Abstract

Based on statistical analyses of optical properties measured during a whole year of monthly cruises in a Norwegian fjord, we constructed a two-component model for the absorption and scattering coefficients for visible light. The input to the model is the concentrations of yellow substance and chlorophyll a. Because of the presence of a significant amount of nonalgal particles in coastal water, we assume that the absorption and scattering coefficients approach constant background values when the concentration of chlorophyll a approaches zero. The model works reasonably for a variety of optical conditions encountered throughout the year, with a possible exception during a bloom of the Emiliania huxleyi algae in June.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Dahl, K. Tangen, “Gyrodinium aureolum bloom along the Norwegian coast in 1988,” in Toxic Marine Phytoplankton: Proceedings of the Fourth International Conference on Toxic Marine Phytoplankton, E. Granéli, B. Sundstrøm, L. Edler, D. M. Anderson, eds. (Elsevier, New York, 1989), pp. 123–127.
  2. W. Eikrem, J. Throndsen, “Toxic prymnesiophytes identified from Norwegian coastal waters,” in Toxic Phytoplankton Blooms in the Sea: Proceedings of the Fifth International Conference on Toxic Marine Phytoplankton, T. J. Smayda, Y. Shimizu, eds. (Elsevier, New York, 1993), pp. 687–692.
  3. D. L. Aksnes, A. C. W. Utne, “A revised model of visual range in fish,” Sarsia 82, 137–147 (1997).
  4. M. D. Skogen, E. Svendsen, J. Berntsen, D. Aksnes, K. B. Ulvestad, “Modeling the primary production in the North Sea using a coupled 3-dimensional physical-chemical-biological ocean model,” Estuarine Coastal Shelf Sci. 41, 545–565 (1995).
    [CrossRef]
  5. H. C. Eilertsen, O. Holm-Hansen, “Effects of high latitude UV radiation on phytoplankton and nekton modelled from field measurements by simple algorithms,” Polar Res. 19, 173–182 (2000).
    [CrossRef]
  6. Z. Jin, K. Stamnes, “Radiative transfer in nonuniformly refracting layered media: atmosphere-ocean system,” Appl. Opt. 33, 431–442 (1994).
    [CrossRef] [PubMed]
  7. G. E. Thomas, K. Stamnes, Radiative Transfer in the Atmosphere and Ocean (Cambridge University, Cambridge, England, 1999).
    [CrossRef]
  8. Ø. Frette, J. J. Stamnes, K. Stamnes, “Optical remote sensing of marine constituents in coastal waters: a feasibility study,” Appl. Opt. 37, 8318–8326 (1998).
    [CrossRef]
  9. Ø. Frette, S. R. Erga, J. J. Stamnes, K. Stamnes, “Optical remote sensing of waters with vertical structure,” Appl. Opt. 40, 1478–1487 (2001).
    [CrossRef]
  10. L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption of phytoplankton pigments, dissolved organic matter and particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
    [CrossRef]
  11. H. Loisel, A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a reexamination,” Limnol. Oceanogr. 43, 847–858 (1998).
    [CrossRef]
  12. A. Morel, S. Maritorena, “Bio-optical properties of oceanic waters: a reappraisal,” J. Geophys. Res. 106, 7163–7180 (2001).
    [CrossRef]
  13. S. R. Erga, B. R. Heimdal, “Ecological studies on the phytoplankton of Korsfjorden, western Norway. The dynamics of a spring bloom seen in relation to hydrographical conditions and light regime,” J. Plankton Res. 6, 67–90 (1984).
    [CrossRef]
  14. S. R. Erga, “Ecological studies on the phytoplankton of Boknafjorden, Western Norway. 1. The effect of water exchange processes and environmental factors on temporal and vertical variability of biomass,” Sarsia 74, 161–176 (1989).
  15. W. S. Pegau, J. R. V. Zaneveld, “Temperature-dependent absorption of water in the red and near-infrared portions of the spectrum,” Limnol. Oceanogr. 38, 188–192 (1993).
    [CrossRef]
  16. N. K. Højerslev, E. Aas, “Spectral light absorption by yellow substance in the Kattegat-Skagerrak area,” Oceanologia 43, 39–60 (2001).
  17. S. W. Jeffrey, G. F. Humphrey, “New spectrophotometric equations for determining chlorophyll a, b, c1 and c2 in higher plants, algae and natural phytoplankton,” Physiol. Pflanzen 167, 191–194 (1975).
  18. S. W. Jeffrey, N. A. Welschmeyer, “Spectrophotometric and fluorometric equations in common use in oceanography,” in Phytoplankton Pigments in Oceanography: Guideline to Modern Methods, S. W. Jeffrey, R. F. C. Mantoura, S. W. Wright, eds. (UNESCO Publishing, Paris, France, 1997), pp. 597–615.
  19. N. G. Jerlov, Optical Oceanography (Elsevier, New York, 1968).
  20. A. Bricaud, M. Babin, A. Morel, H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13321–13332 (1995).
    [CrossRef]
  21. J. T. O. Kirk, “A theoretical analysis of the contribution of algal cells to the attenuation of light within waters. II. Spherical cells,” New Phytol. 75, 21–36 (1975).
    [CrossRef]
  22. A. Morel, A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. Part A 28, 1375–1393 (1981).
    [CrossRef]
  23. A. Morel, “Light and marine photosynthesis: a model with geochemical and climatological implications,” Prog. Oceanogr. 26, 263–306 (1991).
    [CrossRef]
  24. A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variation of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998).
    [CrossRef]
  25. C. M. Duarte, S. Augusti, M. P. Satta, D. Vaqué, “Partitioning particulate light absorption: a budget for a Mediterranean bay,” Limnol. Oceanogr. 43, 236–244 (1998).
    [CrossRef]
  26. A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
    [CrossRef]
  27. A. Morel, Y. A. Ahn, F. Partensky, D. Vaulot, H. Claustre, “Prochlorococcus and Synechococcus: a comparative study of their optical properties in relation to their size and pigmentation,” J. Mar. Res. 51, 617–649 (1993).
    [CrossRef]
  28. H. R. Gordon, T. Du, “Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi,” Limnol. Oceanogr. 46, 1438–1454 (2001).
    [CrossRef]
  29. N. K. Højerslev, E. Aas, “Spectral light absorption by gelbstoff in coastal waters displaying highly different concentrations,” in Ocean Optics XIV CD-ROM, S. V. Ackleson, ed. (U.S. Office of Naval Research, Washington, DC., 1998).
  30. S. R. Erga, A. M. Omar, I. Singstad, E. Steinseide, “An optical detection system for the study of fine-scale vertical displacement of microalgae in an artificial water column,” J. Phycol. 35, 176–183 (1999).
    [CrossRef]
  31. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: the Art of Scientific Computing (Cambridge University, Cambridge, England, 1992).
  32. D. Stramski, A. Bricaud, A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40, 2929–2945 (2001).
    [CrossRef]
  33. H. R. Gordon, A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery, a Review, Vol. 4 of Lecture Notes on Coastal and Estuarine Studies,(Springer-Verlag, New York, 1983).
    [CrossRef]
  34. R. M. Pope, E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
    [CrossRef]
  35. R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters,” Appl. Opt. 20, 177–184 (1981).
    [CrossRef] [PubMed]
  36. A. Morel, “Optical properties of pure seawater,” in Optical Aspects of Oceanography, N. G. Jerlov, E. S. Nelson, eds. (Academic, New York, 1974), pp. 1–24.

2001

A. Morel, S. Maritorena, “Bio-optical properties of oceanic waters: a reappraisal,” J. Geophys. Res. 106, 7163–7180 (2001).
[CrossRef]

N. K. Højerslev, E. Aas, “Spectral light absorption by yellow substance in the Kattegat-Skagerrak area,” Oceanologia 43, 39–60 (2001).

H. R. Gordon, T. Du, “Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi,” Limnol. Oceanogr. 46, 1438–1454 (2001).
[CrossRef]

Ø. Frette, S. R. Erga, J. J. Stamnes, K. Stamnes, “Optical remote sensing of waters with vertical structure,” Appl. Opt. 40, 1478–1487 (2001).
[CrossRef]

D. Stramski, A. Bricaud, A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40, 2929–2945 (2001).
[CrossRef]

2000

H. C. Eilertsen, O. Holm-Hansen, “Effects of high latitude UV radiation on phytoplankton and nekton modelled from field measurements by simple algorithms,” Polar Res. 19, 173–182 (2000).
[CrossRef]

1999

S. R. Erga, A. M. Omar, I. Singstad, E. Steinseide, “An optical detection system for the study of fine-scale vertical displacement of microalgae in an artificial water column,” J. Phycol. 35, 176–183 (1999).
[CrossRef]

1998

H. Loisel, A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a reexamination,” Limnol. Oceanogr. 43, 847–858 (1998).
[CrossRef]

A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variation of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998).
[CrossRef]

C. M. Duarte, S. Augusti, M. P. Satta, D. Vaqué, “Partitioning particulate light absorption: a budget for a Mediterranean bay,” Limnol. Oceanogr. 43, 236–244 (1998).
[CrossRef]

Ø. Frette, J. J. Stamnes, K. Stamnes, “Optical remote sensing of marine constituents in coastal waters: a feasibility study,” Appl. Opt. 37, 8318–8326 (1998).
[CrossRef]

1997

1995

M. D. Skogen, E. Svendsen, J. Berntsen, D. Aksnes, K. B. Ulvestad, “Modeling the primary production in the North Sea using a coupled 3-dimensional physical-chemical-biological ocean model,” Estuarine Coastal Shelf Sci. 41, 545–565 (1995).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13321–13332 (1995).
[CrossRef]

1994

1993

A. Morel, Y. A. Ahn, F. Partensky, D. Vaulot, H. Claustre, “Prochlorococcus and Synechococcus: a comparative study of their optical properties in relation to their size and pigmentation,” J. Mar. Res. 51, 617–649 (1993).
[CrossRef]

W. S. Pegau, J. R. V. Zaneveld, “Temperature-dependent absorption of water in the red and near-infrared portions of the spectrum,” Limnol. Oceanogr. 38, 188–192 (1993).
[CrossRef]

1991

A. Morel, “Light and marine photosynthesis: a model with geochemical and climatological implications,” Prog. Oceanogr. 26, 263–306 (1991).
[CrossRef]

1989

S. R. Erga, “Ecological studies on the phytoplankton of Boknafjorden, Western Norway. 1. The effect of water exchange processes and environmental factors on temporal and vertical variability of biomass,” Sarsia 74, 161–176 (1989).

1984

S. R. Erga, B. R. Heimdal, “Ecological studies on the phytoplankton of Korsfjorden, western Norway. The dynamics of a spring bloom seen in relation to hydrographical conditions and light regime,” J. Plankton Res. 6, 67–90 (1984).
[CrossRef]

1981

L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption of phytoplankton pigments, dissolved organic matter and particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
[CrossRef]

A. Morel, A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. Part A 28, 1375–1393 (1981).
[CrossRef]

A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
[CrossRef]

R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters,” Appl. Opt. 20, 177–184 (1981).
[CrossRef] [PubMed]

1975

J. T. O. Kirk, “A theoretical analysis of the contribution of algal cells to the attenuation of light within waters. II. Spherical cells,” New Phytol. 75, 21–36 (1975).
[CrossRef]

S. W. Jeffrey, G. F. Humphrey, “New spectrophotometric equations for determining chlorophyll a, b, c1 and c2 in higher plants, algae and natural phytoplankton,” Physiol. Pflanzen 167, 191–194 (1975).

Aas, E.

N. K. Højerslev, E. Aas, “Spectral light absorption by yellow substance in the Kattegat-Skagerrak area,” Oceanologia 43, 39–60 (2001).

N. K. Højerslev, E. Aas, “Spectral light absorption by gelbstoff in coastal waters displaying highly different concentrations,” in Ocean Optics XIV CD-ROM, S. V. Ackleson, ed. (U.S. Office of Naval Research, Washington, DC., 1998).

Ahn, Y. A.

A. Morel, Y. A. Ahn, F. Partensky, D. Vaulot, H. Claustre, “Prochlorococcus and Synechococcus: a comparative study of their optical properties in relation to their size and pigmentation,” J. Mar. Res. 51, 617–649 (1993).
[CrossRef]

Aksnes, D.

M. D. Skogen, E. Svendsen, J. Berntsen, D. Aksnes, K. B. Ulvestad, “Modeling the primary production in the North Sea using a coupled 3-dimensional physical-chemical-biological ocean model,” Estuarine Coastal Shelf Sci. 41, 545–565 (1995).
[CrossRef]

Aksnes, D. L.

D. L. Aksnes, A. C. W. Utne, “A revised model of visual range in fish,” Sarsia 82, 137–147 (1997).

Allali, K.

A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variation of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998).
[CrossRef]

Augusti, S.

C. M. Duarte, S. Augusti, M. P. Satta, D. Vaqué, “Partitioning particulate light absorption: a budget for a Mediterranean bay,” Limnol. Oceanogr. 43, 236–244 (1998).
[CrossRef]

Babin, M.

A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variation of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13321–13332 (1995).
[CrossRef]

Baker, K. S.

Berntsen, J.

M. D. Skogen, E. Svendsen, J. Berntsen, D. Aksnes, K. B. Ulvestad, “Modeling the primary production in the North Sea using a coupled 3-dimensional physical-chemical-biological ocean model,” Estuarine Coastal Shelf Sci. 41, 545–565 (1995).
[CrossRef]

Bricaud, A.

D. Stramski, A. Bricaud, A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40, 2929–2945 (2001).
[CrossRef]

A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variation of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13321–13332 (1995).
[CrossRef]

A. Morel, A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. Part A 28, 1375–1393 (1981).
[CrossRef]

A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
[CrossRef]

Claustre, H.

A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variation of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13321–13332 (1995).
[CrossRef]

A. Morel, Y. A. Ahn, F. Partensky, D. Vaulot, H. Claustre, “Prochlorococcus and Synechococcus: a comparative study of their optical properties in relation to their size and pigmentation,” J. Mar. Res. 51, 617–649 (1993).
[CrossRef]

Dahl, E.

E. Dahl, K. Tangen, “Gyrodinium aureolum bloom along the Norwegian coast in 1988,” in Toxic Marine Phytoplankton: Proceedings of the Fourth International Conference on Toxic Marine Phytoplankton, E. Granéli, B. Sundstrøm, L. Edler, D. M. Anderson, eds. (Elsevier, New York, 1989), pp. 123–127.

Du, T.

H. R. Gordon, T. Du, “Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi,” Limnol. Oceanogr. 46, 1438–1454 (2001).
[CrossRef]

Duarte, C. M.

C. M. Duarte, S. Augusti, M. P. Satta, D. Vaqué, “Partitioning particulate light absorption: a budget for a Mediterranean bay,” Limnol. Oceanogr. 43, 236–244 (1998).
[CrossRef]

Eikrem, W.

W. Eikrem, J. Throndsen, “Toxic prymnesiophytes identified from Norwegian coastal waters,” in Toxic Phytoplankton Blooms in the Sea: Proceedings of the Fifth International Conference on Toxic Marine Phytoplankton, T. J. Smayda, Y. Shimizu, eds. (Elsevier, New York, 1993), pp. 687–692.

Eilertsen, H. C.

H. C. Eilertsen, O. Holm-Hansen, “Effects of high latitude UV radiation on phytoplankton and nekton modelled from field measurements by simple algorithms,” Polar Res. 19, 173–182 (2000).
[CrossRef]

Erga, S. R.

Ø. Frette, S. R. Erga, J. J. Stamnes, K. Stamnes, “Optical remote sensing of waters with vertical structure,” Appl. Opt. 40, 1478–1487 (2001).
[CrossRef]

S. R. Erga, A. M. Omar, I. Singstad, E. Steinseide, “An optical detection system for the study of fine-scale vertical displacement of microalgae in an artificial water column,” J. Phycol. 35, 176–183 (1999).
[CrossRef]

S. R. Erga, “Ecological studies on the phytoplankton of Boknafjorden, Western Norway. 1. The effect of water exchange processes and environmental factors on temporal and vertical variability of biomass,” Sarsia 74, 161–176 (1989).

S. R. Erga, B. R. Heimdal, “Ecological studies on the phytoplankton of Korsfjorden, western Norway. The dynamics of a spring bloom seen in relation to hydrographical conditions and light regime,” J. Plankton Res. 6, 67–90 (1984).
[CrossRef]

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: the Art of Scientific Computing (Cambridge University, Cambridge, England, 1992).

Frette, Ø.

Fry, E. S.

Gordon, H. R.

H. R. Gordon, T. Du, “Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi,” Limnol. Oceanogr. 46, 1438–1454 (2001).
[CrossRef]

Heimdal, B. R.

S. R. Erga, B. R. Heimdal, “Ecological studies on the phytoplankton of Korsfjorden, western Norway. The dynamics of a spring bloom seen in relation to hydrographical conditions and light regime,” J. Plankton Res. 6, 67–90 (1984).
[CrossRef]

Højerslev, N. K.

N. K. Højerslev, E. Aas, “Spectral light absorption by yellow substance in the Kattegat-Skagerrak area,” Oceanologia 43, 39–60 (2001).

N. K. Højerslev, E. Aas, “Spectral light absorption by gelbstoff in coastal waters displaying highly different concentrations,” in Ocean Optics XIV CD-ROM, S. V. Ackleson, ed. (U.S. Office of Naval Research, Washington, DC., 1998).

Holm-Hansen, O.

H. C. Eilertsen, O. Holm-Hansen, “Effects of high latitude UV radiation on phytoplankton and nekton modelled from field measurements by simple algorithms,” Polar Res. 19, 173–182 (2000).
[CrossRef]

Humphrey, G. F.

S. W. Jeffrey, G. F. Humphrey, “New spectrophotometric equations for determining chlorophyll a, b, c1 and c2 in higher plants, algae and natural phytoplankton,” Physiol. Pflanzen 167, 191–194 (1975).

Jeffrey, S. W.

S. W. Jeffrey, G. F. Humphrey, “New spectrophotometric equations for determining chlorophyll a, b, c1 and c2 in higher plants, algae and natural phytoplankton,” Physiol. Pflanzen 167, 191–194 (1975).

S. W. Jeffrey, N. A. Welschmeyer, “Spectrophotometric and fluorometric equations in common use in oceanography,” in Phytoplankton Pigments in Oceanography: Guideline to Modern Methods, S. W. Jeffrey, R. F. C. Mantoura, S. W. Wright, eds. (UNESCO Publishing, Paris, France, 1997), pp. 597–615.

Jerlov, N. G.

N. G. Jerlov, Optical Oceanography (Elsevier, New York, 1968).

Jin, Z.

Kirk, J. T. O.

J. T. O. Kirk, “A theoretical analysis of the contribution of algal cells to the attenuation of light within waters. II. Spherical cells,” New Phytol. 75, 21–36 (1975).
[CrossRef]

Loisel, H.

H. Loisel, A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a reexamination,” Limnol. Oceanogr. 43, 847–858 (1998).
[CrossRef]

Maritorena, S.

A. Morel, S. Maritorena, “Bio-optical properties of oceanic waters: a reappraisal,” J. Geophys. Res. 106, 7163–7180 (2001).
[CrossRef]

Morel, A.

A. Morel, S. Maritorena, “Bio-optical properties of oceanic waters: a reappraisal,” J. Geophys. Res. 106, 7163–7180 (2001).
[CrossRef]

D. Stramski, A. Bricaud, A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40, 2929–2945 (2001).
[CrossRef]

H. Loisel, A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a reexamination,” Limnol. Oceanogr. 43, 847–858 (1998).
[CrossRef]

A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variation of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13321–13332 (1995).
[CrossRef]

A. Morel, Y. A. Ahn, F. Partensky, D. Vaulot, H. Claustre, “Prochlorococcus and Synechococcus: a comparative study of their optical properties in relation to their size and pigmentation,” J. Mar. Res. 51, 617–649 (1993).
[CrossRef]

A. Morel, “Light and marine photosynthesis: a model with geochemical and climatological implications,” Prog. Oceanogr. 26, 263–306 (1991).
[CrossRef]

A. Morel, A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. Part A 28, 1375–1393 (1981).
[CrossRef]

A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
[CrossRef]

H. R. Gordon, A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery, a Review, Vol. 4 of Lecture Notes on Coastal and Estuarine Studies,(Springer-Verlag, New York, 1983).
[CrossRef]

A. Morel, “Optical properties of pure seawater,” in Optical Aspects of Oceanography, N. G. Jerlov, E. S. Nelson, eds. (Academic, New York, 1974), pp. 1–24.

Omar, A. M.

S. R. Erga, A. M. Omar, I. Singstad, E. Steinseide, “An optical detection system for the study of fine-scale vertical displacement of microalgae in an artificial water column,” J. Phycol. 35, 176–183 (1999).
[CrossRef]

Partensky, F.

A. Morel, Y. A. Ahn, F. Partensky, D. Vaulot, H. Claustre, “Prochlorococcus and Synechococcus: a comparative study of their optical properties in relation to their size and pigmentation,” J. Mar. Res. 51, 617–649 (1993).
[CrossRef]

Pegau, W. S.

W. S. Pegau, J. R. V. Zaneveld, “Temperature-dependent absorption of water in the red and near-infrared portions of the spectrum,” Limnol. Oceanogr. 38, 188–192 (1993).
[CrossRef]

Pope, R. M.

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: the Art of Scientific Computing (Cambridge University, Cambridge, England, 1992).

Prieur, L.

A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
[CrossRef]

L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption of phytoplankton pigments, dissolved organic matter and particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
[CrossRef]

R. Gordon, H.

H. R. Gordon, A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery, a Review, Vol. 4 of Lecture Notes on Coastal and Estuarine Studies,(Springer-Verlag, New York, 1983).
[CrossRef]

Sathyendranath, S.

L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption of phytoplankton pigments, dissolved organic matter and particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
[CrossRef]

Satta, M. P.

C. M. Duarte, S. Augusti, M. P. Satta, D. Vaqué, “Partitioning particulate light absorption: a budget for a Mediterranean bay,” Limnol. Oceanogr. 43, 236–244 (1998).
[CrossRef]

Singstad, I.

S. R. Erga, A. M. Omar, I. Singstad, E. Steinseide, “An optical detection system for the study of fine-scale vertical displacement of microalgae in an artificial water column,” J. Phycol. 35, 176–183 (1999).
[CrossRef]

Skogen, M. D.

M. D. Skogen, E. Svendsen, J. Berntsen, D. Aksnes, K. B. Ulvestad, “Modeling the primary production in the North Sea using a coupled 3-dimensional physical-chemical-biological ocean model,” Estuarine Coastal Shelf Sci. 41, 545–565 (1995).
[CrossRef]

Smith, R. C.

Stamnes, J. J.

Stamnes, K.

Steinseide, E.

S. R. Erga, A. M. Omar, I. Singstad, E. Steinseide, “An optical detection system for the study of fine-scale vertical displacement of microalgae in an artificial water column,” J. Phycol. 35, 176–183 (1999).
[CrossRef]

Stramski, D.

Svendsen, E.

M. D. Skogen, E. Svendsen, J. Berntsen, D. Aksnes, K. B. Ulvestad, “Modeling the primary production in the North Sea using a coupled 3-dimensional physical-chemical-biological ocean model,” Estuarine Coastal Shelf Sci. 41, 545–565 (1995).
[CrossRef]

Tangen, K.

E. Dahl, K. Tangen, “Gyrodinium aureolum bloom along the Norwegian coast in 1988,” in Toxic Marine Phytoplankton: Proceedings of the Fourth International Conference on Toxic Marine Phytoplankton, E. Granéli, B. Sundstrøm, L. Edler, D. M. Anderson, eds. (Elsevier, New York, 1989), pp. 123–127.

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: the Art of Scientific Computing (Cambridge University, Cambridge, England, 1992).

Thomas, G. E.

G. E. Thomas, K. Stamnes, Radiative Transfer in the Atmosphere and Ocean (Cambridge University, Cambridge, England, 1999).
[CrossRef]

Throndsen, J.

W. Eikrem, J. Throndsen, “Toxic prymnesiophytes identified from Norwegian coastal waters,” in Toxic Phytoplankton Blooms in the Sea: Proceedings of the Fifth International Conference on Toxic Marine Phytoplankton, T. J. Smayda, Y. Shimizu, eds. (Elsevier, New York, 1993), pp. 687–692.

Ulvestad, K. B.

M. D. Skogen, E. Svendsen, J. Berntsen, D. Aksnes, K. B. Ulvestad, “Modeling the primary production in the North Sea using a coupled 3-dimensional physical-chemical-biological ocean model,” Estuarine Coastal Shelf Sci. 41, 545–565 (1995).
[CrossRef]

Utne, A. C. W.

D. L. Aksnes, A. C. W. Utne, “A revised model of visual range in fish,” Sarsia 82, 137–147 (1997).

Vaqué, D.

C. M. Duarte, S. Augusti, M. P. Satta, D. Vaqué, “Partitioning particulate light absorption: a budget for a Mediterranean bay,” Limnol. Oceanogr. 43, 236–244 (1998).
[CrossRef]

Vaulot, D.

A. Morel, Y. A. Ahn, F. Partensky, D. Vaulot, H. Claustre, “Prochlorococcus and Synechococcus: a comparative study of their optical properties in relation to their size and pigmentation,” J. Mar. Res. 51, 617–649 (1993).
[CrossRef]

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: the Art of Scientific Computing (Cambridge University, Cambridge, England, 1992).

Welschmeyer, N. A.

S. W. Jeffrey, N. A. Welschmeyer, “Spectrophotometric and fluorometric equations in common use in oceanography,” in Phytoplankton Pigments in Oceanography: Guideline to Modern Methods, S. W. Jeffrey, R. F. C. Mantoura, S. W. Wright, eds. (UNESCO Publishing, Paris, France, 1997), pp. 597–615.

Zaneveld, J. R. V.

W. S. Pegau, J. R. V. Zaneveld, “Temperature-dependent absorption of water in the red and near-infrared portions of the spectrum,” Limnol. Oceanogr. 38, 188–192 (1993).
[CrossRef]

Appl. Opt.

Deep-Sea Res. Part A

A. Morel, A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. Part A 28, 1375–1393 (1981).
[CrossRef]

Estuarine Coastal Shelf Sci.

M. D. Skogen, E. Svendsen, J. Berntsen, D. Aksnes, K. B. Ulvestad, “Modeling the primary production in the North Sea using a coupled 3-dimensional physical-chemical-biological ocean model,” Estuarine Coastal Shelf Sci. 41, 545–565 (1995).
[CrossRef]

J. Geophys. Res.

A. Bricaud, M. Babin, A. Morel, H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13321–13332 (1995).
[CrossRef]

A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variation of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998).
[CrossRef]

A. Morel, S. Maritorena, “Bio-optical properties of oceanic waters: a reappraisal,” J. Geophys. Res. 106, 7163–7180 (2001).
[CrossRef]

J. Mar. Res.

A. Morel, Y. A. Ahn, F. Partensky, D. Vaulot, H. Claustre, “Prochlorococcus and Synechococcus: a comparative study of their optical properties in relation to their size and pigmentation,” J. Mar. Res. 51, 617–649 (1993).
[CrossRef]

J. Phycol.

S. R. Erga, A. M. Omar, I. Singstad, E. Steinseide, “An optical detection system for the study of fine-scale vertical displacement of microalgae in an artificial water column,” J. Phycol. 35, 176–183 (1999).
[CrossRef]

J. Plankton Res.

S. R. Erga, B. R. Heimdal, “Ecological studies on the phytoplankton of Korsfjorden, western Norway. The dynamics of a spring bloom seen in relation to hydrographical conditions and light regime,” J. Plankton Res. 6, 67–90 (1984).
[CrossRef]

Limnol. Oceanogr.

L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption of phytoplankton pigments, dissolved organic matter and particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
[CrossRef]

H. Loisel, A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a reexamination,” Limnol. Oceanogr. 43, 847–858 (1998).
[CrossRef]

W. S. Pegau, J. R. V. Zaneveld, “Temperature-dependent absorption of water in the red and near-infrared portions of the spectrum,” Limnol. Oceanogr. 38, 188–192 (1993).
[CrossRef]

H. R. Gordon, T. Du, “Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi,” Limnol. Oceanogr. 46, 1438–1454 (2001).
[CrossRef]

C. M. Duarte, S. Augusti, M. P. Satta, D. Vaqué, “Partitioning particulate light absorption: a budget for a Mediterranean bay,” Limnol. Oceanogr. 43, 236–244 (1998).
[CrossRef]

A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
[CrossRef]

New Phytol.

J. T. O. Kirk, “A theoretical analysis of the contribution of algal cells to the attenuation of light within waters. II. Spherical cells,” New Phytol. 75, 21–36 (1975).
[CrossRef]

Oceanologia

N. K. Højerslev, E. Aas, “Spectral light absorption by yellow substance in the Kattegat-Skagerrak area,” Oceanologia 43, 39–60 (2001).

Physiol. Pflanzen

S. W. Jeffrey, G. F. Humphrey, “New spectrophotometric equations for determining chlorophyll a, b, c1 and c2 in higher plants, algae and natural phytoplankton,” Physiol. Pflanzen 167, 191–194 (1975).

Polar Res.

H. C. Eilertsen, O. Holm-Hansen, “Effects of high latitude UV radiation on phytoplankton and nekton modelled from field measurements by simple algorithms,” Polar Res. 19, 173–182 (2000).
[CrossRef]

Prog. Oceanogr.

A. Morel, “Light and marine photosynthesis: a model with geochemical and climatological implications,” Prog. Oceanogr. 26, 263–306 (1991).
[CrossRef]

Sarsia

S. R. Erga, “Ecological studies on the phytoplankton of Boknafjorden, Western Norway. 1. The effect of water exchange processes and environmental factors on temporal and vertical variability of biomass,” Sarsia 74, 161–176 (1989).

D. L. Aksnes, A. C. W. Utne, “A revised model of visual range in fish,” Sarsia 82, 137–147 (1997).

Other

G. E. Thomas, K. Stamnes, Radiative Transfer in the Atmosphere and Ocean (Cambridge University, Cambridge, England, 1999).
[CrossRef]

H. R. Gordon, A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery, a Review, Vol. 4 of Lecture Notes on Coastal and Estuarine Studies,(Springer-Verlag, New York, 1983).
[CrossRef]

A. Morel, “Optical properties of pure seawater,” in Optical Aspects of Oceanography, N. G. Jerlov, E. S. Nelson, eds. (Academic, New York, 1974), pp. 1–24.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: the Art of Scientific Computing (Cambridge University, Cambridge, England, 1992).

E. Dahl, K. Tangen, “Gyrodinium aureolum bloom along the Norwegian coast in 1988,” in Toxic Marine Phytoplankton: Proceedings of the Fourth International Conference on Toxic Marine Phytoplankton, E. Granéli, B. Sundstrøm, L. Edler, D. M. Anderson, eds. (Elsevier, New York, 1989), pp. 123–127.

W. Eikrem, J. Throndsen, “Toxic prymnesiophytes identified from Norwegian coastal waters,” in Toxic Phytoplankton Blooms in the Sea: Proceedings of the Fifth International Conference on Toxic Marine Phytoplankton, T. J. Smayda, Y. Shimizu, eds. (Elsevier, New York, 1993), pp. 687–692.

S. W. Jeffrey, N. A. Welschmeyer, “Spectrophotometric and fluorometric equations in common use in oceanography,” in Phytoplankton Pigments in Oceanography: Guideline to Modern Methods, S. W. Jeffrey, R. F. C. Mantoura, S. W. Wright, eds. (UNESCO Publishing, Paris, France, 1997), pp. 597–615.

N. G. Jerlov, Optical Oceanography (Elsevier, New York, 1968).

N. K. Højerslev, E. Aas, “Spectral light absorption by gelbstoff in coastal waters displaying highly different concentrations,” in Ocean Optics XIV CD-ROM, S. V. Ackleson, ed. (U.S. Office of Naval Research, Washington, DC., 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Map of the western Norwegian Samnanger fjord where the measurements were performed with the location of stations 1, 3, and 5 pinpointed.

Fig. 2
Fig. 2

Profiles of the absorption and attenuation coefficients at the nine wavelengths measured with the ac9 instrument. The measured wavelengths are (from right to left) 412, 440, 488, 510, 532, 555, 650, 676, and 715 nm. Dots denote the raw data and the curves represent polynomials of degree three that are piecewise fitted to the raw data. The profiles are from the peak of the Emiliania huxleyi summer bloom (June 16, station 3). The constant value of the absorption coefficient at 715 nm (upper panel) stems from the use of this channel as a baseline correction (described in Section 2).

Fig. 3
Fig. 3

Measured absorption coefficients (upper panel) and scattering coefficients (lower panel) versus wavelength during all the cruises for stations 1, 3, and 5 and at depths of 1, 10, and 50 m.

Fig. 4
Fig. 4

Mean values of measured absorption coefficients in the Samnanger fjord during all the cruises for stations 1, 3, and 5 and at depths of 1, 10, and 50 m: ○, total absorption coefficient; □, absorption by yellow substance; ◇, absorption by particles found by subtracting the absorption by yellow substance from the total absorption.

Fig. 5
Fig. 5

Statistical distribution of measured concentrations of yellow substance during all the cruises for stations 1, 3, and 5 and at depths of 1, 10, and 50 m. Upper panel: frequency distribution of slope γ; see Eq. (3). Lower panel: frequency distribution of absorption by yellow substance at 310 nm.

Fig. 6
Fig. 6

Correlation between the log-transformed chlorophyll-a concentration and the log-transformed absorption coefficient at 676 nm corrected for the contribution from yellow substance: —, best fit of a = a 0 + A a C E a , where C is the chlorophyll a concentration. Here a 0 = 0.0055, A a = 0.036, and E a = 0.82. - -, Mean value of the 90% confidence interval; ×, spring bloom; ◇, summer bloom; ○, rest of the year.

Fig. 7
Fig. 7

Correlation between the log-transformed chlorophyll-a concentration and the log-transformed scattering coefficient at 555 nm: —, best fit of b = b 0 + A b C E b , where C is the chlorophyll a concentration. Here b 0 = 0.039, A b = 0.38, and E b = 0.75. - -, Mean value of the 90% confidence interval; ×, spring bloom; ◇, summer bloom; ○, rest of the year.

Fig. 8
Fig. 8

Variations in the absorption parameters a 0, A a , and E a with wavelength; see Eq. (6). The lines and curve represent the least-squares best-fit curves: ○, a 0 [see Eq. (11)]; ×, A a [see Eq. (12)]; ◇, E a with mean value equal to 0.65.

Fig. 9
Fig. 9

Variations in the scattering parameters b 0, A b , and E b with wavelength; see Eq. (10). The lines represent the mean values: ○, b 0, 0 = 0.035; ×, A b , Ā b = 0.36; ◇, E b , b = 0.73.

Fig. 10
Fig. 10

Variations in the particulate (algae and nonalgae) absorption and scattering coefficients versus wavelength, which shows how strongly chlorophyll a correlates with the measured yellow substance subtracted absorption and scattering coefficient, i.e., to within what factor the particulate absorption and scattering coefficients can be calculated given a certain chlorophyll-a value. ○, absorption; ×, scattering. The mean values are 3.2 and 2.6 for absorption and scattering coefficients, respectively; see also Figs. 6 and 7.

Fig. 11
Fig. 11

Deviation during the year between modeled and measured absorption coefficients (upper panel) and scattering coefficients (lower panel). ○, Monthly mean value of the relative error between measured and modeled values. The relative error is calculated as (a meas - a mod)/a meas) × 100% for absorption and as (b meas - b mod)/b meas) × 100% for scattering. □, Standard deviation of the relative error. The data set includes measurements at the eight ac9 wavelengths from 412 to 676 nm during all the cruises at stations 1, 3, and 5 at depths of 1 and 10 m.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

a715=a715+T0-TΔa715ΔT m-1,
aλ=ayλ+apλ,
ayλ=aλ0exp-γλ-λ0,
apλ=ap*λC+a0λ,
ap*λ=AaλC-Baλ,
apλ=AaλCEaλ+a0λ m-1,
bλ=bpλ,
bpλ=bp*λC+b0λ,
bp*λ=AbλC-Bbλ,
bpλ=AbλCEbλ+b0λ,
a0λ=0.033 exp-0.0073λ-440 m-1,
Aaλ=0.073 exp-0.0067λ-440+0.02 exp-0.003λ-6762×m-1mg chl-a m-3-0.65.
aλ=awλ+ayλ0exp-0.017λ-λ0+AaλC0.65+a0λ m-1,
bλ=bwλ+0.36C0.73+0.035 m-1,

Metrics