Abstract

We describe the detection of bursts of surface acoustic waves by a double-pulsed TV holography technique. We describe mathematically the long- and short-wave bursts in the output correlograms and validate theoretical results with experimental images. The use of short-wave bursts permits us to scan the surface and makes it easier to distinguish, for purposes of nondestructive testing, the disturbances produced by flaws.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. A. Viktorov, Rayleigh and Lamb Waves: Physical Theory and Applications (Plenum, New York, 1967).
  2. R. M. Gagosz, “Pulsed holography,” in Holographic Nondestructive Testing, R. K. Erf, ed. (Academic, Orlando, Fla., 1974), pp. 61–85.
    [Crossref]
  3. F. D. Schroeder, H. A. Crostack, “Real-time holography of ultrasonic surface waves,” in Optical Inspection and Micromeasurements, C. Gorecki, ed., Proc. SPIE2782, 290–295 (1996).
    [Crossref]
  4. H. A. Crostack, E. H. Meyer, K. J. Pohl, “Holographic soundfield visualisation for nondestructive testing of hot surfaces,” in Industrial Applications of Holographic and Speckle Measuring Techniques, W. P. Jüptner, ed., Proc. SPIE1508, 101–109 (1991).
    [Crossref]
  5. T. D. Mast, G. A. Gordon, “Quantitative flaw reconstruction from ultrasonic surface wavefields measured by electronic speckle pattern interferometry,” IEEE Trans. Ultrason. Ferroelectrics Freq. Control 48, 432–444 (2001).
    [Crossref]
  6. D. Cernadas, C. Trillo, A. F. Doval, J. C. López, B. V. Dorrío, J. L. Fernández, M. Pérez-Amor, “Non-destructive testing with surface acoustic waves using double-pulse TV holography,” Meas. Sci. Technol. 13, 438–444 (2002).
  7. R. Spooren, “Double-pulse subtraction TV holography,” Opt. Eng. 31, 1000–1007 (1992).
    [Crossref]
  8. A. F. Doval, “A systematic approach to TV holography,” Meas. Sci. Technol. 11, R1–R36 (2000).
    [Crossref]
  9. R. Spooren, “Double-pulse characteristics of a single-oscillator Nd:YAG laser affecting its performance in TV holography,” Appl. Opt. 31, 208–216 (1992).
    [Crossref] [PubMed]
  10. A. F. Doval, C. Trillo, D. Cernadas, B. V. Dorrío, C. López, J. L. Fernández, M. Pérez-Amor, “Enhancing the sensitivity to small phase changes in double-exposure stroboscopic television holography,” Appl. Opt. 39, 4582–4588 (2000).
    [Crossref]
  11. W. Steinchen, G. Kupfer, F. Vössing, P. Mäckel, “CAE-based compensation methods of non-uniform pulse laser beam profiles,” Opt. Lasers Eng. 32, 379–385 (2000).
    [Crossref]
  12. R. C. Gonzalez, P. Wintz, “Image enhancement,” in Digital Image Processing (Addison-Wesley, Reading, Mass., 1987), p. 141.
  13. D. Cernadas, C. Trillo, A. F. Doval, B. V. Dorrío, C. López, J. L. Fernández, M. Pérez-Amor, “Rayleigh wave amplitude field determination by a simple speckle point interferometer,” in Interferometry in Speckle Light, Theory and Applications, P. Jacquot, J.-M. Fournier, eds. (Springer-Verlag, Berlin, 2000), pp. 297–304.
    [Crossref]

2002 (1)

D. Cernadas, C. Trillo, A. F. Doval, J. C. López, B. V. Dorrío, J. L. Fernández, M. Pérez-Amor, “Non-destructive testing with surface acoustic waves using double-pulse TV holography,” Meas. Sci. Technol. 13, 438–444 (2002).

2001 (1)

T. D. Mast, G. A. Gordon, “Quantitative flaw reconstruction from ultrasonic surface wavefields measured by electronic speckle pattern interferometry,” IEEE Trans. Ultrason. Ferroelectrics Freq. Control 48, 432–444 (2001).
[Crossref]

2000 (3)

A. F. Doval, C. Trillo, D. Cernadas, B. V. Dorrío, C. López, J. L. Fernández, M. Pérez-Amor, “Enhancing the sensitivity to small phase changes in double-exposure stroboscopic television holography,” Appl. Opt. 39, 4582–4588 (2000).
[Crossref]

W. Steinchen, G. Kupfer, F. Vössing, P. Mäckel, “CAE-based compensation methods of non-uniform pulse laser beam profiles,” Opt. Lasers Eng. 32, 379–385 (2000).
[Crossref]

A. F. Doval, “A systematic approach to TV holography,” Meas. Sci. Technol. 11, R1–R36 (2000).
[Crossref]

1992 (2)

Cernadas, D.

D. Cernadas, C. Trillo, A. F. Doval, J. C. López, B. V. Dorrío, J. L. Fernández, M. Pérez-Amor, “Non-destructive testing with surface acoustic waves using double-pulse TV holography,” Meas. Sci. Technol. 13, 438–444 (2002).

A. F. Doval, C. Trillo, D. Cernadas, B. V. Dorrío, C. López, J. L. Fernández, M. Pérez-Amor, “Enhancing the sensitivity to small phase changes in double-exposure stroboscopic television holography,” Appl. Opt. 39, 4582–4588 (2000).
[Crossref]

D. Cernadas, C. Trillo, A. F. Doval, B. V. Dorrío, C. López, J. L. Fernández, M. Pérez-Amor, “Rayleigh wave amplitude field determination by a simple speckle point interferometer,” in Interferometry in Speckle Light, Theory and Applications, P. Jacquot, J.-M. Fournier, eds. (Springer-Verlag, Berlin, 2000), pp. 297–304.
[Crossref]

Crostack, H. A.

F. D. Schroeder, H. A. Crostack, “Real-time holography of ultrasonic surface waves,” in Optical Inspection and Micromeasurements, C. Gorecki, ed., Proc. SPIE2782, 290–295 (1996).
[Crossref]

H. A. Crostack, E. H. Meyer, K. J. Pohl, “Holographic soundfield visualisation for nondestructive testing of hot surfaces,” in Industrial Applications of Holographic and Speckle Measuring Techniques, W. P. Jüptner, ed., Proc. SPIE1508, 101–109 (1991).
[Crossref]

Dorrío, B. V.

D. Cernadas, C. Trillo, A. F. Doval, J. C. López, B. V. Dorrío, J. L. Fernández, M. Pérez-Amor, “Non-destructive testing with surface acoustic waves using double-pulse TV holography,” Meas. Sci. Technol. 13, 438–444 (2002).

A. F. Doval, C. Trillo, D. Cernadas, B. V. Dorrío, C. López, J. L. Fernández, M. Pérez-Amor, “Enhancing the sensitivity to small phase changes in double-exposure stroboscopic television holography,” Appl. Opt. 39, 4582–4588 (2000).
[Crossref]

D. Cernadas, C. Trillo, A. F. Doval, B. V. Dorrío, C. López, J. L. Fernández, M. Pérez-Amor, “Rayleigh wave amplitude field determination by a simple speckle point interferometer,” in Interferometry in Speckle Light, Theory and Applications, P. Jacquot, J.-M. Fournier, eds. (Springer-Verlag, Berlin, 2000), pp. 297–304.
[Crossref]

Doval, A. F.

D. Cernadas, C. Trillo, A. F. Doval, J. C. López, B. V. Dorrío, J. L. Fernández, M. Pérez-Amor, “Non-destructive testing with surface acoustic waves using double-pulse TV holography,” Meas. Sci. Technol. 13, 438–444 (2002).

A. F. Doval, “A systematic approach to TV holography,” Meas. Sci. Technol. 11, R1–R36 (2000).
[Crossref]

A. F. Doval, C. Trillo, D. Cernadas, B. V. Dorrío, C. López, J. L. Fernández, M. Pérez-Amor, “Enhancing the sensitivity to small phase changes in double-exposure stroboscopic television holography,” Appl. Opt. 39, 4582–4588 (2000).
[Crossref]

D. Cernadas, C. Trillo, A. F. Doval, B. V. Dorrío, C. López, J. L. Fernández, M. Pérez-Amor, “Rayleigh wave amplitude field determination by a simple speckle point interferometer,” in Interferometry in Speckle Light, Theory and Applications, P. Jacquot, J.-M. Fournier, eds. (Springer-Verlag, Berlin, 2000), pp. 297–304.
[Crossref]

Fernández, J. L.

D. Cernadas, C. Trillo, A. F. Doval, J. C. López, B. V. Dorrío, J. L. Fernández, M. Pérez-Amor, “Non-destructive testing with surface acoustic waves using double-pulse TV holography,” Meas. Sci. Technol. 13, 438–444 (2002).

A. F. Doval, C. Trillo, D. Cernadas, B. V. Dorrío, C. López, J. L. Fernández, M. Pérez-Amor, “Enhancing the sensitivity to small phase changes in double-exposure stroboscopic television holography,” Appl. Opt. 39, 4582–4588 (2000).
[Crossref]

D. Cernadas, C. Trillo, A. F. Doval, B. V. Dorrío, C. López, J. L. Fernández, M. Pérez-Amor, “Rayleigh wave amplitude field determination by a simple speckle point interferometer,” in Interferometry in Speckle Light, Theory and Applications, P. Jacquot, J.-M. Fournier, eds. (Springer-Verlag, Berlin, 2000), pp. 297–304.
[Crossref]

Gagosz, R. M.

R. M. Gagosz, “Pulsed holography,” in Holographic Nondestructive Testing, R. K. Erf, ed. (Academic, Orlando, Fla., 1974), pp. 61–85.
[Crossref]

Gonzalez, R. C.

R. C. Gonzalez, P. Wintz, “Image enhancement,” in Digital Image Processing (Addison-Wesley, Reading, Mass., 1987), p. 141.

Gordon, G. A.

T. D. Mast, G. A. Gordon, “Quantitative flaw reconstruction from ultrasonic surface wavefields measured by electronic speckle pattern interferometry,” IEEE Trans. Ultrason. Ferroelectrics Freq. Control 48, 432–444 (2001).
[Crossref]

Kupfer, G.

W. Steinchen, G. Kupfer, F. Vössing, P. Mäckel, “CAE-based compensation methods of non-uniform pulse laser beam profiles,” Opt. Lasers Eng. 32, 379–385 (2000).
[Crossref]

López, C.

A. F. Doval, C. Trillo, D. Cernadas, B. V. Dorrío, C. López, J. L. Fernández, M. Pérez-Amor, “Enhancing the sensitivity to small phase changes in double-exposure stroboscopic television holography,” Appl. Opt. 39, 4582–4588 (2000).
[Crossref]

D. Cernadas, C. Trillo, A. F. Doval, B. V. Dorrío, C. López, J. L. Fernández, M. Pérez-Amor, “Rayleigh wave amplitude field determination by a simple speckle point interferometer,” in Interferometry in Speckle Light, Theory and Applications, P. Jacquot, J.-M. Fournier, eds. (Springer-Verlag, Berlin, 2000), pp. 297–304.
[Crossref]

López, J. C.

D. Cernadas, C. Trillo, A. F. Doval, J. C. López, B. V. Dorrío, J. L. Fernández, M. Pérez-Amor, “Non-destructive testing with surface acoustic waves using double-pulse TV holography,” Meas. Sci. Technol. 13, 438–444 (2002).

Mäckel, P.

W. Steinchen, G. Kupfer, F. Vössing, P. Mäckel, “CAE-based compensation methods of non-uniform pulse laser beam profiles,” Opt. Lasers Eng. 32, 379–385 (2000).
[Crossref]

Mast, T. D.

T. D. Mast, G. A. Gordon, “Quantitative flaw reconstruction from ultrasonic surface wavefields measured by electronic speckle pattern interferometry,” IEEE Trans. Ultrason. Ferroelectrics Freq. Control 48, 432–444 (2001).
[Crossref]

Meyer, E. H.

H. A. Crostack, E. H. Meyer, K. J. Pohl, “Holographic soundfield visualisation for nondestructive testing of hot surfaces,” in Industrial Applications of Holographic and Speckle Measuring Techniques, W. P. Jüptner, ed., Proc. SPIE1508, 101–109 (1991).
[Crossref]

Pérez-Amor, M.

D. Cernadas, C. Trillo, A. F. Doval, J. C. López, B. V. Dorrío, J. L. Fernández, M. Pérez-Amor, “Non-destructive testing with surface acoustic waves using double-pulse TV holography,” Meas. Sci. Technol. 13, 438–444 (2002).

A. F. Doval, C. Trillo, D. Cernadas, B. V. Dorrío, C. López, J. L. Fernández, M. Pérez-Amor, “Enhancing the sensitivity to small phase changes in double-exposure stroboscopic television holography,” Appl. Opt. 39, 4582–4588 (2000).
[Crossref]

D. Cernadas, C. Trillo, A. F. Doval, B. V. Dorrío, C. López, J. L. Fernández, M. Pérez-Amor, “Rayleigh wave amplitude field determination by a simple speckle point interferometer,” in Interferometry in Speckle Light, Theory and Applications, P. Jacquot, J.-M. Fournier, eds. (Springer-Verlag, Berlin, 2000), pp. 297–304.
[Crossref]

Pohl, K. J.

H. A. Crostack, E. H. Meyer, K. J. Pohl, “Holographic soundfield visualisation for nondestructive testing of hot surfaces,” in Industrial Applications of Holographic and Speckle Measuring Techniques, W. P. Jüptner, ed., Proc. SPIE1508, 101–109 (1991).
[Crossref]

Schroeder, F. D.

F. D. Schroeder, H. A. Crostack, “Real-time holography of ultrasonic surface waves,” in Optical Inspection and Micromeasurements, C. Gorecki, ed., Proc. SPIE2782, 290–295 (1996).
[Crossref]

Spooren, R.

Steinchen, W.

W. Steinchen, G. Kupfer, F. Vössing, P. Mäckel, “CAE-based compensation methods of non-uniform pulse laser beam profiles,” Opt. Lasers Eng. 32, 379–385 (2000).
[Crossref]

Trillo, C.

D. Cernadas, C. Trillo, A. F. Doval, J. C. López, B. V. Dorrío, J. L. Fernández, M. Pérez-Amor, “Non-destructive testing with surface acoustic waves using double-pulse TV holography,” Meas. Sci. Technol. 13, 438–444 (2002).

A. F. Doval, C. Trillo, D. Cernadas, B. V. Dorrío, C. López, J. L. Fernández, M. Pérez-Amor, “Enhancing the sensitivity to small phase changes in double-exposure stroboscopic television holography,” Appl. Opt. 39, 4582–4588 (2000).
[Crossref]

D. Cernadas, C. Trillo, A. F. Doval, B. V. Dorrío, C. López, J. L. Fernández, M. Pérez-Amor, “Rayleigh wave amplitude field determination by a simple speckle point interferometer,” in Interferometry in Speckle Light, Theory and Applications, P. Jacquot, J.-M. Fournier, eds. (Springer-Verlag, Berlin, 2000), pp. 297–304.
[Crossref]

Viktorov, I. A.

I. A. Viktorov, Rayleigh and Lamb Waves: Physical Theory and Applications (Plenum, New York, 1967).

Vössing, F.

W. Steinchen, G. Kupfer, F. Vössing, P. Mäckel, “CAE-based compensation methods of non-uniform pulse laser beam profiles,” Opt. Lasers Eng. 32, 379–385 (2000).
[Crossref]

Wintz, P.

R. C. Gonzalez, P. Wintz, “Image enhancement,” in Digital Image Processing (Addison-Wesley, Reading, Mass., 1987), p. 141.

Appl. Opt. (2)

IEEE Trans. Ultrason. Ferroelectrics Freq. Control (1)

T. D. Mast, G. A. Gordon, “Quantitative flaw reconstruction from ultrasonic surface wavefields measured by electronic speckle pattern interferometry,” IEEE Trans. Ultrason. Ferroelectrics Freq. Control 48, 432–444 (2001).
[Crossref]

Meas. Sci. Technol. (2)

D. Cernadas, C. Trillo, A. F. Doval, J. C. López, B. V. Dorrío, J. L. Fernández, M. Pérez-Amor, “Non-destructive testing with surface acoustic waves using double-pulse TV holography,” Meas. Sci. Technol. 13, 438–444 (2002).

A. F. Doval, “A systematic approach to TV holography,” Meas. Sci. Technol. 11, R1–R36 (2000).
[Crossref]

Opt. Eng. (1)

R. Spooren, “Double-pulse subtraction TV holography,” Opt. Eng. 31, 1000–1007 (1992).
[Crossref]

Opt. Lasers Eng. (1)

W. Steinchen, G. Kupfer, F. Vössing, P. Mäckel, “CAE-based compensation methods of non-uniform pulse laser beam profiles,” Opt. Lasers Eng. 32, 379–385 (2000).
[Crossref]

Other (6)

R. C. Gonzalez, P. Wintz, “Image enhancement,” in Digital Image Processing (Addison-Wesley, Reading, Mass., 1987), p. 141.

D. Cernadas, C. Trillo, A. F. Doval, B. V. Dorrío, C. López, J. L. Fernández, M. Pérez-Amor, “Rayleigh wave amplitude field determination by a simple speckle point interferometer,” in Interferometry in Speckle Light, Theory and Applications, P. Jacquot, J.-M. Fournier, eds. (Springer-Verlag, Berlin, 2000), pp. 297–304.
[Crossref]

I. A. Viktorov, Rayleigh and Lamb Waves: Physical Theory and Applications (Plenum, New York, 1967).

R. M. Gagosz, “Pulsed holography,” in Holographic Nondestructive Testing, R. K. Erf, ed. (Academic, Orlando, Fla., 1974), pp. 61–85.
[Crossref]

F. D. Schroeder, H. A. Crostack, “Real-time holography of ultrasonic surface waves,” in Optical Inspection and Micromeasurements, C. Gorecki, ed., Proc. SPIE2782, 290–295 (1996).
[Crossref]

H. A. Crostack, E. H. Meyer, K. J. Pohl, “Holographic soundfield visualisation for nondestructive testing of hot surfaces,” in Industrial Applications of Holographic and Speckle Measuring Techniques, W. P. Jüptner, ed., Proc. SPIE1508, 101–109 (1991).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the double-pulsed system: 1, seeder; 2, twin independent laser cavities; 3, frequency doubler; 4, external shutter; 5, wedge; 6, test piece; 7, diverging lens; 8, 10, 12, mirrors; 9, beam splitter; 11, polarizer; 13, converging lens; 14, fiber launcher; 15, optical fiber; 16, polarization controller; 17, camera objective; 18, beam combiner; 19, CCD camera; SAWG, surface-wave generator.

Fig. 2
Fig. 2

Synchronization of the laser pulses to the triggering of a long burst to record the maximum displacement. Spatial representations of the waves for instants t 1 and t 2 can be seen in the small boxes at the right.

Fig. 3
Fig. 3

Graphic interpretation of the aspect of the secondary correlograms from Eq. (20) when the delay between laser pulses is set to the optimum value.

Fig. 4
Fig. 4

Chronogram of the synchronization: For definitions of abbreviations, see Table 1.

Fig. 5
Fig. 5

Subtraction of primary correlograms without (left) and with (right) previous equalization of intensities. (a), (b) cavity #1; (c), (d) cavity #2; (e), (f) secondary correlograms. The perturbation is a short burst of Rayleigh waves propagating from right to left in a defect-free zone of an aluminum slab 30 mm thick. The size of the field of view is 107 mm × 86 mm.

Fig. 6
Fig. 6

Influence of Δt on the apparent length of a short burst in secondary correlograms. Separation between laser pulses: (a) 1.5, (b) 3.5, (c) 5.5, (d) 7.5 μs. The slab, the SAWs, and the field of view are the same than those in Fig. 5.

Fig. 7
Fig. 7

Average brightness profiles (a) without and (b) with reference phase modulation. The brightness levels that correspond to the maximum (Δϕ o,max) and the minimum (-Δϕ o,max) values of Δϕ o obtained because of the SAWs are indicated with circles and crosses, respectively.

Fig. 8
Fig. 8

Reflection of a long burst of Lamb waves propagating on an aluminum plate 3 mm thick. The burst is incident obliquely upon a vertical slit, made across the entire sample thickness, of dimensions 30 mm × 0.7 mm. The influence of the different working points can be clearly observed at the right of each image, where the incident and reflected waves are superimposed. The size of the field of view is 75 mm × 61 mm.

Fig. 9
Fig. 9

Detection of a flaw with a (a) short and (b) a long burst of Lamb waves. Both bursts propagate from right to left over a subsurface defect on an aluminum plate 3 mm thick. The defect is a slit, vertical in the figure, of dimensions 36 mm × 0.7 mm, mechanized on the opposite side of the plate and with a depth of 0.6 mm less than the plate’s thickness. Its position is marked by a white line in each figure. The size of the field of view is 94 mm × 63 mm.

Tables (1)

Tables Icon

Table 1 Assignment of Events

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

ϕox, t=-4πλ zx, t,
In=g0,n1+VnmodMncosψp,n+argMn,
Mn=expiϕo,n-ϕr,n
In=g0,n1+Vn cosψp,n+ϕo,n-ϕr,n.
zx, t=zmx, tcosφM+kM · x-ωMt,
ĨFW=|I2-I1| =|g0,21+V2 cosψp,2+ϕo,2-ϕr,2-0,1×1+ν1 cosψp,1+ϕo,1-ϕr,1|
ĨFW=2g0V sinψp+ϕ¯o-ϕ¯rsinΔϕo-Δϕr2,
ϕ¯o=ϕo,2+ϕo,12,
ϕ¯r=ϕr,2+ϕr,12;
Δϕo=ϕo,2-ϕo,1,
Δϕr=ϕr,2-ϕr,1.
BFW=4π g0VsinΔϕo-Δϕr2.
BFW=4π g0Vsin4πλzx, t2-zx, t12+Δϕr2 =4π g0Vsinϕom,2 cosφo+φ2-ϕom,1 cosφo+φ12+Δϕr2,
ϕom,n=4πλ zmx, tn,  n=1, 2,
φo=φM+kM · x,
φn=-ωMtn, n=1, 2,
ϕom,n=ϕomx.
BFW=4π g0Vsinϕom2cosφo+φ2-cosφo+φ1+Δϕr2.
BFW=4π g0Vsinϕom sinφo+φ2+φ12sinφ2-φ12+Δϕr2 =4π g0Vsinϕom sinφo+φ¯sinΔφ2+Δϕr2,
Δφ=ωMt2-t1=ωMΔt=2q+1π,q=0, ±1, ±2,,
Δt=2q+1πωM=2q+1TM2,
BFW=4π g0Vsinϕom,2+ϕom,12cosφo+φ2+Δϕr2.

Metrics