Abstract

Using both Rayleigh scattering and time-resolved emission spectroscopy, we have recorded the spatial and temporal evolution of laser-generated sparks in argon from changes during the first tens of nanoseconds to complete dissipation, which occurs in a time span of approximately 5 ms. Maps of either emission intensity or argon density spanning the entire region affected by the energy deposited by the laser show the dissipation of the spark in detail. Immediately after ignition, the argon plasma occupies an ellipsoidal volume of roughly 3-mm vertical (axial) length. After approximately 20–40 μs, the spark region has transformed into a toroidal shape in a plane perpendicular to the vertical axis, with a radius of approximately 1.5 mm. The torus rises slowly up and expands noticeably in the radial direction. A record of peak temperatures of the spark ranging from approximately 10,000 K at 60-μs delay time to approximately 450 K at 4-ms delay time indicate cooling rates from approximately 100 to 1 K/μs at these times.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y.-L. Chen, J. W. L. Lewis, C. Parigger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Radiat. Transfer 67, 91–103 (2000).
    [CrossRef]
  2. T. P. Hughes, Plasmas and Laser Light (Wiley, New York, 1983), pp. 145–272.
  3. G. Bekefi, Principles of Laser Plasmas (Wiley, New York, 1976), pp. 457–507.
  4. S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faris, “Influence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999).
    [CrossRef]
  5. R. C. Alam, S. J. Fletcher, K. R. Wasserman, L. Hüwel, “Time resolved emission spectroscopy in laser generated nitrogen plasmas,” Phys. Rev. A 42, 383–390 (1990).
    [CrossRef] [PubMed]
  6. D. Nassif, L. Hüwel, “Appearance of toroidal structure in dissipating laser-generated sparks,” J. Appl. Phys. 87, 2127–2130 (2000).
    [CrossRef]
  7. D. Hammer, L. Frommhold, “Sonoluminescence: How bubbles glow,” J. Mod. Opt. 48, 239–277 (2001).
  8. A. B. Murphy, A. J. D. Farmer, “Temperature measure-ment in thermal plasmas by Rayleigh scattering,” J. Phys. D 25, 634–643 (1992).
    [CrossRef]
  9. W. Reckers, L. Hüwel, G. Grünefeld, P. Andresen, “Spatially resolved multispecies and temperature analysis in hydrogen flames,” Appl. Opt. 32, 907–918 (1993).
    [CrossRef] [PubMed]
  10. L. Cadwell, L. Hüwel, “Time-resolved emission spectroscopy in laser-generated argon plasmas—determination of Stark broadening parameters,” submitted to J. Quant. Spectrosc. Radiat. Transfer.
  11. M. Kono, K. Niu, T. Tsukamoto, Y. Ujiie, “Mechanism of flame kernel formation produced by short duration sparks,” in Twenty-Second International Combustion Symposium Proceedings (The Combustion Institute, Washington, D.C., 1988), pp. 1643–1649.
  12. J. Jonkers, L. J. M. de Gegt, B. van der Sijde, J. A. M. van der Mullen, “Spectroscopic techniques for the characterisation of spectrochemical plasma sources,” Phys. Scri. T 83, 146–149 (1999).
    [CrossRef]
  13. H. Shindo, S. Imazu, “Establishment of Saha-Boltzmann equilibrium for ArI lower excited atoms in a wall-confined arc plasma,” Jpn. J. Appl. Phys. 18, 2019–2020 (1979).
    [CrossRef]

2001

D. Hammer, L. Frommhold, “Sonoluminescence: How bubbles glow,” J. Mod. Opt. 48, 239–277 (2001).

2000

Y.-L. Chen, J. W. L. Lewis, C. Parigger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Radiat. Transfer 67, 91–103 (2000).
[CrossRef]

D. Nassif, L. Hüwel, “Appearance of toroidal structure in dissipating laser-generated sparks,” J. Appl. Phys. 87, 2127–2130 (2000).
[CrossRef]

1999

J. Jonkers, L. J. M. de Gegt, B. van der Sijde, J. A. M. van der Mullen, “Spectroscopic techniques for the characterisation of spectrochemical plasma sources,” Phys. Scri. T 83, 146–149 (1999).
[CrossRef]

S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faris, “Influence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999).
[CrossRef]

1993

1992

A. B. Murphy, A. J. D. Farmer, “Temperature measure-ment in thermal plasmas by Rayleigh scattering,” J. Phys. D 25, 634–643 (1992).
[CrossRef]

1990

R. C. Alam, S. J. Fletcher, K. R. Wasserman, L. Hüwel, “Time resolved emission spectroscopy in laser generated nitrogen plasmas,” Phys. Rev. A 42, 383–390 (1990).
[CrossRef] [PubMed]

1979

H. Shindo, S. Imazu, “Establishment of Saha-Boltzmann equilibrium for ArI lower excited atoms in a wall-confined arc plasma,” Jpn. J. Appl. Phys. 18, 2019–2020 (1979).
[CrossRef]

Alam, R. C.

R. C. Alam, S. J. Fletcher, K. R. Wasserman, L. Hüwel, “Time resolved emission spectroscopy in laser generated nitrogen plasmas,” Phys. Rev. A 42, 383–390 (1990).
[CrossRef] [PubMed]

Andresen, P.

B. Murphy, A.

A. B. Murphy, A. J. D. Farmer, “Temperature measure-ment in thermal plasmas by Rayleigh scattering,” J. Phys. D 25, 634–643 (1992).
[CrossRef]

Bekefi, G.

G. Bekefi, Principles of Laser Plasmas (Wiley, New York, 1976), pp. 457–507.

Cadwell, L.

L. Cadwell, L. Hüwel, “Time-resolved emission spectroscopy in laser-generated argon plasmas—determination of Stark broadening parameters,” submitted to J. Quant. Spectrosc. Radiat. Transfer.

Chen, Y.-L.

Y.-L. Chen, J. W. L. Lewis, C. Parigger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Radiat. Transfer 67, 91–103 (2000).
[CrossRef]

Crosley, D. R.

S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faris, “Influence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999).
[CrossRef]

de Gegt, L. J. M.

J. Jonkers, L. J. M. de Gegt, B. van der Sijde, J. A. M. van der Mullen, “Spectroscopic techniques for the characterisation of spectrochemical plasma sources,” Phys. Scri. T 83, 146–149 (1999).
[CrossRef]

Faris, G. W.

S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faris, “Influence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999).
[CrossRef]

Farmer, A. J. D.

A. B. Murphy, A. J. D. Farmer, “Temperature measure-ment in thermal plasmas by Rayleigh scattering,” J. Phys. D 25, 634–643 (1992).
[CrossRef]

Fletcher, S. J.

R. C. Alam, S. J. Fletcher, K. R. Wasserman, L. Hüwel, “Time resolved emission spectroscopy in laser generated nitrogen plasmas,” Phys. Rev. A 42, 383–390 (1990).
[CrossRef] [PubMed]

Frommhold, L.

D. Hammer, L. Frommhold, “Sonoluminescence: How bubbles glow,” J. Mod. Opt. 48, 239–277 (2001).

Grünefeld, G.

Hammer, D.

D. Hammer, L. Frommhold, “Sonoluminescence: How bubbles glow,” J. Mod. Opt. 48, 239–277 (2001).

Hughes, T. P.

T. P. Hughes, Plasmas and Laser Light (Wiley, New York, 1983), pp. 145–272.

Hüwel, L.

D. Nassif, L. Hüwel, “Appearance of toroidal structure in dissipating laser-generated sparks,” J. Appl. Phys. 87, 2127–2130 (2000).
[CrossRef]

W. Reckers, L. Hüwel, G. Grünefeld, P. Andresen, “Spatially resolved multispecies and temperature analysis in hydrogen flames,” Appl. Opt. 32, 907–918 (1993).
[CrossRef] [PubMed]

R. C. Alam, S. J. Fletcher, K. R. Wasserman, L. Hüwel, “Time resolved emission spectroscopy in laser generated nitrogen plasmas,” Phys. Rev. A 42, 383–390 (1990).
[CrossRef] [PubMed]

L. Cadwell, L. Hüwel, “Time-resolved emission spectroscopy in laser-generated argon plasmas—determination of Stark broadening parameters,” submitted to J. Quant. Spectrosc. Radiat. Transfer.

Imazu, S.

H. Shindo, S. Imazu, “Establishment of Saha-Boltzmann equilibrium for ArI lower excited atoms in a wall-confined arc plasma,” Jpn. J. Appl. Phys. 18, 2019–2020 (1979).
[CrossRef]

Jonkers, J.

J. Jonkers, L. J. M. de Gegt, B. van der Sijde, J. A. M. van der Mullen, “Spectroscopic techniques for the characterisation of spectrochemical plasma sources,” Phys. Scri. T 83, 146–149 (1999).
[CrossRef]

Kono, M.

M. Kono, K. Niu, T. Tsukamoto, Y. Ujiie, “Mechanism of flame kernel formation produced by short duration sparks,” in Twenty-Second International Combustion Symposium Proceedings (The Combustion Institute, Washington, D.C., 1988), pp. 1643–1649.

Lewis, J. W. L.

Y.-L. Chen, J. W. L. Lewis, C. Parigger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Radiat. Transfer 67, 91–103 (2000).
[CrossRef]

Nassif, D.

D. Nassif, L. Hüwel, “Appearance of toroidal structure in dissipating laser-generated sparks,” J. Appl. Phys. 87, 2127–2130 (2000).
[CrossRef]

Niu, K.

M. Kono, K. Niu, T. Tsukamoto, Y. Ujiie, “Mechanism of flame kernel formation produced by short duration sparks,” in Twenty-Second International Combustion Symposium Proceedings (The Combustion Institute, Washington, D.C., 1988), pp. 1643–1649.

Parigger, C.

Y.-L. Chen, J. W. L. Lewis, C. Parigger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Radiat. Transfer 67, 91–103 (2000).
[CrossRef]

Reckers, W.

Shindo, H.

H. Shindo, S. Imazu, “Establishment of Saha-Boltzmann equilibrium for ArI lower excited atoms in a wall-confined arc plasma,” Jpn. J. Appl. Phys. 18, 2019–2020 (1979).
[CrossRef]

Smith, G. P.

S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faris, “Influence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999).
[CrossRef]

Tsukamoto, T.

M. Kono, K. Niu, T. Tsukamoto, Y. Ujiie, “Mechanism of flame kernel formation produced by short duration sparks,” in Twenty-Second International Combustion Symposium Proceedings (The Combustion Institute, Washington, D.C., 1988), pp. 1643–1649.

Ujiie, Y.

M. Kono, K. Niu, T. Tsukamoto, Y. Ujiie, “Mechanism of flame kernel formation produced by short duration sparks,” in Twenty-Second International Combustion Symposium Proceedings (The Combustion Institute, Washington, D.C., 1988), pp. 1643–1649.

van der Mullen, J. A. M.

J. Jonkers, L. J. M. de Gegt, B. van der Sijde, J. A. M. van der Mullen, “Spectroscopic techniques for the characterisation of spectrochemical plasma sources,” Phys. Scri. T 83, 146–149 (1999).
[CrossRef]

van der Sijde, B.

J. Jonkers, L. J. M. de Gegt, B. van der Sijde, J. A. M. van der Mullen, “Spectroscopic techniques for the characterisation of spectrochemical plasma sources,” Phys. Scri. T 83, 146–149 (1999).
[CrossRef]

Wasserman, K. R.

R. C. Alam, S. J. Fletcher, K. R. Wasserman, L. Hüwel, “Time resolved emission spectroscopy in laser generated nitrogen plasmas,” Phys. Rev. A 42, 383–390 (1990).
[CrossRef] [PubMed]

Yalcin, S.

S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faris, “Influence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999).
[CrossRef]

Appl. Opt.

Appl. Phys. B

S. Yalcin, D. R. Crosley, G. P. Smith, G. W. Faris, “Influence of ambient conditions on the laser air spark,” Appl. Phys. B 68, 121–130 (1999).
[CrossRef]

J. Appl. Phys.

D. Nassif, L. Hüwel, “Appearance of toroidal structure in dissipating laser-generated sparks,” J. Appl. Phys. 87, 2127–2130 (2000).
[CrossRef]

J. Mod. Opt.

D. Hammer, L. Frommhold, “Sonoluminescence: How bubbles glow,” J. Mod. Opt. 48, 239–277 (2001).

J. Phys. D

A. B. Murphy, A. J. D. Farmer, “Temperature measure-ment in thermal plasmas by Rayleigh scattering,” J. Phys. D 25, 634–643 (1992).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

Y.-L. Chen, J. W. L. Lewis, C. Parigger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Radiat. Transfer 67, 91–103 (2000).
[CrossRef]

Jpn. J. Appl. Phys.

H. Shindo, S. Imazu, “Establishment of Saha-Boltzmann equilibrium for ArI lower excited atoms in a wall-confined arc plasma,” Jpn. J. Appl. Phys. 18, 2019–2020 (1979).
[CrossRef]

Phys. Rev. A

R. C. Alam, S. J. Fletcher, K. R. Wasserman, L. Hüwel, “Time resolved emission spectroscopy in laser generated nitrogen plasmas,” Phys. Rev. A 42, 383–390 (1990).
[CrossRef] [PubMed]

Phys. Scri. T

J. Jonkers, L. J. M. de Gegt, B. van der Sijde, J. A. M. van der Mullen, “Spectroscopic techniques for the characterisation of spectrochemical plasma sources,” Phys. Scri. T 83, 146–149 (1999).
[CrossRef]

Other

T. P. Hughes, Plasmas and Laser Light (Wiley, New York, 1983), pp. 145–272.

G. Bekefi, Principles of Laser Plasmas (Wiley, New York, 1976), pp. 457–507.

L. Cadwell, L. Hüwel, “Time-resolved emission spectroscopy in laser-generated argon plasmas—determination of Stark broadening parameters,” submitted to J. Quant. Spectrosc. Radiat. Transfer.

M. Kono, K. Niu, T. Tsukamoto, Y. Ujiie, “Mechanism of flame kernel formation produced by short duration sparks,” in Twenty-Second International Combustion Symposium Proceedings (The Combustion Institute, Washington, D.C., 1988), pp. 1643–1649.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Contour maps of laser-produced argon spark at various delay times obtained from emission spectra at wavelength of 751.5 nm (left column) and Rayleigh scattering at 355 nm (right column).

Fig. 2
Fig. 2

Rate of rising z(t) (top panel) and rate of spreading R(t) (bottom panel) of laser-produced spark in argon (filled squares), nitrogen (gray circles), and 50:50 mixtures of the two gases (open circles) at atmospheric pressure. A power-scaling law (solid curve) can reasonably reproduce the observed behavior. For comparison, the radius of the argon torus observed in emission at 40 μs is also shown (open square).

Fig. 3
Fig. 3

History of peak temperatures of laser-produced, atmospheric-pressure sparks obtained by a Boltzmann analysis of emission line intensities in argon (open squares) and Rayleigh scattering in argon (filled squares), in nitrogen (gray circles), and in a 50:50 mixture of the two gases (open circles). The observed argon behavior can be reasonably well fit to either a double-exponential (solid curve) or a power-law (dashed curve) decay back toward room temperature.

Tables (1)

Tables Icon

Table 1 Best-Fit Parameters for Torus Dynamics and Temperature Decay

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T=I0s-Ivacs-I0p-IvacpIPs-Ivacs-IPp-Ivacp T0.

Metrics