimization result with element 2 removed.

Fig. 13
Fig. 13

Modulation-transfer-function values across the zoom range for the initial 16-element system and the new 15-element system. For the on-axis field the values are for spatial frequency of 36 lp/mm; for the 0.7 field of view the values are for 18 lp/mm.

Tables (6)

Tables Icon

Table 1 w j and s j for the Initial Photographic Lens and the Optimization Result after Adding W and S into the Error Function

Tables Icon

Table 2 w j and s j for the Initial Cooke Triplet and the System after Adding an Element at Surface 1 with the Last Column Showing the Values of W and S

Tables Icon

Table 3 MTF Values for Optimized Systems with a New Element Added near Different Surfaces

Tables Icon

Table 4 w j and s j of the System befoe an Element Addition and the Final System

Tables Icon

Table 5 s j for each Surface of the Initial System and the Optimized Systems with One of the Doublets Split

Tables Icon

Table 6 w j for each Surface of the Initial System and the Optimized Systems with One of the Doublets Split

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

W=1Nj=1j=N wj21/2,
wj=-nj-nj1-myjnuN Cj.
S=1Nj=1j=N sj21/2,
sj=11-m1A¯stopnuNA¯juj/nj-uj/nj.
j=1j=N wj=1.

Metrics