Abstract

We deal with the design of a diode laser heterodyne radiometer and its application in a combustion process. We present some experimental results obtained with a CH4-air premixed flat flame as the optical source. The goal is to prove that heterodyne detection techniques are relevant in remote detection and diagnostics of combustion and can have important applications in both civil and military fields. To the best of our knowledge, it is the first time that this demonstration is made. The radiometer, in spite of the low-power lead-salt diode laser used as a local oscillator, enables us to record high-temperature water-vapor emission spectra in the region of 1315 cm-1.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. T. Menzies, M. S. Shumate, “Air pollution: remote detection of several pollutant gases with a laser heterodyne radiometer,” Science 184, 570–571 (1974).
    [CrossRef] [PubMed]
  2. S. R. King, D. T. Hodges, T. S. Hartwick, D. H. Barker, “High resolution atmospheric transmission measurement using a laser heterodyne radiometer,” Appl. Opt. 12, 1106–1107 (1973).
    [CrossRef] [PubMed]
  3. R. K. Seals, B. J. Peyton, “Remote sensing of atmospheric pollutant gases using an infrared heterodyne spectrometer,” Ann. IEEE 10-5, 1–6 (1976).
  4. C. Thiebeaux, D. Courtois, A. Delahaigue, H. Le Corre, J. C. Mouanda, A. Fayt, “Dual beam laser heterodyne spectrometer: ethylene absorption spectrum in the 10 μm range,” Appl. Phys. B 47, 313–318 (1988).
    [CrossRef]
  5. S. L. Jain, “Laser heterodyne system for measurement of minor constituents in the atmosphere,” Indian J. Radio Space Phys. 25, 309–317 (1996).
  6. R. T. Menzies, “Remote detection of SO2 and CO2 with a heterodyne radiometer,” Appl. Phys. Lett. 22, 592–593 (1973).
    [CrossRef]
  7. T. Kostiuk, M. J. Mumma, “Remote sensing by IR heterodyne spectroscopy,” Appl. Opt. 22, 2644–2654 (1983).
    [CrossRef] [PubMed]
  8. A. L. Betz, M. A. Johnson, R. A. McLaren, E. C. Sutton, “Heterodyne detection of CO2 emission lines and wind velocities in the atmosphere of Venus,” Astrophys. J. 208, L141–L144 (1976).
    [CrossRef]
  9. J. H. McElroy, “Infrared heterodyne solar radiometry,” Appl. Opt. 11, 1619–1622 (1972).
    [CrossRef] [PubMed]
  10. Y. Shani, A. Hardy, E. Kapon, A. Katzir, “The far field of PbSnTe injection lasers,” IEEE J. Quantum Electron. QE20, 1297–1269 (1984).
  11. M. Agne, A. Lambrecht, U. Schiessl, M. Tacke, “Guided modes and far field patterns of lead chalcogenide buried heterostructure laser diodes,” Infrared Phys. Technol. 35, 47–58 (1994).
    [CrossRef]
  12. M. A. Frerking, D. J. Muehlner, “Infrared heterodyne spectroscopy of atmospheric ozone,” Appl. Opt. 16, 526–528 (1977).
    [CrossRef] [PubMed]
  13. J. M. Hoell, C. N. Harward, W. Lo, “High resolution atmospheric spectroscopy using a diode laser spectrometer,” Opt. Eng. 21, 320–326 (1982).
    [CrossRef]
  14. D. Glenar, T. Kostiuk, D. E. Jennings, D. Buhl, M. J. Mumma, “Tunable diode laser heterodyne spectrometer for remote observation near 8 μm,” Appl. Opt. 21, 253–259 (1982).
    [CrossRef] [PubMed]
  15. H. Fukunishi, S. Okano, M. Taguchi, T. Ohnuma, “Laser heterodyne spectrometer using a liquid nitrogen cooled tunable diode laser for remote measurements of atmospheric O3 and N2O,” Appl. Opt. 29, 2722–2728 (1990).
    [CrossRef] [PubMed]
  16. B. Parvitte, C. Thiébeaux, D. Courtois, “Tunable heterodyne spectrometer in the 9 μm range with selected lead salt diodes,” Spectrochim. Acta Part A 55A, 2027–2037 (1999).
  17. F. Schmülling, B. Klumb, M. Harter, R. Schieder, B. Vowinkel, G. Winnewisser, “High-sensitivity mid-infrared heterodyne spectrometer with a tunable diode laser as a local oscillator,” Appl. Opt. 37, 5771–5776 (1998).
    [CrossRef]
  18. O. Andrade, B. J. Rye, “Tolerances in optical mixing,” J. Physics D 7, 280–291 (1974).
    [CrossRef]
  19. H. Z. Cummins, H. L. Swinney, “Light beating spectroscopy,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1970), Vol. 8.
    [CrossRef]
  20. L. Mandel, “Heterodyne detection of weak light beam,” J. Opt. Soc. Am. 56, 1200–1206 (1966).
    [CrossRef]
  21. M. J. Mumma, T. Kostiuk, D. Buhl, G. Chin, D. Zipoy, “Infrared heterodyne spectroscopy,” Opt. Eng. 21, 313–319 (1982).
    [CrossRef]
  22. D. Courtois, C. Thiébaux, A. Delahaigue, “Heterodyne spectrometer for the 10 μm region,” Int. J. Infrared Millim. Waves 5, 185–195 (1984).
    [CrossRef]
  23. C. Thiébaux, A. Delahaigue, D. Courtois, J. C. Mouanda, “Heterodyne spectra analysis,” Int. J. Infrared Millim. Waves 12, 759–767 (1992).
    [CrossRef]
  24. T. G. Blaney, “Signal-to-noise ratio and other characteristics of heterodyne radiation receivers,” Space Sci. Rev. 17, 691–702 (1975).
    [CrossRef]
  25. R. T. Menzies, “Laser heterodyne detection techniques,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976), Chap. 7.
    [CrossRef]
  26. S. C. Cohen, “Heterodyne detection: phase front alignment, beam spot size, and detector uniformity,” Appl. Opt. 14, 1953–1959 (1975).
    [CrossRef] [PubMed]
  27. C. N. Harward, B. D. Sidney, “Excess noise in Pb1-xSnxSe semiconductor lasers,” in Proceedings of an International Conference on Heterodyne Systems and Technology, NASA Conference Publication 2138 (NASA, Williamsburg, Va., 1980), pp. 129–142.
  28. F. Allario, S. J. Katzberg, J. C. Larsen, “Sensitivity studies and laboratory measurements for the laser heterodyne spectrometer experiment,” in Proceedings of an International Conference on Heterodyne Systems and Technology, NASA Conference Publication 2138 (NASA, Williamsburg, Va., 1980), pp. 221–240.
  29. D. Weidmann, D. Courtois, “High quality infrared (8 μm) diode laser source design for high resolution spectroscopy with precise temperature and current control,” Infrared Phys. Technol. 41, 361–371 (2000).
    [CrossRef]
  30. K. Peterman, Laser Diode Modulation and Noise (Kluwer Academic, London, 1991).
  31. J. Reid, D. T. Cassidy, R. T. Menzies, “Linewidth measurements of tunable diode lasers using heterodyne and etalon techniques,” Appl. Opt. 21, 3961–3965 (1982).
    [CrossRef] [PubMed]
  32. R. Brunner, M. Tacke, “Tunable diode laser line width and tuning measurements for gas analysis monitoring,” Infrared Phys. Technol. 43, 61–67 (2002).
    [CrossRef]
  33. G. P. Agrawal, N. K. Dutta, Long Wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986).
    [CrossRef]
  34. D. Weidmann, A. Hamdouni, D. Courtois, “CH4/air/SO2 premixed flame spectroscopy with a 7.5 μm diode laser,” Appl. Phys. B 73, 85–91 (2001).
    [CrossRef]
  35. D. Courtois, A. Delahaigue, C. Thiébeaux, “Detection of thermal emission from atmospheric gases by laser heterodyne radiometry,” Infrared Phys. 34, 407–413 (1993).
    [CrossRef]
  36. A. E. Siegman, “The antenna properties of optical heterodyne receivers,” Proc. IEEE 54, 1350–1356 (1966).
    [CrossRef]
  37. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
    [CrossRef]
  38. J. Faist, A. Tredicucci, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “High-power continuous-wave quantum cascade lasers,” IEEE J. Quantum Electron. 34, 336–343 (1998).
    [CrossRef]
  39. G. Sonnabend, D. Wirtz, R. Schieder, “THIS-Infrared remote sensing with a tunable and transportable heterodyne spectrometer,” paper B13 presented at the Third International Conference on Tunable Diode Laser Spectroscopy, Zermatt, Switzerland, July 8–12, 2001.

2002 (1)

R. Brunner, M. Tacke, “Tunable diode laser line width and tuning measurements for gas analysis monitoring,” Infrared Phys. Technol. 43, 61–67 (2002).
[CrossRef]

2001 (1)

D. Weidmann, A. Hamdouni, D. Courtois, “CH4/air/SO2 premixed flame spectroscopy with a 7.5 μm diode laser,” Appl. Phys. B 73, 85–91 (2001).
[CrossRef]

2000 (1)

D. Weidmann, D. Courtois, “High quality infrared (8 μm) diode laser source design for high resolution spectroscopy with precise temperature and current control,” Infrared Phys. Technol. 41, 361–371 (2000).
[CrossRef]

1999 (1)

B. Parvitte, C. Thiébeaux, D. Courtois, “Tunable heterodyne spectrometer in the 9 μm range with selected lead salt diodes,” Spectrochim. Acta Part A 55A, 2027–2037 (1999).

1998 (3)

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

J. Faist, A. Tredicucci, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “High-power continuous-wave quantum cascade lasers,” IEEE J. Quantum Electron. 34, 336–343 (1998).
[CrossRef]

F. Schmülling, B. Klumb, M. Harter, R. Schieder, B. Vowinkel, G. Winnewisser, “High-sensitivity mid-infrared heterodyne spectrometer with a tunable diode laser as a local oscillator,” Appl. Opt. 37, 5771–5776 (1998).
[CrossRef]

1996 (1)

S. L. Jain, “Laser heterodyne system for measurement of minor constituents in the atmosphere,” Indian J. Radio Space Phys. 25, 309–317 (1996).

1994 (1)

M. Agne, A. Lambrecht, U. Schiessl, M. Tacke, “Guided modes and far field patterns of lead chalcogenide buried heterostructure laser diodes,” Infrared Phys. Technol. 35, 47–58 (1994).
[CrossRef]

1993 (1)

D. Courtois, A. Delahaigue, C. Thiébeaux, “Detection of thermal emission from atmospheric gases by laser heterodyne radiometry,” Infrared Phys. 34, 407–413 (1993).
[CrossRef]

1992 (1)

C. Thiébaux, A. Delahaigue, D. Courtois, J. C. Mouanda, “Heterodyne spectra analysis,” Int. J. Infrared Millim. Waves 12, 759–767 (1992).
[CrossRef]

1990 (1)

1988 (1)

C. Thiebeaux, D. Courtois, A. Delahaigue, H. Le Corre, J. C. Mouanda, A. Fayt, “Dual beam laser heterodyne spectrometer: ethylene absorption spectrum in the 10 μm range,” Appl. Phys. B 47, 313–318 (1988).
[CrossRef]

1984 (2)

Y. Shani, A. Hardy, E. Kapon, A. Katzir, “The far field of PbSnTe injection lasers,” IEEE J. Quantum Electron. QE20, 1297–1269 (1984).

D. Courtois, C. Thiébaux, A. Delahaigue, “Heterodyne spectrometer for the 10 μm region,” Int. J. Infrared Millim. Waves 5, 185–195 (1984).
[CrossRef]

1983 (1)

1982 (4)

D. Glenar, T. Kostiuk, D. E. Jennings, D. Buhl, M. J. Mumma, “Tunable diode laser heterodyne spectrometer for remote observation near 8 μm,” Appl. Opt. 21, 253–259 (1982).
[CrossRef] [PubMed]

J. Reid, D. T. Cassidy, R. T. Menzies, “Linewidth measurements of tunable diode lasers using heterodyne and etalon techniques,” Appl. Opt. 21, 3961–3965 (1982).
[CrossRef] [PubMed]

M. J. Mumma, T. Kostiuk, D. Buhl, G. Chin, D. Zipoy, “Infrared heterodyne spectroscopy,” Opt. Eng. 21, 313–319 (1982).
[CrossRef]

J. M. Hoell, C. N. Harward, W. Lo, “High resolution atmospheric spectroscopy using a diode laser spectrometer,” Opt. Eng. 21, 320–326 (1982).
[CrossRef]

1977 (1)

1976 (2)

A. L. Betz, M. A. Johnson, R. A. McLaren, E. C. Sutton, “Heterodyne detection of CO2 emission lines and wind velocities in the atmosphere of Venus,” Astrophys. J. 208, L141–L144 (1976).
[CrossRef]

R. K. Seals, B. J. Peyton, “Remote sensing of atmospheric pollutant gases using an infrared heterodyne spectrometer,” Ann. IEEE 10-5, 1–6 (1976).

1975 (2)

S. C. Cohen, “Heterodyne detection: phase front alignment, beam spot size, and detector uniformity,” Appl. Opt. 14, 1953–1959 (1975).
[CrossRef] [PubMed]

T. G. Blaney, “Signal-to-noise ratio and other characteristics of heterodyne radiation receivers,” Space Sci. Rev. 17, 691–702 (1975).
[CrossRef]

1974 (2)

R. T. Menzies, M. S. Shumate, “Air pollution: remote detection of several pollutant gases with a laser heterodyne radiometer,” Science 184, 570–571 (1974).
[CrossRef] [PubMed]

O. Andrade, B. J. Rye, “Tolerances in optical mixing,” J. Physics D 7, 280–291 (1974).
[CrossRef]

1973 (2)

1972 (1)

1966 (2)

L. Mandel, “Heterodyne detection of weak light beam,” J. Opt. Soc. Am. 56, 1200–1206 (1966).
[CrossRef]

A. E. Siegman, “The antenna properties of optical heterodyne receivers,” Proc. IEEE 54, 1350–1356 (1966).
[CrossRef]

Agne, M.

M. Agne, A. Lambrecht, U. Schiessl, M. Tacke, “Guided modes and far field patterns of lead chalcogenide buried heterostructure laser diodes,” Infrared Phys. Technol. 35, 47–58 (1994).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, N. K. Dutta, Long Wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986).
[CrossRef]

Allario, F.

F. Allario, S. J. Katzberg, J. C. Larsen, “Sensitivity studies and laboratory measurements for the laser heterodyne spectrometer experiment,” in Proceedings of an International Conference on Heterodyne Systems and Technology, NASA Conference Publication 2138 (NASA, Williamsburg, Va., 1980), pp. 221–240.

Andrade, O.

O. Andrade, B. J. Rye, “Tolerances in optical mixing,” J. Physics D 7, 280–291 (1974).
[CrossRef]

Baillargeon, J. N.

J. Faist, A. Tredicucci, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “High-power continuous-wave quantum cascade lasers,” IEEE J. Quantum Electron. 34, 336–343 (1998).
[CrossRef]

Barker, D. H.

Betz, A. L.

A. L. Betz, M. A. Johnson, R. A. McLaren, E. C. Sutton, “Heterodyne detection of CO2 emission lines and wind velocities in the atmosphere of Venus,” Astrophys. J. 208, L141–L144 (1976).
[CrossRef]

Blaney, T. G.

T. G. Blaney, “Signal-to-noise ratio and other characteristics of heterodyne radiation receivers,” Space Sci. Rev. 17, 691–702 (1975).
[CrossRef]

Brown, L. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Brunner, R.

R. Brunner, M. Tacke, “Tunable diode laser line width and tuning measurements for gas analysis monitoring,” Infrared Phys. Technol. 43, 61–67 (2002).
[CrossRef]

Buhl, D.

Camy-Peyret, C.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Capasso, F.

J. Faist, A. Tredicucci, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “High-power continuous-wave quantum cascade lasers,” IEEE J. Quantum Electron. 34, 336–343 (1998).
[CrossRef]

Cassidy, D. T.

Chance, K. V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Chin, G.

M. J. Mumma, T. Kostiuk, D. Buhl, G. Chin, D. Zipoy, “Infrared heterodyne spectroscopy,” Opt. Eng. 21, 313–319 (1982).
[CrossRef]

Cho, A. Y.

J. Faist, A. Tredicucci, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “High-power continuous-wave quantum cascade lasers,” IEEE J. Quantum Electron. 34, 336–343 (1998).
[CrossRef]

Cohen, S. C.

Courtois, D.

D. Weidmann, A. Hamdouni, D. Courtois, “CH4/air/SO2 premixed flame spectroscopy with a 7.5 μm diode laser,” Appl. Phys. B 73, 85–91 (2001).
[CrossRef]

D. Weidmann, D. Courtois, “High quality infrared (8 μm) diode laser source design for high resolution spectroscopy with precise temperature and current control,” Infrared Phys. Technol. 41, 361–371 (2000).
[CrossRef]

B. Parvitte, C. Thiébeaux, D. Courtois, “Tunable heterodyne spectrometer in the 9 μm range with selected lead salt diodes,” Spectrochim. Acta Part A 55A, 2027–2037 (1999).

D. Courtois, A. Delahaigue, C. Thiébeaux, “Detection of thermal emission from atmospheric gases by laser heterodyne radiometry,” Infrared Phys. 34, 407–413 (1993).
[CrossRef]

C. Thiébaux, A. Delahaigue, D. Courtois, J. C. Mouanda, “Heterodyne spectra analysis,” Int. J. Infrared Millim. Waves 12, 759–767 (1992).
[CrossRef]

C. Thiebeaux, D. Courtois, A. Delahaigue, H. Le Corre, J. C. Mouanda, A. Fayt, “Dual beam laser heterodyne spectrometer: ethylene absorption spectrum in the 10 μm range,” Appl. Phys. B 47, 313–318 (1988).
[CrossRef]

D. Courtois, C. Thiébaux, A. Delahaigue, “Heterodyne spectrometer for the 10 μm region,” Int. J. Infrared Millim. Waves 5, 185–195 (1984).
[CrossRef]

Cummins, H. Z.

H. Z. Cummins, H. L. Swinney, “Light beating spectroscopy,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1970), Vol. 8.
[CrossRef]

Dana, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Delahaigue, A.

D. Courtois, A. Delahaigue, C. Thiébeaux, “Detection of thermal emission from atmospheric gases by laser heterodyne radiometry,” Infrared Phys. 34, 407–413 (1993).
[CrossRef]

C. Thiébaux, A. Delahaigue, D. Courtois, J. C. Mouanda, “Heterodyne spectra analysis,” Int. J. Infrared Millim. Waves 12, 759–767 (1992).
[CrossRef]

C. Thiebeaux, D. Courtois, A. Delahaigue, H. Le Corre, J. C. Mouanda, A. Fayt, “Dual beam laser heterodyne spectrometer: ethylene absorption spectrum in the 10 μm range,” Appl. Phys. B 47, 313–318 (1988).
[CrossRef]

D. Courtois, C. Thiébaux, A. Delahaigue, “Heterodyne spectrometer for the 10 μm region,” Int. J. Infrared Millim. Waves 5, 185–195 (1984).
[CrossRef]

Dutta, N. K.

G. P. Agrawal, N. K. Dutta, Long Wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986).
[CrossRef]

Edwards, D. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Faist, J.

J. Faist, A. Tredicucci, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “High-power continuous-wave quantum cascade lasers,” IEEE J. Quantum Electron. 34, 336–343 (1998).
[CrossRef]

Fayt, A.

C. Thiebeaux, D. Courtois, A. Delahaigue, H. Le Corre, J. C. Mouanda, A. Fayt, “Dual beam laser heterodyne spectrometer: ethylene absorption spectrum in the 10 μm range,” Appl. Phys. B 47, 313–318 (1988).
[CrossRef]

Flaud, J. M.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Frerking, M. A.

Fukunishi, H.

Gamache, R. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Glenar, D.

Goldman, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Hamdouni, A.

D. Weidmann, A. Hamdouni, D. Courtois, “CH4/air/SO2 premixed flame spectroscopy with a 7.5 μm diode laser,” Appl. Phys. B 73, 85–91 (2001).
[CrossRef]

Hardy, A.

Y. Shani, A. Hardy, E. Kapon, A. Katzir, “The far field of PbSnTe injection lasers,” IEEE J. Quantum Electron. QE20, 1297–1269 (1984).

Harter, M.

Hartwick, T. S.

Harward, C. N.

J. M. Hoell, C. N. Harward, W. Lo, “High resolution atmospheric spectroscopy using a diode laser spectrometer,” Opt. Eng. 21, 320–326 (1982).
[CrossRef]

C. N. Harward, B. D. Sidney, “Excess noise in Pb1-xSnxSe semiconductor lasers,” in Proceedings of an International Conference on Heterodyne Systems and Technology, NASA Conference Publication 2138 (NASA, Williamsburg, Va., 1980), pp. 129–142.

Hodges, D. T.

Hoell, J. M.

J. M. Hoell, C. N. Harward, W. Lo, “High resolution atmospheric spectroscopy using a diode laser spectrometer,” Opt. Eng. 21, 320–326 (1982).
[CrossRef]

Hutchinson, A. L.

J. Faist, A. Tredicucci, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “High-power continuous-wave quantum cascade lasers,” IEEE J. Quantum Electron. 34, 336–343 (1998).
[CrossRef]

Jain, S. L.

S. L. Jain, “Laser heterodyne system for measurement of minor constituents in the atmosphere,” Indian J. Radio Space Phys. 25, 309–317 (1996).

Jennings, D. E.

Johnson, M. A.

A. L. Betz, M. A. Johnson, R. A. McLaren, E. C. Sutton, “Heterodyne detection of CO2 emission lines and wind velocities in the atmosphere of Venus,” Astrophys. J. 208, L141–L144 (1976).
[CrossRef]

Jucks, K. W.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Kapon, E.

Y. Shani, A. Hardy, E. Kapon, A. Katzir, “The far field of PbSnTe injection lasers,” IEEE J. Quantum Electron. QE20, 1297–1269 (1984).

Katzberg, S. J.

F. Allario, S. J. Katzberg, J. C. Larsen, “Sensitivity studies and laboratory measurements for the laser heterodyne spectrometer experiment,” in Proceedings of an International Conference on Heterodyne Systems and Technology, NASA Conference Publication 2138 (NASA, Williamsburg, Va., 1980), pp. 221–240.

Katzir, A.

Y. Shani, A. Hardy, E. Kapon, A. Katzir, “The far field of PbSnTe injection lasers,” IEEE J. Quantum Electron. QE20, 1297–1269 (1984).

King, S. R.

Klumb, B.

Kostiuk, T.

Lambrecht, A.

M. Agne, A. Lambrecht, U. Schiessl, M. Tacke, “Guided modes and far field patterns of lead chalcogenide buried heterostructure laser diodes,” Infrared Phys. Technol. 35, 47–58 (1994).
[CrossRef]

Larsen, J. C.

F. Allario, S. J. Katzberg, J. C. Larsen, “Sensitivity studies and laboratory measurements for the laser heterodyne spectrometer experiment,” in Proceedings of an International Conference on Heterodyne Systems and Technology, NASA Conference Publication 2138 (NASA, Williamsburg, Va., 1980), pp. 221–240.

Le Corre, H.

C. Thiebeaux, D. Courtois, A. Delahaigue, H. Le Corre, J. C. Mouanda, A. Fayt, “Dual beam laser heterodyne spectrometer: ethylene absorption spectrum in the 10 μm range,” Appl. Phys. B 47, 313–318 (1988).
[CrossRef]

Lo, W.

J. M. Hoell, C. N. Harward, W. Lo, “High resolution atmospheric spectroscopy using a diode laser spectrometer,” Opt. Eng. 21, 320–326 (1982).
[CrossRef]

Mandel, L.

Mandin, J. Y.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Massie, S. T.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

McCann, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

McElroy, J. H.

McLaren, R. A.

A. L. Betz, M. A. Johnson, R. A. McLaren, E. C. Sutton, “Heterodyne detection of CO2 emission lines and wind velocities in the atmosphere of Venus,” Astrophys. J. 208, L141–L144 (1976).
[CrossRef]

Menzies, R. T.

J. Reid, D. T. Cassidy, R. T. Menzies, “Linewidth measurements of tunable diode lasers using heterodyne and etalon techniques,” Appl. Opt. 21, 3961–3965 (1982).
[CrossRef] [PubMed]

R. T. Menzies, M. S. Shumate, “Air pollution: remote detection of several pollutant gases with a laser heterodyne radiometer,” Science 184, 570–571 (1974).
[CrossRef] [PubMed]

R. T. Menzies, “Remote detection of SO2 and CO2 with a heterodyne radiometer,” Appl. Phys. Lett. 22, 592–593 (1973).
[CrossRef]

R. T. Menzies, “Laser heterodyne detection techniques,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976), Chap. 7.
[CrossRef]

Mouanda, J. C.

C. Thiébaux, A. Delahaigue, D. Courtois, J. C. Mouanda, “Heterodyne spectra analysis,” Int. J. Infrared Millim. Waves 12, 759–767 (1992).
[CrossRef]

C. Thiebeaux, D. Courtois, A. Delahaigue, H. Le Corre, J. C. Mouanda, A. Fayt, “Dual beam laser heterodyne spectrometer: ethylene absorption spectrum in the 10 μm range,” Appl. Phys. B 47, 313–318 (1988).
[CrossRef]

Muehlner, D. J.

Mumma, M. J.

Nemtchinov, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Ohnuma, T.

Okano, S.

Parvitte, B.

B. Parvitte, C. Thiébeaux, D. Courtois, “Tunable heterodyne spectrometer in the 9 μm range with selected lead salt diodes,” Spectrochim. Acta Part A 55A, 2027–2037 (1999).

Perrin, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Peterman, K.

K. Peterman, Laser Diode Modulation and Noise (Kluwer Academic, London, 1991).

Peyton, B. J.

R. K. Seals, B. J. Peyton, “Remote sensing of atmospheric pollutant gases using an infrared heterodyne spectrometer,” Ann. IEEE 10-5, 1–6 (1976).

Reid, J.

Rinsland, C. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Rothman, L. S.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Rye, B. J.

O. Andrade, B. J. Rye, “Tolerances in optical mixing,” J. Physics D 7, 280–291 (1974).
[CrossRef]

Schieder, R.

F. Schmülling, B. Klumb, M. Harter, R. Schieder, B. Vowinkel, G. Winnewisser, “High-sensitivity mid-infrared heterodyne spectrometer with a tunable diode laser as a local oscillator,” Appl. Opt. 37, 5771–5776 (1998).
[CrossRef]

G. Sonnabend, D. Wirtz, R. Schieder, “THIS-Infrared remote sensing with a tunable and transportable heterodyne spectrometer,” paper B13 presented at the Third International Conference on Tunable Diode Laser Spectroscopy, Zermatt, Switzerland, July 8–12, 2001.

Schiessl, U.

M. Agne, A. Lambrecht, U. Schiessl, M. Tacke, “Guided modes and far field patterns of lead chalcogenide buried heterostructure laser diodes,” Infrared Phys. Technol. 35, 47–58 (1994).
[CrossRef]

Schmülling, F.

Schroeder, J.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Seals, R. K.

R. K. Seals, B. J. Peyton, “Remote sensing of atmospheric pollutant gases using an infrared heterodyne spectrometer,” Ann. IEEE 10-5, 1–6 (1976).

Shani, Y.

Y. Shani, A. Hardy, E. Kapon, A. Katzir, “The far field of PbSnTe injection lasers,” IEEE J. Quantum Electron. QE20, 1297–1269 (1984).

Shumate, M. S.

R. T. Menzies, M. S. Shumate, “Air pollution: remote detection of several pollutant gases with a laser heterodyne radiometer,” Science 184, 570–571 (1974).
[CrossRef] [PubMed]

Sidney, B. D.

C. N. Harward, B. D. Sidney, “Excess noise in Pb1-xSnxSe semiconductor lasers,” in Proceedings of an International Conference on Heterodyne Systems and Technology, NASA Conference Publication 2138 (NASA, Williamsburg, Va., 1980), pp. 129–142.

Siegman, A. E.

A. E. Siegman, “The antenna properties of optical heterodyne receivers,” Proc. IEEE 54, 1350–1356 (1966).
[CrossRef]

Sirtori, C.

J. Faist, A. Tredicucci, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “High-power continuous-wave quantum cascade lasers,” IEEE J. Quantum Electron. 34, 336–343 (1998).
[CrossRef]

Sivco, D. L.

J. Faist, A. Tredicucci, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “High-power continuous-wave quantum cascade lasers,” IEEE J. Quantum Electron. 34, 336–343 (1998).
[CrossRef]

Sonnabend, G.

G. Sonnabend, D. Wirtz, R. Schieder, “THIS-Infrared remote sensing with a tunable and transportable heterodyne spectrometer,” paper B13 presented at the Third International Conference on Tunable Diode Laser Spectroscopy, Zermatt, Switzerland, July 8–12, 2001.

Sutton, E. C.

A. L. Betz, M. A. Johnson, R. A. McLaren, E. C. Sutton, “Heterodyne detection of CO2 emission lines and wind velocities in the atmosphere of Venus,” Astrophys. J. 208, L141–L144 (1976).
[CrossRef]

Swinney, H. L.

H. Z. Cummins, H. L. Swinney, “Light beating spectroscopy,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1970), Vol. 8.
[CrossRef]

Tacke, M.

R. Brunner, M. Tacke, “Tunable diode laser line width and tuning measurements for gas analysis monitoring,” Infrared Phys. Technol. 43, 61–67 (2002).
[CrossRef]

M. Agne, A. Lambrecht, U. Schiessl, M. Tacke, “Guided modes and far field patterns of lead chalcogenide buried heterostructure laser diodes,” Infrared Phys. Technol. 35, 47–58 (1994).
[CrossRef]

Taguchi, M.

Thiébaux, C.

C. Thiébaux, A. Delahaigue, D. Courtois, J. C. Mouanda, “Heterodyne spectra analysis,” Int. J. Infrared Millim. Waves 12, 759–767 (1992).
[CrossRef]

D. Courtois, C. Thiébaux, A. Delahaigue, “Heterodyne spectrometer for the 10 μm region,” Int. J. Infrared Millim. Waves 5, 185–195 (1984).
[CrossRef]

Thiebeaux, C.

C. Thiebeaux, D. Courtois, A. Delahaigue, H. Le Corre, J. C. Mouanda, A. Fayt, “Dual beam laser heterodyne spectrometer: ethylene absorption spectrum in the 10 μm range,” Appl. Phys. B 47, 313–318 (1988).
[CrossRef]

Thiébeaux, C.

B. Parvitte, C. Thiébeaux, D. Courtois, “Tunable heterodyne spectrometer in the 9 μm range with selected lead salt diodes,” Spectrochim. Acta Part A 55A, 2027–2037 (1999).

D. Courtois, A. Delahaigue, C. Thiébeaux, “Detection of thermal emission from atmospheric gases by laser heterodyne radiometry,” Infrared Phys. 34, 407–413 (1993).
[CrossRef]

Tredicucci, A.

J. Faist, A. Tredicucci, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “High-power continuous-wave quantum cascade lasers,” IEEE J. Quantum Electron. 34, 336–343 (1998).
[CrossRef]

Varanasi, P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Vowinkel, B.

Wattson, R. B.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Weidmann, D.

D. Weidmann, A. Hamdouni, D. Courtois, “CH4/air/SO2 premixed flame spectroscopy with a 7.5 μm diode laser,” Appl. Phys. B 73, 85–91 (2001).
[CrossRef]

D. Weidmann, D. Courtois, “High quality infrared (8 μm) diode laser source design for high resolution spectroscopy with precise temperature and current control,” Infrared Phys. Technol. 41, 361–371 (2000).
[CrossRef]

Winnewisser, G.

Wirtz, D.

G. Sonnabend, D. Wirtz, R. Schieder, “THIS-Infrared remote sensing with a tunable and transportable heterodyne spectrometer,” paper B13 presented at the Third International Conference on Tunable Diode Laser Spectroscopy, Zermatt, Switzerland, July 8–12, 2001.

Yoshino, K.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Zipoy, D.

M. J. Mumma, T. Kostiuk, D. Buhl, G. Chin, D. Zipoy, “Infrared heterodyne spectroscopy,” Opt. Eng. 21, 313–319 (1982).
[CrossRef]

Ann. IEEE (1)

R. K. Seals, B. J. Peyton, “Remote sensing of atmospheric pollutant gases using an infrared heterodyne spectrometer,” Ann. IEEE 10-5, 1–6 (1976).

Appl. Opt. (9)

J. H. McElroy, “Infrared heterodyne solar radiometry,” Appl. Opt. 11, 1619–1622 (1972).
[CrossRef] [PubMed]

S. C. Cohen, “Heterodyne detection: phase front alignment, beam spot size, and detector uniformity,” Appl. Opt. 14, 1953–1959 (1975).
[CrossRef] [PubMed]

D. Glenar, T. Kostiuk, D. E. Jennings, D. Buhl, M. J. Mumma, “Tunable diode laser heterodyne spectrometer for remote observation near 8 μm,” Appl. Opt. 21, 253–259 (1982).
[CrossRef] [PubMed]

J. Reid, D. T. Cassidy, R. T. Menzies, “Linewidth measurements of tunable diode lasers using heterodyne and etalon techniques,” Appl. Opt. 21, 3961–3965 (1982).
[CrossRef] [PubMed]

T. Kostiuk, M. J. Mumma, “Remote sensing by IR heterodyne spectroscopy,” Appl. Opt. 22, 2644–2654 (1983).
[CrossRef] [PubMed]

H. Fukunishi, S. Okano, M. Taguchi, T. Ohnuma, “Laser heterodyne spectrometer using a liquid nitrogen cooled tunable diode laser for remote measurements of atmospheric O3 and N2O,” Appl. Opt. 29, 2722–2728 (1990).
[CrossRef] [PubMed]

F. Schmülling, B. Klumb, M. Harter, R. Schieder, B. Vowinkel, G. Winnewisser, “High-sensitivity mid-infrared heterodyne spectrometer with a tunable diode laser as a local oscillator,” Appl. Opt. 37, 5771–5776 (1998).
[CrossRef]

S. R. King, D. T. Hodges, T. S. Hartwick, D. H. Barker, “High resolution atmospheric transmission measurement using a laser heterodyne radiometer,” Appl. Opt. 12, 1106–1107 (1973).
[CrossRef] [PubMed]

M. A. Frerking, D. J. Muehlner, “Infrared heterodyne spectroscopy of atmospheric ozone,” Appl. Opt. 16, 526–528 (1977).
[CrossRef] [PubMed]

Appl. Phys. B (2)

D. Weidmann, A. Hamdouni, D. Courtois, “CH4/air/SO2 premixed flame spectroscopy with a 7.5 μm diode laser,” Appl. Phys. B 73, 85–91 (2001).
[CrossRef]

C. Thiebeaux, D. Courtois, A. Delahaigue, H. Le Corre, J. C. Mouanda, A. Fayt, “Dual beam laser heterodyne spectrometer: ethylene absorption spectrum in the 10 μm range,” Appl. Phys. B 47, 313–318 (1988).
[CrossRef]

Appl. Phys. Lett. (1)

R. T. Menzies, “Remote detection of SO2 and CO2 with a heterodyne radiometer,” Appl. Phys. Lett. 22, 592–593 (1973).
[CrossRef]

Astrophys. J. (1)

A. L. Betz, M. A. Johnson, R. A. McLaren, E. C. Sutton, “Heterodyne detection of CO2 emission lines and wind velocities in the atmosphere of Venus,” Astrophys. J. 208, L141–L144 (1976).
[CrossRef]

IEEE J. Quantum Electron. (2)

Y. Shani, A. Hardy, E. Kapon, A. Katzir, “The far field of PbSnTe injection lasers,” IEEE J. Quantum Electron. QE20, 1297–1269 (1984).

J. Faist, A. Tredicucci, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “High-power continuous-wave quantum cascade lasers,” IEEE J. Quantum Electron. 34, 336–343 (1998).
[CrossRef]

Indian J. Radio Space Phys. (1)

S. L. Jain, “Laser heterodyne system for measurement of minor constituents in the atmosphere,” Indian J. Radio Space Phys. 25, 309–317 (1996).

Infrared Phys. (1)

D. Courtois, A. Delahaigue, C. Thiébeaux, “Detection of thermal emission from atmospheric gases by laser heterodyne radiometry,” Infrared Phys. 34, 407–413 (1993).
[CrossRef]

Infrared Phys. Technol. (3)

R. Brunner, M. Tacke, “Tunable diode laser line width and tuning measurements for gas analysis monitoring,” Infrared Phys. Technol. 43, 61–67 (2002).
[CrossRef]

M. Agne, A. Lambrecht, U. Schiessl, M. Tacke, “Guided modes and far field patterns of lead chalcogenide buried heterostructure laser diodes,” Infrared Phys. Technol. 35, 47–58 (1994).
[CrossRef]

D. Weidmann, D. Courtois, “High quality infrared (8 μm) diode laser source design for high resolution spectroscopy with precise temperature and current control,” Infrared Phys. Technol. 41, 361–371 (2000).
[CrossRef]

Int. J. Infrared Millim. Waves (2)

D. Courtois, C. Thiébaux, A. Delahaigue, “Heterodyne spectrometer for the 10 μm region,” Int. J. Infrared Millim. Waves 5, 185–195 (1984).
[CrossRef]

C. Thiébaux, A. Delahaigue, D. Courtois, J. C. Mouanda, “Heterodyne spectra analysis,” Int. J. Infrared Millim. Waves 12, 759–767 (1992).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Physics D (1)

O. Andrade, B. J. Rye, “Tolerances in optical mixing,” J. Physics D 7, 280–291 (1974).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Opt. Eng. (2)

M. J. Mumma, T. Kostiuk, D. Buhl, G. Chin, D. Zipoy, “Infrared heterodyne spectroscopy,” Opt. Eng. 21, 313–319 (1982).
[CrossRef]

J. M. Hoell, C. N. Harward, W. Lo, “High resolution atmospheric spectroscopy using a diode laser spectrometer,” Opt. Eng. 21, 320–326 (1982).
[CrossRef]

Proc. IEEE (1)

A. E. Siegman, “The antenna properties of optical heterodyne receivers,” Proc. IEEE 54, 1350–1356 (1966).
[CrossRef]

Science (1)

R. T. Menzies, M. S. Shumate, “Air pollution: remote detection of several pollutant gases with a laser heterodyne radiometer,” Science 184, 570–571 (1974).
[CrossRef] [PubMed]

Space Sci. Rev. (1)

T. G. Blaney, “Signal-to-noise ratio and other characteristics of heterodyne radiation receivers,” Space Sci. Rev. 17, 691–702 (1975).
[CrossRef]

Spectrochim. Acta Part A (1)

B. Parvitte, C. Thiébeaux, D. Courtois, “Tunable heterodyne spectrometer in the 9 μm range with selected lead salt diodes,” Spectrochim. Acta Part A 55A, 2027–2037 (1999).

Other (7)

R. T. Menzies, “Laser heterodyne detection techniques,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976), Chap. 7.
[CrossRef]

C. N. Harward, B. D. Sidney, “Excess noise in Pb1-xSnxSe semiconductor lasers,” in Proceedings of an International Conference on Heterodyne Systems and Technology, NASA Conference Publication 2138 (NASA, Williamsburg, Va., 1980), pp. 129–142.

F. Allario, S. J. Katzberg, J. C. Larsen, “Sensitivity studies and laboratory measurements for the laser heterodyne spectrometer experiment,” in Proceedings of an International Conference on Heterodyne Systems and Technology, NASA Conference Publication 2138 (NASA, Williamsburg, Va., 1980), pp. 221–240.

H. Z. Cummins, H. L. Swinney, “Light beating spectroscopy,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1970), Vol. 8.
[CrossRef]

K. Peterman, Laser Diode Modulation and Noise (Kluwer Academic, London, 1991).

G. P. Agrawal, N. K. Dutta, Long Wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986).
[CrossRef]

G. Sonnabend, D. Wirtz, R. Schieder, “THIS-Infrared remote sensing with a tunable and transportable heterodyne spectrometer,” paper B13 presented at the Third International Conference on Tunable Diode Laser Spectroscopy, Zermatt, Switzerland, July 8–12, 2001.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Basic diagram of a tunable LO heterodyne radiometer. The signal-processing line is simple thanks to the LO continuous tunability. In the case of a fixed LO, a high-speed photomixer and a rf spectrometer (filter bank, acousto-optical spectrometer, or superheterodyne spectromete) would be required.

Fig. 2
Fig. 2

Lead-salt laser with the typical geometric parameters. The emitted beam is elliptic and astigmatic.

Fig. 3
Fig. 3

Main spectral characteristics of a lead-salt laser. The continuously tunable spectral range is, at best, 2 cm-1. The mode-hop spread depends on the laser cavity length and is in our case 5.5 cm-1. At mode hops, a multimode emission often occurs.

Fig. 4
Fig. 4

Signals provided by the confocal Fabry-Perot etalon. From these records, a relative frequency calibration of the laser emission can be reached. In addition, they allow an optical diagnostic of the laser emission by discrimination of [trace (a)] single and [trace (b)] multimode emissions.

Fig. 5
Fig. 5

Instrument-scaled optical setup.

Fig. 6
Fig. 6

Simplified optical diagram of the optical arrangement.

Fig. 7
Fig. 7

Geometry used for the description of total flux emitted by molecules in the burner’ postflame region.

Fig. 8
Fig. 8

Experimental and calculated spectra of combustion water vapor in the postflame region of the burner.

Tables (2)

Tables Icon

Table 1 hitemp96 Data for 2000-K Lines Observed on the Experimental Spectrum

Tables Icon

Table 2 Experimental Parameters Used in the Emission Model to Compute the Calculated Spectra of Fig. 8

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Ipht=ηehν¯PLO+Ps2+ ELOEsω×cosωLO-ωt-φdω,
Vhet  ωLO-B/2ωLO+B/2 |Esω|2dω.
SNR=ηPshν¯BBτ.
Ps=λ2BνLν0T,
Lνl=Lν0exp-Kλl+Kλ ×0l Lν0Txexp-Kλl-xdx,
Φν=SΩ LνX3cosθdSdΩ,
Φ=λ2νLO-B/2νLO+B/2 LνX3dνλ2BLνX3,

Metrics