Abstract

A nonmechanical scanning Mirau-type spectral interference microscope has been developed for the measurement of three-dimensional surface profiles of discontinuous objects. An acousto-optic tunable filter (AOTF) is used as a high-resolution spectral filter, which scans the optical frequency of the broadband light emitted from a superluminescent diode. To generate spectral fringes that make full use of the limited coherence length of the filtered light we unbalanced the Mirau interferometric system by positioning the reference mirror nearly halfway between the top and the bottom of the step height. When the frequency of the broadband light source is scanned by an AOTF, the interference fringes move in opposite directions on the top and the bottom of the object. To uniquely determine the sign of the fringe movement over the large area of the object, we developed a three-dimensional Fourier-transform technique, and from the detected sign of the fringe movement and phase information, we determined the three-dimensional step height. Experimental results of the measurement of 100-μm step height are presented. The main advantages of the proposed system are that it provides nonmechanical scanning and a large measurement range without ambiguity in the sign of the phase.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. S. Lee, T. C. Strand, “Profilometry with a coherence scanning microscope,” Appl. Opt. 29, 3784–3788 (1990).
    [CrossRef] [PubMed]
  2. T. Dressel, G. Hausler, H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31, 919–925 (1992).
    [CrossRef]
  3. B. Bhushan, J. C. Wyant, C. L. Koliopoulos, “Measurement of surface topography of magnetic tapes by Mirau interferometry,” Appl. Opt. 24, 1489–1497 (1985).
    [CrossRef] [PubMed]
  4. G. S. Kino, S. S. Chim, “Mirau correlation microscope,” Appl. Opt. 29, 3775–3783 (1990).
    [CrossRef] [PubMed]
  5. P. de Groot, L. Deck, “Three-dimensional imaging by sub-Nyquist sampling of white-light interferograms,” Opt. Lett. 18, 1462–1464 (1993).
    [CrossRef] [PubMed]
  6. P. Caber, “Interferometric profiler for rough surfaces,” Appl. Opt. 32, 3438–3441 (1993).
    [CrossRef] [PubMed]
  7. L. Deck, P. de Groot, “High-speed noncontact profiler based on scanning white-light interferometry,” Appl. Opt. 33, 7334–7338 (1994).
    [CrossRef] [PubMed]
  8. P. de Groot, L. Deck, “Surface profiling by analysis of white light interferograms in the spatial frequency domain,” J. Mod. Opt. 42, 389–401 (1995).
    [CrossRef]
  9. P. Sandoz, G. Tribillon, H. Perrin, “High-resolution profilometry by using calculation algorithms for spectroscopic analysis of white-light interferograms,” J. Mod. Opt. 43, 701–708 (1996).
    [CrossRef]
  10. A. Dubois, L. Vabre, A. C. Boccara, “Sinusoidally phase-modulated interference microscope for high-speed high-resolution topographic imagery,” Opt. Lett. 26, 1873–1875 (2001).
    [CrossRef]
  11. B. K. A. Ngoi, K. Venkatakrishnan, N. R. Sivakumar, “Phase-shifting interferometry immune to vibration,” Appl. Opt. 40, 3211–3214 (2001).
    [CrossRef]
  12. M. Takeda, H. Yamamoto, “Fourier-transform speckle profilometry: three-dimensional shape measurements of diffuse objects with large height steps and/or spatially isolated surfaces,” Appl. Opt. 33, 7829–7837 (1994).
    [CrossRef] [PubMed]
  13. S. Kuwamura, I. Yamaguchi, “Wavelength scanning profilometry for real-time surface shape measurement,” Appl. Opt. 36, 4473–4482 (1997).
    [CrossRef] [PubMed]
  14. T. H. Barnes, T. Eiju, K. Matsuda, “Rough surface profile measurement using speckle optical frequency domain reflectometry with an external cavity tunable diode laser,” Optik 103, 93–100 (1996).
  15. H. J. Tiziani, B. Franze, P. Haible, “Wavelength-shift speckle interferometry for absolute profilometry using mode-hope free external cavity diode laser,” J. Mod. Opt. 44, 1485–1496 (1997).
    [CrossRef]
  16. A. Yamamoto, C. C. Kuo, K. Sunouchi, S. Wada, I. Yamaguchi, H. Tashiro, “Surface shape measurement by wavelength scanning interferometry using an electronically tuned Ti:sapphire laser,” Opt. Rev. 8, 59–63 (2001).
    [CrossRef]
  17. M. Kinoshita, M. Takeda, H. Yago, Y. Watanabe, T. Kurokawa, “Optical frequency-domain microprofilometry with a frequency-tunable liquid-crystal Fabry-Perot etalon device,” Appl. Opt. 38, 7063–7068 (1999).
    [CrossRef]
  18. D. S. Mehta, M. Sugai, H. Hinosugi, S. Saito, M. Takeda, T. Kurokawa, H. Takahashi, M. Ando, M. Shishido, T. Yoshizawa, “Simultaneous three-dimensional step-height measurement and high-resolution tomographic imaging using spectral interferometric microscope,” Appl. Opt. 41, 3874–3885 (2002).
    [CrossRef] [PubMed]
  19. D. S. Mehta, H. Hinosugi, S. Saito, M. Takeda, T. Kurokawa, H. Takahashi, M. Ando, M. Shishido, T. Yoshizawa, “Spectral interferometric microscope with tandem liquid-crystal Fabry-Perot interferometers for extension of the dynamic range in three-dimensional step-height measurement,” Appl. Opt. 42, 682–690 (2003).
    [CrossRef] [PubMed]
  20. S. E. Harris, R. W. Wallace, “Acousto-optic tunable filter,” J. Opt. Soc. Am. 59, 744–750 (1969).
    [CrossRef]
  21. I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25, 370–372 (1974).
    [CrossRef]
  22. G. Georgiev, D. A. Glenar, J. J. Hillman, “Spectral characterization of acousto-optic filters used in imaging spectroscopy,” Appl. Opt. 41, 209–217 (2002).
    [CrossRef] [PubMed]
  23. http://www.brimrose.com/ao_devices.html .
  24. Y. Bitou, K. Seta, “Gauge block measurement using a wavelength scanning interferometer,” Jpn. J. Appl. Phys. 39, 6084–6088 (2000).
    [CrossRef]
  25. M. Takeda, H. Ina, S. Kobayashi, “Fourier transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982).
    [CrossRef]

2003 (1)

2002 (2)

2001 (3)

2000 (1)

Y. Bitou, K. Seta, “Gauge block measurement using a wavelength scanning interferometer,” Jpn. J. Appl. Phys. 39, 6084–6088 (2000).
[CrossRef]

1999 (1)

1997 (2)

H. J. Tiziani, B. Franze, P. Haible, “Wavelength-shift speckle interferometry for absolute profilometry using mode-hope free external cavity diode laser,” J. Mod. Opt. 44, 1485–1496 (1997).
[CrossRef]

S. Kuwamura, I. Yamaguchi, “Wavelength scanning profilometry for real-time surface shape measurement,” Appl. Opt. 36, 4473–4482 (1997).
[CrossRef] [PubMed]

1996 (2)

T. H. Barnes, T. Eiju, K. Matsuda, “Rough surface profile measurement using speckle optical frequency domain reflectometry with an external cavity tunable diode laser,” Optik 103, 93–100 (1996).

P. Sandoz, G. Tribillon, H. Perrin, “High-resolution profilometry by using calculation algorithms for spectroscopic analysis of white-light interferograms,” J. Mod. Opt. 43, 701–708 (1996).
[CrossRef]

1995 (1)

P. de Groot, L. Deck, “Surface profiling by analysis of white light interferograms in the spatial frequency domain,” J. Mod. Opt. 42, 389–401 (1995).
[CrossRef]

1994 (2)

1993 (2)

1992 (1)

1990 (2)

1985 (1)

1982 (1)

1974 (1)

I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25, 370–372 (1974).
[CrossRef]

1969 (1)

Ando, M.

Barnes, T. H.

T. H. Barnes, T. Eiju, K. Matsuda, “Rough surface profile measurement using speckle optical frequency domain reflectometry with an external cavity tunable diode laser,” Optik 103, 93–100 (1996).

Bhushan, B.

Bitou, Y.

Y. Bitou, K. Seta, “Gauge block measurement using a wavelength scanning interferometer,” Jpn. J. Appl. Phys. 39, 6084–6088 (2000).
[CrossRef]

Boccara, A. C.

Caber, P.

Chang, I. C.

I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25, 370–372 (1974).
[CrossRef]

Chim, S. S.

de Groot, P.

Deck, L.

Dressel, T.

Dubois, A.

Eiju, T.

T. H. Barnes, T. Eiju, K. Matsuda, “Rough surface profile measurement using speckle optical frequency domain reflectometry with an external cavity tunable diode laser,” Optik 103, 93–100 (1996).

Franze, B.

H. J. Tiziani, B. Franze, P. Haible, “Wavelength-shift speckle interferometry for absolute profilometry using mode-hope free external cavity diode laser,” J. Mod. Opt. 44, 1485–1496 (1997).
[CrossRef]

Georgiev, G.

Glenar, D. A.

Haible, P.

H. J. Tiziani, B. Franze, P. Haible, “Wavelength-shift speckle interferometry for absolute profilometry using mode-hope free external cavity diode laser,” J. Mod. Opt. 44, 1485–1496 (1997).
[CrossRef]

Harris, S. E.

Hausler, G.

Hillman, J. J.

Hinosugi, H.

Ina, H.

Kino, G. S.

Kinoshita, M.

Kobayashi, S.

Koliopoulos, C. L.

Kuo, C. C.

A. Yamamoto, C. C. Kuo, K. Sunouchi, S. Wada, I. Yamaguchi, H. Tashiro, “Surface shape measurement by wavelength scanning interferometry using an electronically tuned Ti:sapphire laser,” Opt. Rev. 8, 59–63 (2001).
[CrossRef]

Kurokawa, T.

Kuwamura, S.

Lee, B. S.

Matsuda, K.

T. H. Barnes, T. Eiju, K. Matsuda, “Rough surface profile measurement using speckle optical frequency domain reflectometry with an external cavity tunable diode laser,” Optik 103, 93–100 (1996).

Mehta, D. S.

Ngoi, B. K. A.

Perrin, H.

P. Sandoz, G. Tribillon, H. Perrin, “High-resolution profilometry by using calculation algorithms for spectroscopic analysis of white-light interferograms,” J. Mod. Opt. 43, 701–708 (1996).
[CrossRef]

Saito, S.

Sandoz, P.

P. Sandoz, G. Tribillon, H. Perrin, “High-resolution profilometry by using calculation algorithms for spectroscopic analysis of white-light interferograms,” J. Mod. Opt. 43, 701–708 (1996).
[CrossRef]

Seta, K.

Y. Bitou, K. Seta, “Gauge block measurement using a wavelength scanning interferometer,” Jpn. J. Appl. Phys. 39, 6084–6088 (2000).
[CrossRef]

Shishido, M.

Sivakumar, N. R.

Strand, T. C.

Sugai, M.

Sunouchi, K.

A. Yamamoto, C. C. Kuo, K. Sunouchi, S. Wada, I. Yamaguchi, H. Tashiro, “Surface shape measurement by wavelength scanning interferometry using an electronically tuned Ti:sapphire laser,” Opt. Rev. 8, 59–63 (2001).
[CrossRef]

Takahashi, H.

Takeda, M.

Tashiro, H.

A. Yamamoto, C. C. Kuo, K. Sunouchi, S. Wada, I. Yamaguchi, H. Tashiro, “Surface shape measurement by wavelength scanning interferometry using an electronically tuned Ti:sapphire laser,” Opt. Rev. 8, 59–63 (2001).
[CrossRef]

Tiziani, H. J.

H. J. Tiziani, B. Franze, P. Haible, “Wavelength-shift speckle interferometry for absolute profilometry using mode-hope free external cavity diode laser,” J. Mod. Opt. 44, 1485–1496 (1997).
[CrossRef]

Tribillon, G.

P. Sandoz, G. Tribillon, H. Perrin, “High-resolution profilometry by using calculation algorithms for spectroscopic analysis of white-light interferograms,” J. Mod. Opt. 43, 701–708 (1996).
[CrossRef]

Vabre, L.

Venkatakrishnan, K.

Venzke, H.

Wada, S.

A. Yamamoto, C. C. Kuo, K. Sunouchi, S. Wada, I. Yamaguchi, H. Tashiro, “Surface shape measurement by wavelength scanning interferometry using an electronically tuned Ti:sapphire laser,” Opt. Rev. 8, 59–63 (2001).
[CrossRef]

Wallace, R. W.

Watanabe, Y.

Wyant, J. C.

Yago, H.

Yamaguchi, I.

A. Yamamoto, C. C. Kuo, K. Sunouchi, S. Wada, I. Yamaguchi, H. Tashiro, “Surface shape measurement by wavelength scanning interferometry using an electronically tuned Ti:sapphire laser,” Opt. Rev. 8, 59–63 (2001).
[CrossRef]

S. Kuwamura, I. Yamaguchi, “Wavelength scanning profilometry for real-time surface shape measurement,” Appl. Opt. 36, 4473–4482 (1997).
[CrossRef] [PubMed]

Yamamoto, A.

A. Yamamoto, C. C. Kuo, K. Sunouchi, S. Wada, I. Yamaguchi, H. Tashiro, “Surface shape measurement by wavelength scanning interferometry using an electronically tuned Ti:sapphire laser,” Opt. Rev. 8, 59–63 (2001).
[CrossRef]

Yamamoto, H.

Yoshizawa, T.

Appl. Opt. (13)

B. S. Lee, T. C. Strand, “Profilometry with a coherence scanning microscope,” Appl. Opt. 29, 3784–3788 (1990).
[CrossRef] [PubMed]

T. Dressel, G. Hausler, H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31, 919–925 (1992).
[CrossRef]

B. Bhushan, J. C. Wyant, C. L. Koliopoulos, “Measurement of surface topography of magnetic tapes by Mirau interferometry,” Appl. Opt. 24, 1489–1497 (1985).
[CrossRef] [PubMed]

G. S. Kino, S. S. Chim, “Mirau correlation microscope,” Appl. Opt. 29, 3775–3783 (1990).
[CrossRef] [PubMed]

P. Caber, “Interferometric profiler for rough surfaces,” Appl. Opt. 32, 3438–3441 (1993).
[CrossRef] [PubMed]

L. Deck, P. de Groot, “High-speed noncontact profiler based on scanning white-light interferometry,” Appl. Opt. 33, 7334–7338 (1994).
[CrossRef] [PubMed]

B. K. A. Ngoi, K. Venkatakrishnan, N. R. Sivakumar, “Phase-shifting interferometry immune to vibration,” Appl. Opt. 40, 3211–3214 (2001).
[CrossRef]

M. Takeda, H. Yamamoto, “Fourier-transform speckle profilometry: three-dimensional shape measurements of diffuse objects with large height steps and/or spatially isolated surfaces,” Appl. Opt. 33, 7829–7837 (1994).
[CrossRef] [PubMed]

S. Kuwamura, I. Yamaguchi, “Wavelength scanning profilometry for real-time surface shape measurement,” Appl. Opt. 36, 4473–4482 (1997).
[CrossRef] [PubMed]

M. Kinoshita, M. Takeda, H. Yago, Y. Watanabe, T. Kurokawa, “Optical frequency-domain microprofilometry with a frequency-tunable liquid-crystal Fabry-Perot etalon device,” Appl. Opt. 38, 7063–7068 (1999).
[CrossRef]

D. S. Mehta, M. Sugai, H. Hinosugi, S. Saito, M. Takeda, T. Kurokawa, H. Takahashi, M. Ando, M. Shishido, T. Yoshizawa, “Simultaneous three-dimensional step-height measurement and high-resolution tomographic imaging using spectral interferometric microscope,” Appl. Opt. 41, 3874–3885 (2002).
[CrossRef] [PubMed]

D. S. Mehta, H. Hinosugi, S. Saito, M. Takeda, T. Kurokawa, H. Takahashi, M. Ando, M. Shishido, T. Yoshizawa, “Spectral interferometric microscope with tandem liquid-crystal Fabry-Perot interferometers for extension of the dynamic range in three-dimensional step-height measurement,” Appl. Opt. 42, 682–690 (2003).
[CrossRef] [PubMed]

G. Georgiev, D. A. Glenar, J. J. Hillman, “Spectral characterization of acousto-optic filters used in imaging spectroscopy,” Appl. Opt. 41, 209–217 (2002).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25, 370–372 (1974).
[CrossRef]

J. Mod. Opt. (3)

H. J. Tiziani, B. Franze, P. Haible, “Wavelength-shift speckle interferometry for absolute profilometry using mode-hope free external cavity diode laser,” J. Mod. Opt. 44, 1485–1496 (1997).
[CrossRef]

P. de Groot, L. Deck, “Surface profiling by analysis of white light interferograms in the spatial frequency domain,” J. Mod. Opt. 42, 389–401 (1995).
[CrossRef]

P. Sandoz, G. Tribillon, H. Perrin, “High-resolution profilometry by using calculation algorithms for spectroscopic analysis of white-light interferograms,” J. Mod. Opt. 43, 701–708 (1996).
[CrossRef]

J. Opt. Soc. Am. (2)

Jpn. J. Appl. Phys. (1)

Y. Bitou, K. Seta, “Gauge block measurement using a wavelength scanning interferometer,” Jpn. J. Appl. Phys. 39, 6084–6088 (2000).
[CrossRef]

Opt. Lett. (2)

Opt. Rev. (1)

A. Yamamoto, C. C. Kuo, K. Sunouchi, S. Wada, I. Yamaguchi, H. Tashiro, “Surface shape measurement by wavelength scanning interferometry using an electronically tuned Ti:sapphire laser,” Opt. Rev. 8, 59–63 (2001).
[CrossRef]

Optik (1)

T. H. Barnes, T. Eiju, K. Matsuda, “Rough surface profile measurement using speckle optical frequency domain reflectometry with an external cavity tunable diode laser,” Optik 103, 93–100 (1996).

Other (1)

http://www.brimrose.com/ao_devices.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Basic optical setup of the spectral interference Mirau microscope.

Fig. 2
Fig. 2

(a) Schematic illustration of stacked spectral interferograms g(x, y; k). The object is shown at the bottom, with the reference mirror positioned exactly at the center of the object. In region A the spectral fringes move in one direction, and in B they move in the opposite direction. (b) Temporal frequency spectra of the spectral interference fringe signals at points in regions A and B.

Fig. 3
Fig. 3

(a) 2-D spatial frequency spectra of the interferograms shown in Fig. 2(a). (b) Temporal frequency spectra of the spectral interferogram at point (x, y) in regions A and B.

Fig. 4
Fig. 4

Experimental setup of the Mirau-type spectral interference microscope for measuring three-dimensional step-height: SM, single mode.

Fig. 5
Fig. 5

(a) Solid curve (a) is the spectrum of the light emitted by the SLD and dotted curve (b) is the spectrum of the light transmitted by the AOTF. (b) Variation of wavelength at frequency-scanning step number n.

Fig. 6
Fig. 6

(a) Discontinuous object structure made from two gauge blocks, A and B. (b) Illustration of the 100-μm step height between gauge blocks A and B.

Fig. 7
Fig. 7

(a) Example of an experimentally obtained interference fringe pattern of gauge block sets with different height steps. In region A the spectral fringes move in the upward direction as indicated by an upward arrow, and in the region B they move in the opposite direction. (b) Two-dimensional spatial Fourier spectrum of the interference fringe pattern shown in (a). (c) The real part of the spatial interferogram. (d) The imaginary part of the spatial interferogram.

Fig. 8
Fig. 8

Fourier spectra of spectral interference fringes moving (a) in the upward direction in region A and (b) in the opposite direction in region B.

Fig. 9
Fig. 9

(a) Phase profile of the interference fringes moving upward in object region A. (b) Phase profile of the interference fringes moving upward in object region B.

Fig. 10
Fig. 10

Reconstructed 3-D step height of the object structure shown in Fig. 6(a).

Fig. 11
Fig. 11

(a) Example of an experimentally obtained interference fringe pattern of a steplike object on the Japanese 1-yen coin. (b) Reconstructed three-dimensional surface profile of the object structure.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

gAx, y; k=SAx, y; k1+γAx, y; kcosϕAx, y; k,
gBx, y; k=SBx, y; k1+γBx, y; kcosϕBx, y; k,
ϕAx, y; k=klAx, y,
ϕBx, y; k=-klBx, y,
lAx, y=ΔϕAx, y; kΔk,
lBx, y=-ΔϕBx, y; kΔk,
hx, y=lAx, y2+lBx, y2.
gx, y; k=Sx, y; k1+γx, y; kcosk2πf0xx+f0xy+lx, y,
Gfx, fy; k=Sˆfx, fy; k+Cfx-kf0x, fy-kf0y; k+C*-fx+kf0x, -fy+kf0y; k,
Gfx, fy; k=Fxygx, y; k =-- gx, y; k×exp-i2πfxx+fyydxdy,
Sˆfx, fy; k=FxySx, y; k,
Cfx, fy; k=Fxycx, y; k =Fxy½ γx, y; kSx, y; k×expiklx, y,
Fxy-1Cfx-kf0x, fy-kf0y; k=cx, y; kexpi2πkf0xx+f0yy=½ γx, y; kSx, y; kexpiklx, y×expi2πkf0xx+f0yy=c˜x, y; kexpiklx, y,
c˜x, y; k=½ γx, y; kSx, y; k×expi2πkf0xx+f0yy.
Fkc˜x, y; kexpiklx, y=- c˜x, y; kexp-2πifk-lx, y/2πkdk =C˜x, y; fk-lx, y/2π.
cˆx, y; k=½ γx, y; kSx, y; kexpik2πf0xx+f0yy+lx, y.
ϕx, y; k=tan-1Imcˆx, y; kRecˆx, y; k=k2πf0xx+f0yy+lx, y.

Metrics