Abstract

Correction of birefringence-induced effects (depolarization and bipolar focusing) were achieved in double-pass amplifiers by use of a Faraday rotator between the laser rod and the retroreflecting optic. A necessary condition was ray retrace. Retrace was limited by imperfect conjugate-beam fidelity and by nonreciprocal refractive indices. We compared various retroreflectors: stimulated-Brillouin-scatter phase-conjugate mirrors (PCMs), PCMs with rod-to-PCM relay imaging (IPCM), IPCMs with astigmatism-correcting adaptive optics, and all-adaptive-optics imaging variable-radius mirrors. Results with flash-lamp-pumped, Nd:Cr:GSGG double-pass amplifiers showed the superiority of adaptive optics over nonlinear optics retroreflectors in terms of maximum average power, improved beam quality, and broader oscillator pulse duration/bandwidth operating range. Hybrid PCM-adaptive optics retroreflectors yielded intermediate power/beam-quality results.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, New York, 1999), Vol. 4, p. 406.
    [CrossRef]
  2. S. Jackel, I. Moshe, R. Lavi, R. Lallouz, “Brillouin scatter and Faraday effect isolators/nonreciprocal rotators for high-fluence multiple-pass amplifiers,” in Laser Optics ’98: Nonlinear and Coherent Optics, V. E. Sherstobitov, ed., Proc. SPIE3684, 80–93 (1998).
    [CrossRef]
  3. I. Carr, D. Hanna, “Performance of a Nd:YAG oscillator/amplifier with phase conjugation via stimulated Brillouin scatter,” Appl. Phys. B 36, 83–92 (1982).
    [CrossRef]
  4. J. Y. Lee, H. S. Kim, K. Y. Um, J. R. Park, H. J. Kong, “Compensation of polarization distortion of a laser beam in a four-pass Nd:glass amplifier by using a Faraday Rotator,” in Advanced Solid-State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), pp. 216–221.
  5. S. Jackel, I. Moshe, A. Kaufman, R. Lavi, R. Lallouz, “High-energy Nd:Cr:GSGG lasers based on phase and polarization conjugated multiple-pass amplifiers,” Opt. Eng. 36, 2031–2036 (1997).
    [CrossRef]
  6. I. Moshe, S. Jackel, “Correction of birefringence and thermal lensing in nonreciprocal resonators by use of a dynamic imaging mirror,” Appl. Opt. 39, 4313–4319 (2000).
    [CrossRef]
  7. I. Moshe, S. Jackel, R. Lallouz, “Working beyond the static limits of laser stability by use of adaptive and polarization-conjugation optics,” Appl. Opt. 37, 6415–6420 (1998).
    [CrossRef]
  8. S. Jackel, I. Moshe, “Adaptive compensation of lower order thermal aberrations in concave-convex power oscillators under variable pump conditions,” Opt. Eng. 39, 2330–2337 (2000).
    [CrossRef]
  9. T. Cherazova, S. Chesnolov, L. Kaptsov, V. Samarkin, A. Kudryashov, “Active laser resonator performance: formation of a specified intensity output,” Appl. Opt. 40, 6026–6033 (2001).
    [CrossRef]
  10. N. Basov, V. Efimkov, I. Zubarev, A. Kotov, S. Mikhailov, M. Smirnov, “Inversion of wavefront in SMBS of a depolarized pump,” JETP Lett. 28, 197–201 (1979).
  11. I. Carr, D. Hanna, “Correction of polarization distortions using phase conjugation via stimulated Brillouin scatter,” Optics Commun. 62, 396–402 (1987).
    [CrossRef]

2001 (1)

2000 (2)

I. Moshe, S. Jackel, “Correction of birefringence and thermal lensing in nonreciprocal resonators by use of a dynamic imaging mirror,” Appl. Opt. 39, 4313–4319 (2000).
[CrossRef]

S. Jackel, I. Moshe, “Adaptive compensation of lower order thermal aberrations in concave-convex power oscillators under variable pump conditions,” Opt. Eng. 39, 2330–2337 (2000).
[CrossRef]

1998 (1)

1997 (1)

S. Jackel, I. Moshe, A. Kaufman, R. Lavi, R. Lallouz, “High-energy Nd:Cr:GSGG lasers based on phase and polarization conjugated multiple-pass amplifiers,” Opt. Eng. 36, 2031–2036 (1997).
[CrossRef]

1987 (1)

I. Carr, D. Hanna, “Correction of polarization distortions using phase conjugation via stimulated Brillouin scatter,” Optics Commun. 62, 396–402 (1987).
[CrossRef]

1982 (1)

I. Carr, D. Hanna, “Performance of a Nd:YAG oscillator/amplifier with phase conjugation via stimulated Brillouin scatter,” Appl. Phys. B 36, 83–92 (1982).
[CrossRef]

1979 (1)

N. Basov, V. Efimkov, I. Zubarev, A. Kotov, S. Mikhailov, M. Smirnov, “Inversion of wavefront in SMBS of a depolarized pump,” JETP Lett. 28, 197–201 (1979).

Basov, N.

N. Basov, V. Efimkov, I. Zubarev, A. Kotov, S. Mikhailov, M. Smirnov, “Inversion of wavefront in SMBS of a depolarized pump,” JETP Lett. 28, 197–201 (1979).

Carr, I.

I. Carr, D. Hanna, “Correction of polarization distortions using phase conjugation via stimulated Brillouin scatter,” Optics Commun. 62, 396–402 (1987).
[CrossRef]

I. Carr, D. Hanna, “Performance of a Nd:YAG oscillator/amplifier with phase conjugation via stimulated Brillouin scatter,” Appl. Phys. B 36, 83–92 (1982).
[CrossRef]

Cherazova, T.

Chesnolov, S.

Efimkov, V.

N. Basov, V. Efimkov, I. Zubarev, A. Kotov, S. Mikhailov, M. Smirnov, “Inversion of wavefront in SMBS of a depolarized pump,” JETP Lett. 28, 197–201 (1979).

Hanna, D.

I. Carr, D. Hanna, “Correction of polarization distortions using phase conjugation via stimulated Brillouin scatter,” Optics Commun. 62, 396–402 (1987).
[CrossRef]

I. Carr, D. Hanna, “Performance of a Nd:YAG oscillator/amplifier with phase conjugation via stimulated Brillouin scatter,” Appl. Phys. B 36, 83–92 (1982).
[CrossRef]

Jackel, S.

S. Jackel, I. Moshe, “Adaptive compensation of lower order thermal aberrations in concave-convex power oscillators under variable pump conditions,” Opt. Eng. 39, 2330–2337 (2000).
[CrossRef]

I. Moshe, S. Jackel, “Correction of birefringence and thermal lensing in nonreciprocal resonators by use of a dynamic imaging mirror,” Appl. Opt. 39, 4313–4319 (2000).
[CrossRef]

I. Moshe, S. Jackel, R. Lallouz, “Working beyond the static limits of laser stability by use of adaptive and polarization-conjugation optics,” Appl. Opt. 37, 6415–6420 (1998).
[CrossRef]

S. Jackel, I. Moshe, A. Kaufman, R. Lavi, R. Lallouz, “High-energy Nd:Cr:GSGG lasers based on phase and polarization conjugated multiple-pass amplifiers,” Opt. Eng. 36, 2031–2036 (1997).
[CrossRef]

S. Jackel, I. Moshe, R. Lavi, R. Lallouz, “Brillouin scatter and Faraday effect isolators/nonreciprocal rotators for high-fluence multiple-pass amplifiers,” in Laser Optics ’98: Nonlinear and Coherent Optics, V. E. Sherstobitov, ed., Proc. SPIE3684, 80–93 (1998).
[CrossRef]

Kaptsov, L.

Kaufman, A.

S. Jackel, I. Moshe, A. Kaufman, R. Lavi, R. Lallouz, “High-energy Nd:Cr:GSGG lasers based on phase and polarization conjugated multiple-pass amplifiers,” Opt. Eng. 36, 2031–2036 (1997).
[CrossRef]

Kim, H. S.

J. Y. Lee, H. S. Kim, K. Y. Um, J. R. Park, H. J. Kong, “Compensation of polarization distortion of a laser beam in a four-pass Nd:glass amplifier by using a Faraday Rotator,” in Advanced Solid-State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), pp. 216–221.

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, New York, 1999), Vol. 4, p. 406.
[CrossRef]

Kong, H. J.

J. Y. Lee, H. S. Kim, K. Y. Um, J. R. Park, H. J. Kong, “Compensation of polarization distortion of a laser beam in a four-pass Nd:glass amplifier by using a Faraday Rotator,” in Advanced Solid-State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), pp. 216–221.

Kotov, A.

N. Basov, V. Efimkov, I. Zubarev, A. Kotov, S. Mikhailov, M. Smirnov, “Inversion of wavefront in SMBS of a depolarized pump,” JETP Lett. 28, 197–201 (1979).

Kudryashov, A.

Lallouz, R.

I. Moshe, S. Jackel, R. Lallouz, “Working beyond the static limits of laser stability by use of adaptive and polarization-conjugation optics,” Appl. Opt. 37, 6415–6420 (1998).
[CrossRef]

S. Jackel, I. Moshe, A. Kaufman, R. Lavi, R. Lallouz, “High-energy Nd:Cr:GSGG lasers based on phase and polarization conjugated multiple-pass amplifiers,” Opt. Eng. 36, 2031–2036 (1997).
[CrossRef]

S. Jackel, I. Moshe, R. Lavi, R. Lallouz, “Brillouin scatter and Faraday effect isolators/nonreciprocal rotators for high-fluence multiple-pass amplifiers,” in Laser Optics ’98: Nonlinear and Coherent Optics, V. E. Sherstobitov, ed., Proc. SPIE3684, 80–93 (1998).
[CrossRef]

Lavi, R.

S. Jackel, I. Moshe, A. Kaufman, R. Lavi, R. Lallouz, “High-energy Nd:Cr:GSGG lasers based on phase and polarization conjugated multiple-pass amplifiers,” Opt. Eng. 36, 2031–2036 (1997).
[CrossRef]

S. Jackel, I. Moshe, R. Lavi, R. Lallouz, “Brillouin scatter and Faraday effect isolators/nonreciprocal rotators for high-fluence multiple-pass amplifiers,” in Laser Optics ’98: Nonlinear and Coherent Optics, V. E. Sherstobitov, ed., Proc. SPIE3684, 80–93 (1998).
[CrossRef]

Lee, J. Y.

J. Y. Lee, H. S. Kim, K. Y. Um, J. R. Park, H. J. Kong, “Compensation of polarization distortion of a laser beam in a four-pass Nd:glass amplifier by using a Faraday Rotator,” in Advanced Solid-State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), pp. 216–221.

Mikhailov, S.

N. Basov, V. Efimkov, I. Zubarev, A. Kotov, S. Mikhailov, M. Smirnov, “Inversion of wavefront in SMBS of a depolarized pump,” JETP Lett. 28, 197–201 (1979).

Moshe, I.

S. Jackel, I. Moshe, “Adaptive compensation of lower order thermal aberrations in concave-convex power oscillators under variable pump conditions,” Opt. Eng. 39, 2330–2337 (2000).
[CrossRef]

I. Moshe, S. Jackel, “Correction of birefringence and thermal lensing in nonreciprocal resonators by use of a dynamic imaging mirror,” Appl. Opt. 39, 4313–4319 (2000).
[CrossRef]

I. Moshe, S. Jackel, R. Lallouz, “Working beyond the static limits of laser stability by use of adaptive and polarization-conjugation optics,” Appl. Opt. 37, 6415–6420 (1998).
[CrossRef]

S. Jackel, I. Moshe, A. Kaufman, R. Lavi, R. Lallouz, “High-energy Nd:Cr:GSGG lasers based on phase and polarization conjugated multiple-pass amplifiers,” Opt. Eng. 36, 2031–2036 (1997).
[CrossRef]

S. Jackel, I. Moshe, R. Lavi, R. Lallouz, “Brillouin scatter and Faraday effect isolators/nonreciprocal rotators for high-fluence multiple-pass amplifiers,” in Laser Optics ’98: Nonlinear and Coherent Optics, V. E. Sherstobitov, ed., Proc. SPIE3684, 80–93 (1998).
[CrossRef]

Park, J. R.

J. Y. Lee, H. S. Kim, K. Y. Um, J. R. Park, H. J. Kong, “Compensation of polarization distortion of a laser beam in a four-pass Nd:glass amplifier by using a Faraday Rotator,” in Advanced Solid-State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), pp. 216–221.

Samarkin, V.

Smirnov, M.

N. Basov, V. Efimkov, I. Zubarev, A. Kotov, S. Mikhailov, M. Smirnov, “Inversion of wavefront in SMBS of a depolarized pump,” JETP Lett. 28, 197–201 (1979).

Um, K. Y.

J. Y. Lee, H. S. Kim, K. Y. Um, J. R. Park, H. J. Kong, “Compensation of polarization distortion of a laser beam in a four-pass Nd:glass amplifier by using a Faraday Rotator,” in Advanced Solid-State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), pp. 216–221.

Zubarev, I.

N. Basov, V. Efimkov, I. Zubarev, A. Kotov, S. Mikhailov, M. Smirnov, “Inversion of wavefront in SMBS of a depolarized pump,” JETP Lett. 28, 197–201 (1979).

Appl. Opt. (3)

Appl. Phys. B (1)

I. Carr, D. Hanna, “Performance of a Nd:YAG oscillator/amplifier with phase conjugation via stimulated Brillouin scatter,” Appl. Phys. B 36, 83–92 (1982).
[CrossRef]

JETP Lett. (1)

N. Basov, V. Efimkov, I. Zubarev, A. Kotov, S. Mikhailov, M. Smirnov, “Inversion of wavefront in SMBS of a depolarized pump,” JETP Lett. 28, 197–201 (1979).

Opt. Eng. (2)

S. Jackel, I. Moshe, A. Kaufman, R. Lavi, R. Lallouz, “High-energy Nd:Cr:GSGG lasers based on phase and polarization conjugated multiple-pass amplifiers,” Opt. Eng. 36, 2031–2036 (1997).
[CrossRef]

S. Jackel, I. Moshe, “Adaptive compensation of lower order thermal aberrations in concave-convex power oscillators under variable pump conditions,” Opt. Eng. 39, 2330–2337 (2000).
[CrossRef]

Optics Commun. (1)

I. Carr, D. Hanna, “Correction of polarization distortions using phase conjugation via stimulated Brillouin scatter,” Optics Commun. 62, 396–402 (1987).
[CrossRef]

Other (3)

J. Y. Lee, H. S. Kim, K. Y. Um, J. R. Park, H. J. Kong, “Compensation of polarization distortion of a laser beam in a four-pass Nd:glass amplifier by using a Faraday Rotator,” in Advanced Solid-State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), pp. 216–221.

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, New York, 1999), Vol. 4, p. 406.
[CrossRef]

S. Jackel, I. Moshe, R. Lavi, R. Lallouz, “Brillouin scatter and Faraday effect isolators/nonreciprocal rotators for high-fluence multiple-pass amplifiers,” in Laser Optics ’98: Nonlinear and Coherent Optics, V. E. Sherstobitov, ed., Proc. SPIE3684, 80–93 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Overview of the experimental setup showing the principal laser system components and the diagnostic setup.

Fig. 2
Fig. 2

Double-pass amplifier with relay-imaged phase-conjugate mirror (IPCM) for correction of thermal focusing and higher-order aberrations together with a CZL for correction of single-pass astigmatism.

Fig. 3
Fig. 3

Double-pass birefringence loss with nonlinear or adaptive optics retroreflectors or both. Not shown are results with the PCM and just the relay lens (I) or just the CZL. These fell in between the FR+PCM and FR+(CZL+IPCM) results. The adaptive optics package consisted of an imaging variable-radius mirror (IVRM) with correction for focusing and astigmatism. Results without FR-enabled birefringence correction (PCM) are shown for comparison. The 10% cutoff is arbitrary.

Fig. 4
Fig. 4

Schematic of the double-pass amplifier with adaptive optics retroreflector (IVRM).

Fig. 5
Fig. 5

Far-field images of the oscillator and double-pass amplifier output by use of a retroreflector consisting of (right to left) an IVRM, an IPCM and CZL, and an IPCM. Fidelity is the ratio of the double-pass far-field divergence divided by the oscillator far-field divergence. Fidelities were f IVRM = 1.0 ± 0.1, f IPCM+CZL = 1.7 ± 0.1, and f IPCM = 2.2.

Fig. 6
Fig. 6

Experimental setup for measuring the effect of astigmatism on PCM performance. Only the main refractive elements are shown. (Not shown is the FR located just after the amplifier rod.) The focusing properties of the CZL are depicted schematically to indicate the approximate overlap between the principal planes of the CZL and the astigmatic thermal lens. A CCD camera was used to find the positions of the far-field focii.

Fig. 7
Fig. 7

Comparison of the measured and calculated astigmatism introduced by the CZL.

Fig. 8
Fig. 8

Fidelity of the PCM and double-pass amplifier in the presence of astigmatism (thermal and cylindrical lens induced) and in the presence of thermally induced birefringence. Fidelity is the ratio of the double-pass far-field divergence divided by the oscillator far-field divergence. Astigmatism is measured in diopters [1/F c ], which is in units of inverse meters.

Fig. 9
Fig. 9

Analysis of the data that most closely approximated the cases of pure astigmatism (data for the lowest pump power) and pure birefringence (data interpolations for the CZL set to produce zero astigmatism in Fig. 8). The relation between pump power and thermally induced astigmatism was measured as 8 × 10-4 diopters - W-1.

Fig. 10
Fig. 10

Output performance of the double-pass GSGG amplifier with an IVRM. Oscillator pulses were either Q switched or free running.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

1FTi=1FTsi+1FTci.
FTc=LffFff-S2V+FffS2VLffFff-S2H+FffS2HFff2S2H-S2V.
FCZL=Fcyl2Lcyl,
Z=Fcyl+Lcyl,
1/FTc=8×10-4 diopters-W-1Ppump.

Metrics