Abstract

A focused argon-ion laser beam is used on a spin-coated polymeric thin-film deposited upon a SiO2/Si substrate to polymerize the core for fabrication of Gaussian profile optical channel waveguides. A rib structure that allows only the fundamental mode to propagate even with its higher dimension and high-index contrast between the core and the cladding was fabricated. When the thickness of the core-index region outside the rib section decreases, the waveguide produces higher-order modes at the output. The waveguide reported here has cross-sectional dimensions and numerical apertures that match the single-mode fibers for efficient coupling. I used a mixture of two intermiscible acrylate monomers for the cladding and the core of the waveguides. The polymerization process and its dependent dwell time or scan speed and the laser power intensity are shown. I present the operational characteristics of directional couplers using a rib waveguide structure with a core-cladding index difference.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. L. Booth, “Low loss channel waveguides in polymers,” J. Lightwave Technol. 7, 1445–1453 (1989).
    [CrossRef]
  2. L. A. Hornak, Polymers for Lightwave and Integrated Optics (Marcel Dekker, New York, 1992).
  3. R. T. Chen, “Graded index linear and curved polymer channel waveguide arrays for massively parallel optical interconnects,” Appl. Phys. Lett. 61, 2278–2280 (1992).
    [CrossRef]
  4. J. R. Hill, P. Pantelis, “Polymeric electro-optic phase modulators formed by self-alignment over channels etched into indium phosphide,” J. Appl. Phys. 70, 4649–4651 (1991).
    [CrossRef]
  5. R. Moosburger, K. Petermann, “4 × 4 Digital optical matrix switch using polymeric oversized rib waveguides,” IEEE Photon. Technol. Lett. 10, 684–686 (1998).
    [CrossRef]
  6. Y. Hida, H. Onose, S. Imamura, “Polymer waveguide thermooptic switch with low electric power consumption at 1.3 μm,” IEEE Photon. Technol. Lett. 5, 782–784 (1993).
    [CrossRef]
  7. T. Watanabe, N. Ooba, S. Hayashida, T. Kurihara, S. Imamura, “Polymeric optical waveguide circuits formed using silicone resin,” J. Lightwave Technol. 16, 1049–1055 (1998).
    [CrossRef]
  8. R. R. Krchnavek, G. R. Lalk, D. H. Hartman, “Laser direct writing of channel waveguides using spin-on polymers,” J. Appl. Phys. 66, 5156–5160 (1989).
    [CrossRef]
  9. L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, J. T. Yardley, “Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704–1713 (1996).
    [CrossRef]
  10. A. K. Das, B. S. Chaudhari, S. Ghosh, “Characteristics of polymeric optical passive single-mode waveguiding devices fabricated by an argon-ion laser,” Appl. Opt. 37, 6779–6786 (1998).
    [CrossRef]
  11. R. Yoshimura, H. Nakagome, S. Tomaru, S. Imamura, “Fabrication of single-mode polymeric optical waveguides by laser-beam writing,” Electron. Lett. 31, 2169–2170 (1995).
    [CrossRef]
  12. N. Dagli, C. G. Fonstad, “Analysis of rib dielectric waveguides,” IEEE J. Quantum Electron. QE-21, 315–321 (1985).
    [CrossRef]
  13. S. S. Lee, S. Y. Shin, “Polarization-insensitive digital optical switch using an electro-optic polymer rib waveguide,” Electron. Lett. 33, 314–316 (1997).
    [CrossRef]
  14. J. A. Cavailles, M. Renaud, J. F. Vinchant, M. Erman, P. Svensson, L. Thylen, “First digital optical switch based on InP/GaInAsP double heterostructure waveguides,” Electron. Lett. 27, 699–700 (1991).
    [CrossRef]
  15. C. F. Kane, R. R. Krchnavek, “Benzocyclobutene optical waveguides,” IEEE Photon. Technol. Lett. 7, 535–537 (1995).
    [CrossRef]
  16. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman Hall, New York, 1983).
  17. A. K. Das, A. K. Ganguly, “Efficient method of coupling from a single-mode fiber to a thin-film waveguide,” Opt. Lett. 19, 2110–2112 (1994).
    [CrossRef] [PubMed]
  18. M. K. Pandit, H. P. Chan, C. K. Chow, K. S. Chiang, S. Ghosh, A. K. Das, “A wide-angle X-junction in polymer using truncated-structure branches (TSB),” J. Lightwave Technol. 20, 86–91 (2002).
    [CrossRef]

2002 (1)

1998 (3)

1997 (1)

S. S. Lee, S. Y. Shin, “Polarization-insensitive digital optical switch using an electro-optic polymer rib waveguide,” Electron. Lett. 33, 314–316 (1997).
[CrossRef]

1996 (1)

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, J. T. Yardley, “Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704–1713 (1996).
[CrossRef]

1995 (2)

R. Yoshimura, H. Nakagome, S. Tomaru, S. Imamura, “Fabrication of single-mode polymeric optical waveguides by laser-beam writing,” Electron. Lett. 31, 2169–2170 (1995).
[CrossRef]

C. F. Kane, R. R. Krchnavek, “Benzocyclobutene optical waveguides,” IEEE Photon. Technol. Lett. 7, 535–537 (1995).
[CrossRef]

1994 (1)

1993 (1)

Y. Hida, H. Onose, S. Imamura, “Polymer waveguide thermooptic switch with low electric power consumption at 1.3 μm,” IEEE Photon. Technol. Lett. 5, 782–784 (1993).
[CrossRef]

1992 (1)

R. T. Chen, “Graded index linear and curved polymer channel waveguide arrays for massively parallel optical interconnects,” Appl. Phys. Lett. 61, 2278–2280 (1992).
[CrossRef]

1991 (2)

J. R. Hill, P. Pantelis, “Polymeric electro-optic phase modulators formed by self-alignment over channels etched into indium phosphide,” J. Appl. Phys. 70, 4649–4651 (1991).
[CrossRef]

J. A. Cavailles, M. Renaud, J. F. Vinchant, M. Erman, P. Svensson, L. Thylen, “First digital optical switch based on InP/GaInAsP double heterostructure waveguides,” Electron. Lett. 27, 699–700 (1991).
[CrossRef]

1989 (2)

B. L. Booth, “Low loss channel waveguides in polymers,” J. Lightwave Technol. 7, 1445–1453 (1989).
[CrossRef]

R. R. Krchnavek, G. R. Lalk, D. H. Hartman, “Laser direct writing of channel waveguides using spin-on polymers,” J. Appl. Phys. 66, 5156–5160 (1989).
[CrossRef]

1985 (1)

N. Dagli, C. G. Fonstad, “Analysis of rib dielectric waveguides,” IEEE J. Quantum Electron. QE-21, 315–321 (1985).
[CrossRef]

Booth, B. L.

B. L. Booth, “Low loss channel waveguides in polymers,” J. Lightwave Technol. 7, 1445–1453 (1989).
[CrossRef]

Cavailles, J. A.

J. A. Cavailles, M. Renaud, J. F. Vinchant, M. Erman, P. Svensson, L. Thylen, “First digital optical switch based on InP/GaInAsP double heterostructure waveguides,” Electron. Lett. 27, 699–700 (1991).
[CrossRef]

Chan, H. P.

Chaudhari, B. S.

Chen, R. T.

R. T. Chen, “Graded index linear and curved polymer channel waveguide arrays for massively parallel optical interconnects,” Appl. Phys. Lett. 61, 2278–2280 (1992).
[CrossRef]

Chiang, K. S.

Chow, C. K.

Dagli, N.

N. Dagli, C. G. Fonstad, “Analysis of rib dielectric waveguides,” IEEE J. Quantum Electron. QE-21, 315–321 (1985).
[CrossRef]

Das, A. K.

Eldada, L.

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, J. T. Yardley, “Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704–1713 (1996).
[CrossRef]

Erman, M.

J. A. Cavailles, M. Renaud, J. F. Vinchant, M. Erman, P. Svensson, L. Thylen, “First digital optical switch based on InP/GaInAsP double heterostructure waveguides,” Electron. Lett. 27, 699–700 (1991).
[CrossRef]

Fonstad, C. G.

N. Dagli, C. G. Fonstad, “Analysis of rib dielectric waveguides,” IEEE J. Quantum Electron. QE-21, 315–321 (1985).
[CrossRef]

Ganguly, A. K.

Ghosh, S.

Hartman, D. H.

R. R. Krchnavek, G. R. Lalk, D. H. Hartman, “Laser direct writing of channel waveguides using spin-on polymers,” J. Appl. Phys. 66, 5156–5160 (1989).
[CrossRef]

Hayashida, S.

Hida, Y.

Y. Hida, H. Onose, S. Imamura, “Polymer waveguide thermooptic switch with low electric power consumption at 1.3 μm,” IEEE Photon. Technol. Lett. 5, 782–784 (1993).
[CrossRef]

Hill, J. R.

J. R. Hill, P. Pantelis, “Polymeric electro-optic phase modulators formed by self-alignment over channels etched into indium phosphide,” J. Appl. Phys. 70, 4649–4651 (1991).
[CrossRef]

Hornak, L. A.

L. A. Hornak, Polymers for Lightwave and Integrated Optics (Marcel Dekker, New York, 1992).

Imamura, S.

T. Watanabe, N. Ooba, S. Hayashida, T. Kurihara, S. Imamura, “Polymeric optical waveguide circuits formed using silicone resin,” J. Lightwave Technol. 16, 1049–1055 (1998).
[CrossRef]

R. Yoshimura, H. Nakagome, S. Tomaru, S. Imamura, “Fabrication of single-mode polymeric optical waveguides by laser-beam writing,” Electron. Lett. 31, 2169–2170 (1995).
[CrossRef]

Y. Hida, H. Onose, S. Imamura, “Polymer waveguide thermooptic switch with low electric power consumption at 1.3 μm,” IEEE Photon. Technol. Lett. 5, 782–784 (1993).
[CrossRef]

Kane, C. F.

C. F. Kane, R. R. Krchnavek, “Benzocyclobutene optical waveguides,” IEEE Photon. Technol. Lett. 7, 535–537 (1995).
[CrossRef]

Krchnavek, R. R.

C. F. Kane, R. R. Krchnavek, “Benzocyclobutene optical waveguides,” IEEE Photon. Technol. Lett. 7, 535–537 (1995).
[CrossRef]

R. R. Krchnavek, G. R. Lalk, D. H. Hartman, “Laser direct writing of channel waveguides using spin-on polymers,” J. Appl. Phys. 66, 5156–5160 (1989).
[CrossRef]

Kurihara, T.

Lalk, G. R.

R. R. Krchnavek, G. R. Lalk, D. H. Hartman, “Laser direct writing of channel waveguides using spin-on polymers,” J. Appl. Phys. 66, 5156–5160 (1989).
[CrossRef]

Lee, S. S.

S. S. Lee, S. Y. Shin, “Polarization-insensitive digital optical switch using an electro-optic polymer rib waveguide,” Electron. Lett. 33, 314–316 (1997).
[CrossRef]

Love, J. D.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman Hall, New York, 1983).

Moosburger, R.

R. Moosburger, K. Petermann, “4 × 4 Digital optical matrix switch using polymeric oversized rib waveguides,” IEEE Photon. Technol. Lett. 10, 684–686 (1998).
[CrossRef]

Nakagome, H.

R. Yoshimura, H. Nakagome, S. Tomaru, S. Imamura, “Fabrication of single-mode polymeric optical waveguides by laser-beam writing,” Electron. Lett. 31, 2169–2170 (1995).
[CrossRef]

Onose, H.

Y. Hida, H. Onose, S. Imamura, “Polymer waveguide thermooptic switch with low electric power consumption at 1.3 μm,” IEEE Photon. Technol. Lett. 5, 782–784 (1993).
[CrossRef]

Ooba, N.

Pandit, M. K.

Pantelis, P.

J. R. Hill, P. Pantelis, “Polymeric electro-optic phase modulators formed by self-alignment over channels etched into indium phosphide,” J. Appl. Phys. 70, 4649–4651 (1991).
[CrossRef]

Petermann, K.

R. Moosburger, K. Petermann, “4 × 4 Digital optical matrix switch using polymeric oversized rib waveguides,” IEEE Photon. Technol. Lett. 10, 684–686 (1998).
[CrossRef]

Renaud, M.

J. A. Cavailles, M. Renaud, J. F. Vinchant, M. Erman, P. Svensson, L. Thylen, “First digital optical switch based on InP/GaInAsP double heterostructure waveguides,” Electron. Lett. 27, 699–700 (1991).
[CrossRef]

Shacklette, L. W.

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, J. T. Yardley, “Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704–1713 (1996).
[CrossRef]

Shin, S. Y.

S. S. Lee, S. Y. Shin, “Polarization-insensitive digital optical switch using an electro-optic polymer rib waveguide,” Electron. Lett. 33, 314–316 (1997).
[CrossRef]

Snyder, A. W.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman Hall, New York, 1983).

Stengel, K. M. T.

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, J. T. Yardley, “Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704–1713 (1996).
[CrossRef]

Svensson, P.

J. A. Cavailles, M. Renaud, J. F. Vinchant, M. Erman, P. Svensson, L. Thylen, “First digital optical switch based on InP/GaInAsP double heterostructure waveguides,” Electron. Lett. 27, 699–700 (1991).
[CrossRef]

Thylen, L.

J. A. Cavailles, M. Renaud, J. F. Vinchant, M. Erman, P. Svensson, L. Thylen, “First digital optical switch based on InP/GaInAsP double heterostructure waveguides,” Electron. Lett. 27, 699–700 (1991).
[CrossRef]

Tomaru, S.

R. Yoshimura, H. Nakagome, S. Tomaru, S. Imamura, “Fabrication of single-mode polymeric optical waveguides by laser-beam writing,” Electron. Lett. 31, 2169–2170 (1995).
[CrossRef]

Vinchant, J. F.

J. A. Cavailles, M. Renaud, J. F. Vinchant, M. Erman, P. Svensson, L. Thylen, “First digital optical switch based on InP/GaInAsP double heterostructure waveguides,” Electron. Lett. 27, 699–700 (1991).
[CrossRef]

Watanabe, T.

Xu, C.

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, J. T. Yardley, “Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704–1713 (1996).
[CrossRef]

Yardley, J. T.

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, J. T. Yardley, “Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704–1713 (1996).
[CrossRef]

Yoshimura, R.

R. Yoshimura, H. Nakagome, S. Tomaru, S. Imamura, “Fabrication of single-mode polymeric optical waveguides by laser-beam writing,” Electron. Lett. 31, 2169–2170 (1995).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. T. Chen, “Graded index linear and curved polymer channel waveguide arrays for massively parallel optical interconnects,” Appl. Phys. Lett. 61, 2278–2280 (1992).
[CrossRef]

Electron. Lett. (3)

R. Yoshimura, H. Nakagome, S. Tomaru, S. Imamura, “Fabrication of single-mode polymeric optical waveguides by laser-beam writing,” Electron. Lett. 31, 2169–2170 (1995).
[CrossRef]

S. S. Lee, S. Y. Shin, “Polarization-insensitive digital optical switch using an electro-optic polymer rib waveguide,” Electron. Lett. 33, 314–316 (1997).
[CrossRef]

J. A. Cavailles, M. Renaud, J. F. Vinchant, M. Erman, P. Svensson, L. Thylen, “First digital optical switch based on InP/GaInAsP double heterostructure waveguides,” Electron. Lett. 27, 699–700 (1991).
[CrossRef]

IEEE J. Quantum Electron. (1)

N. Dagli, C. G. Fonstad, “Analysis of rib dielectric waveguides,” IEEE J. Quantum Electron. QE-21, 315–321 (1985).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

C. F. Kane, R. R. Krchnavek, “Benzocyclobutene optical waveguides,” IEEE Photon. Technol. Lett. 7, 535–537 (1995).
[CrossRef]

R. Moosburger, K. Petermann, “4 × 4 Digital optical matrix switch using polymeric oversized rib waveguides,” IEEE Photon. Technol. Lett. 10, 684–686 (1998).
[CrossRef]

Y. Hida, H. Onose, S. Imamura, “Polymer waveguide thermooptic switch with low electric power consumption at 1.3 μm,” IEEE Photon. Technol. Lett. 5, 782–784 (1993).
[CrossRef]

J. Appl. Phys. (2)

R. R. Krchnavek, G. R. Lalk, D. H. Hartman, “Laser direct writing of channel waveguides using spin-on polymers,” J. Appl. Phys. 66, 5156–5160 (1989).
[CrossRef]

J. R. Hill, P. Pantelis, “Polymeric electro-optic phase modulators formed by self-alignment over channels etched into indium phosphide,” J. Appl. Phys. 70, 4649–4651 (1991).
[CrossRef]

J. Lightwave Technol. (4)

B. L. Booth, “Low loss channel waveguides in polymers,” J. Lightwave Technol. 7, 1445–1453 (1989).
[CrossRef]

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, J. T. Yardley, “Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704–1713 (1996).
[CrossRef]

T. Watanabe, N. Ooba, S. Hayashida, T. Kurihara, S. Imamura, “Polymeric optical waveguide circuits formed using silicone resin,” J. Lightwave Technol. 16, 1049–1055 (1998).
[CrossRef]

M. K. Pandit, H. P. Chan, C. K. Chow, K. S. Chiang, S. Ghosh, A. K. Das, “A wide-angle X-junction in polymer using truncated-structure branches (TSB),” J. Lightwave Technol. 20, 86–91 (2002).
[CrossRef]

Opt. Lett. (1)

Other (2)

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman Hall, New York, 1983).

L. A. Hornak, Polymers for Lightwave and Integrated Optics (Marcel Dekker, New York, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic diagram of photochemical polymerization by an argon-ion laser for fabrication of polymeric waveguide devices.

Fig. 2
Fig. 2

Variation of thin-film thickness with a spin speed for the mixture of monomer solutions, with the viscosity of solution c greater than the viscosity of solution b greater than the viscosity of solution a.

Fig. 3
Fig. 3

Thickness of the polymerized film (T P ) as a function of the laser spot dwell time and scanning speed for different laser powers (P in).

Fig. 4
Fig. 4

Cross section of the Gaussian profile core of a channel waveguide of refractive index n co, polymerized by a Gaussian intensity profile laser beam (R = 3.654 μm, t d = 20 ms, and P in = 20 and 25 μW). (a) The lower cladding is SiO2 and the upper cladding is air. (b) The lower and upper claddings are polymers with refractive index n cl.

Fig. 5
Fig. 5

Width of the polymerized channel waveguide core as a function of the laser spot dwell time and scanning speed for different laser powers.

Fig. 6
Fig. 6

Plots of minimum etching time t m for a polymeric film of thickness T f . The concentration for solvent (a) is greater than the concentration for solvent (b).

Fig. 7
Fig. 7

Cross section for the core of an oversized rib channel waveguide of refractive index n co, polymerized by a laser beam and the equivalent rectangular rib distribution. The lower cladding is SiO2 and the upper cladding is air for (a) type A with R = 3.654 μm, t d = 25 ms, P in = 20 μW, T s = 4.5 μm, T e = 3.9 μm, and D e = 3.9 μm and (b) type B with R = 3.654 μm, t d = 25 ms, P in = 20 μW, T s = 0.6 μm, T e = 7.8 μm, and D e = 5.2 μm.

Fig. 8
Fig. 8

Cross section for the core of an oversized rib channel waveguide of refractive index n co polymerized by a laser beam and the equivalent rectangular rib distribution. The lower and upper claddings are polymers of refractive index n cl with R = 3.654 μm, t d = 25 ms, P in = 20 μW, T s = 4.5 μm, T e = 3.9 μm, and D e = 3.9 μm.

Fig. 9
Fig. 9

Cross section of a directional coupler in the coupling zone having equivalent rib height and width T e and 2D e , respectively, with the Gaussian profile core (n co) polymerized by a laser beam.

Fig. 10
Fig. 10

Schematic view of a directional coupler with a rib waveguide structure.

Fig. 11
Fig. 11

Schematic diagram for measurement of the propagation characteristics of polymeric waveguide devices.

Fig. 12
Fig. 12

Output intensity pattern and profile with a single lobe indicating single-mode rib waveguide structure.

Fig. 13
Fig. 13

Output intensity pattern and profile with multiple lobes indicating a multimode rib waveguide structure.

Fig. 14
Fig. 14

Transfer characteristics of a laser-fabricated directional coupler for the TE mode by use of polymeric material Δn = 0.0026 and Δn = 0.004.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

2R=4λLf/πD,
Ry=y/fD/2-R+R.
Δ=4.1λLf/D2.
Tp=C1tdPin,
SP=2R/td.
PL=tdPin exp-r2/R21/2,
DMR-lnPLm2/Pintd21/2.
D1=R2 lnTp/Ts1/2.
Ts/Te+Ts0.5,
2De/Te+Ts0.3+ Ts/Te+Ts1-Ts/Te+Ts21/2.
Pc=PiF2 sin2Cz/F,
F2=1/1+β1-β2/2C,

Metrics