Abstract

The development of remote-sensing instruments that can be used to monitor several parameters at the same time is important for the study of complex processes such as those that control climate and environment. In this paper the performance of a new concept of lidar receiver that allows for the direct measurement of aerosol and cloud optical properties simultaneously with wind velocity is investigated. This receiver uses a Mach-Zehnder interferometer. Two different configurations, either with four photometric output channels or with fringe imaging on a multichannel detector, are studied. Analytical expressions of the statistical errors are given under the assumption of Gaussian signal spectra. It is shown that similar accuracies can be achieved for both configurations. Performance modeling of the retrieval of semitransparent cloud optical scattering properties and wind velocity was done at different operation wavelengths for a Nd:YAG laser source. Results for such a lidar system onboard an aircraft flying at an altitude of 12 km show that for semitransparent clouds the best results were obtained at 355 nm, with relative standard deviations of 0.5% and 5% for the backscatter and extinction coefficients, respectively, together with a velocity accuracy of 0.2 ms-1. The accuracy of optical properties retrieved for boundary layer aerosols are comparable, whereas the velocity accuracy is decreased to 1 ms-1. Finally, an extrapolation to a large 355-nm spaceborne lidar shows accuracies in the range from 2.5% to 5% for the backscatter coefficient and from 10% to 15% for the extinction coefficient together with a vertical wind speed accuracy of better than 0.5 ms-1 for semitransparent clouds and boundary layer, with a vertical resolution of 500 m and a 100 shot averaging.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Spinhirne, W. Hart, “Cirrus structure and radiative parameters from airborne lidar and spectral radiometer observations: the 28 October FIRE study,” Mon. Weather Rev. 118, 2329–2343 (1990).
    [CrossRef]
  2. C. M. R. Platt, “A parametrization of the visible extinction coefficient of ice clouds in terms of the ice/water content,” J. Atmos. Sci. 54, 2083–2098 (1998).
    [CrossRef]
  3. A. H. Omar, C. S. Gardner, “Observation of high altitude clouds over the equatorial region exhibiting extremely cold temperatures,” in Proceedings of the 19th International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwemmer, eds., NASA Conf. Publ. CP-1998-207671 (NASA, Greenbelt, Md., 1998), pp. 253–256.
  4. S. Elouragini, P. H. Flamant, “Iterative method to determine an average backscatter-to-extinction ratio in cirrus clouds,” Appl. Opt. 35, 1512–1518 (1996).
    [CrossRef] [PubMed]
  5. L. Sauvage, H. Chepfer, V. Trouillet, P. H. Flamant, G. Brogniez, J. Pelon, F. Albers, “Remote sensing of cirrus radiative properties during EUCREX’94. Case study of 17 April 1994. Part I: Observations,” Mon. Weather Rev. 127, 504–519 (1999).
    [CrossRef]
  6. G. Fiocco, G. Benedetti-Michelangeli, K. Maischberger, E. Madonna, “Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nature (London) Phys. Sci. 229, 78–79 (1971).
    [CrossRef]
  7. S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory,” Appl. Opt. 22, 3716–3724 (1983).
    [CrossRef] [PubMed]
  8. J. T. Sroga, E. W. Eloranta, S. T. Shipley, F. L. Roesler, P. J. Tryon, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 2: Calibration and data analysis,” Appl. Opt. 22, 3725–3732 (1983).
    [CrossRef] [PubMed]
  9. D. Wylie, P. Pironen, W. Wolf, E. Eloranta, “Understanding satellite cirrus cloud climatologies with calibrated lidar optical depths,” J. Atmos. Sci. 52, 4327–4343 (1995).
    [CrossRef]
  10. M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
    [CrossRef]
  11. D. Rees, I. S. McDermid, “Doppler lidar atmospheric wind sensor: reevaluation of a 355-nm incoherent Doppler lidar,” Appl. Opt. 29, 4133–4144 (1990).
    [CrossRef] [PubMed]
  12. S. H. Bloom, R. Kremer, P. A. Searcy, M. Rivers, J. Menders, E. Korevaar, “Long-range, noncoherent laser Doppler velocimeter,” Opt. Lett. 16, 1794–1796 (1991).
    [CrossRef] [PubMed]
  13. V. J. Abreu, J. E. Barnes, P. B. Hays, “Observations of winds with an incoherent lidar detector,” Appl. Opt. 31, 4509–4514 (1992).
    [CrossRef] [PubMed]
  14. C. L. Korb, B. M. Gentry, C. Y. Weng, “Edge technique: theory and application to the lidar measurement of atmospheric wind,” Appl. Opt. 31, 4202–4213 (1992).
    [CrossRef] [PubMed]
  15. C. Souprayen, A. Garnier, A. Hertzog, A. Hauchecorne, J. Porteneuve, “Rayleigh-Mie Doppler wind lidar for atmospheric measurements. I. Instrumental setup, validation, and first climatological results,” Appl. Opt. 38, 2410–2421 (1999).
    [CrossRef]
  16. C. Souprayen, A. Garnier, A. Hertzog, “Rayleigh-Mie Doppler wind lidar for atmospheric measurements. II. Mie scattering effect, theory, and calibration,” Appl. Opt. 38, 2422–2431 (1999).
    [CrossRef]
  17. P. Pironen, E. W. Eloranta, “Demonstration of high-spectral-resolution lidar based on an iodine absorption filter,” Opt. Lett. 19, 234–236 (1994).
    [CrossRef]
  18. Z. Liu, I. Matsui, N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38, 1661–1670 (1999).
    [CrossRef]
  19. J. W. Hair, L. M. Caldwell, D. A. Krueger, C.-Y. She, “High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles,” Appl. Opt. 40, 5280–5294 (2001).
    [CrossRef]
  20. Z. Liu, T. Kobayashi, “Differential discrimination technique for incoherent Doppler lidar to measure atmospheric wind and backscatter ratio,” Opt. Rev. 3, 47–52 (1996).
    [CrossRef]
  21. D. Bruneau, “Mach-Zehnder interferometer as a spectral analyzer for molecular Doppler wind lidar,” Appl. Opt. 40, 391–399 (2001).
    [CrossRef]
  22. D. Bruneau, “Fringe-imaging Mach-Zehnder interferometer as a spectral analyzer for molecular Doppler wind lidar,” Appl. Opt. 41, 503–510 (2002).
    [CrossRef] [PubMed]
  23. G. Benedetti-Michellangeli, F. Congeduti, G. Fiocco, “Measurement of aerosol motion and wind velocity in the lower troposphere by Doppler optical radar,” J. Atmos. Sci. 29, 906–910 (1972).
    [CrossRef]
  24. C. Y. She, “Non-resonant laser atmospheric scattering spectrum and lidar bandwidths,” in Advances in Laser Remote Sensing, Selected papers presented at the 20th International Laser Radar Conference, A. Dabas, C. Loth, J. Pelon, eds., (Ecole Polytechnique, Palaiseau, France, 2000), pp. 81–84.
  25. Y. K. Park, G. Giuliani, R. L. Byer, “Single axial mode operation of a Q-switched Nd:YAG oscillator by injection seeding,” IEEE J. Quantum Electron. QE-20, 117–125 (1984).
    [CrossRef]
  26. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975), pp. 312–316.
  27. W. E. Meador, W. R. Weaver, “Two-stream approximation to radiative transfer in planetary atmospheres: a unified description of existing methods and a new improvement,” J. Atmos. Sci. 37, 630–643 (1980).
    [CrossRef]
  28. D. Morançais, F. Fabre, P. Berlioz, R. Mauer, A. Culoma, “Spaceborne wind lidar concept for the Atmospheric Dynamics Mission (ALADIN),” in Advances in Laser Remote Sensing, Selected papers presented at the 20th International Laser Radar Conference, A. Dabas, C. Loth, J. Pelon, eds. (Ecole Polytechnique, Palaiseau, France, 2000), pp. 15–18.
  29. L. R. Bissonnette, “Multiple-scattering lidar equation,” Appl. Opt. 35, 6449–6465 (1996).
    [CrossRef] [PubMed]

2002

2001

1999

C. Souprayen, A. Garnier, A. Hertzog, A. Hauchecorne, J. Porteneuve, “Rayleigh-Mie Doppler wind lidar for atmospheric measurements. I. Instrumental setup, validation, and first climatological results,” Appl. Opt. 38, 2410–2421 (1999).
[CrossRef]

C. Souprayen, A. Garnier, A. Hertzog, “Rayleigh-Mie Doppler wind lidar for atmospheric measurements. II. Mie scattering effect, theory, and calibration,” Appl. Opt. 38, 2422–2431 (1999).
[CrossRef]

L. Sauvage, H. Chepfer, V. Trouillet, P. H. Flamant, G. Brogniez, J. Pelon, F. Albers, “Remote sensing of cirrus radiative properties during EUCREX’94. Case study of 17 April 1994. Part I: Observations,” Mon. Weather Rev. 127, 504–519 (1999).
[CrossRef]

Z. Liu, I. Matsui, N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38, 1661–1670 (1999).
[CrossRef]

1998

C. M. R. Platt, “A parametrization of the visible extinction coefficient of ice clouds in terms of the ice/water content,” J. Atmos. Sci. 54, 2083–2098 (1998).
[CrossRef]

1996

1995

D. Wylie, P. Pironen, W. Wolf, E. Eloranta, “Understanding satellite cirrus cloud climatologies with calibrated lidar optical depths,” J. Atmos. Sci. 52, 4327–4343 (1995).
[CrossRef]

1994

1992

1991

1990

J. D. Spinhirne, W. Hart, “Cirrus structure and radiative parameters from airborne lidar and spectral radiometer observations: the 28 October FIRE study,” Mon. Weather Rev. 118, 2329–2343 (1990).
[CrossRef]

D. Rees, I. S. McDermid, “Doppler lidar atmospheric wind sensor: reevaluation of a 355-nm incoherent Doppler lidar,” Appl. Opt. 29, 4133–4144 (1990).
[CrossRef] [PubMed]

1989

M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

1984

Y. K. Park, G. Giuliani, R. L. Byer, “Single axial mode operation of a Q-switched Nd:YAG oscillator by injection seeding,” IEEE J. Quantum Electron. QE-20, 117–125 (1984).
[CrossRef]

1983

1980

W. E. Meador, W. R. Weaver, “Two-stream approximation to radiative transfer in planetary atmospheres: a unified description of existing methods and a new improvement,” J. Atmos. Sci. 37, 630–643 (1980).
[CrossRef]

1972

G. Benedetti-Michellangeli, F. Congeduti, G. Fiocco, “Measurement of aerosol motion and wind velocity in the lower troposphere by Doppler optical radar,” J. Atmos. Sci. 29, 906–910 (1972).
[CrossRef]

1971

G. Fiocco, G. Benedetti-Michelangeli, K. Maischberger, E. Madonna, “Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nature (London) Phys. Sci. 229, 78–79 (1971).
[CrossRef]

Abreu, V. J.

Albers, F.

L. Sauvage, H. Chepfer, V. Trouillet, P. H. Flamant, G. Brogniez, J. Pelon, F. Albers, “Remote sensing of cirrus radiative properties during EUCREX’94. Case study of 17 April 1994. Part I: Observations,” Mon. Weather Rev. 127, 504–519 (1999).
[CrossRef]

Barnes, J. E.

Benedetti-Michelangeli, G.

G. Fiocco, G. Benedetti-Michelangeli, K. Maischberger, E. Madonna, “Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nature (London) Phys. Sci. 229, 78–79 (1971).
[CrossRef]

Benedetti-Michellangeli, G.

G. Benedetti-Michellangeli, F. Congeduti, G. Fiocco, “Measurement of aerosol motion and wind velocity in the lower troposphere by Doppler optical radar,” J. Atmos. Sci. 29, 906–910 (1972).
[CrossRef]

Berlioz, P.

D. Morançais, F. Fabre, P. Berlioz, R. Mauer, A. Culoma, “Spaceborne wind lidar concept for the Atmospheric Dynamics Mission (ALADIN),” in Advances in Laser Remote Sensing, Selected papers presented at the 20th International Laser Radar Conference, A. Dabas, C. Loth, J. Pelon, eds. (Ecole Polytechnique, Palaiseau, France, 2000), pp. 15–18.

Bissonnette, L. R.

Bloom, S. H.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975), pp. 312–316.

Brogniez, G.

L. Sauvage, H. Chepfer, V. Trouillet, P. H. Flamant, G. Brogniez, J. Pelon, F. Albers, “Remote sensing of cirrus radiative properties during EUCREX’94. Case study of 17 April 1994. Part I: Observations,” Mon. Weather Rev. 127, 504–519 (1999).
[CrossRef]

Bruneau, D.

Byer, R. L.

Y. K. Park, G. Giuliani, R. L. Byer, “Single axial mode operation of a Q-switched Nd:YAG oscillator by injection seeding,” IEEE J. Quantum Electron. QE-20, 117–125 (1984).
[CrossRef]

Caldwell, L. M.

Chanin, M. L.

M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

Chepfer, H.

L. Sauvage, H. Chepfer, V. Trouillet, P. H. Flamant, G. Brogniez, J. Pelon, F. Albers, “Remote sensing of cirrus radiative properties during EUCREX’94. Case study of 17 April 1994. Part I: Observations,” Mon. Weather Rev. 127, 504–519 (1999).
[CrossRef]

Congeduti, F.

G. Benedetti-Michellangeli, F. Congeduti, G. Fiocco, “Measurement of aerosol motion and wind velocity in the lower troposphere by Doppler optical radar,” J. Atmos. Sci. 29, 906–910 (1972).
[CrossRef]

Culoma, A.

D. Morançais, F. Fabre, P. Berlioz, R. Mauer, A. Culoma, “Spaceborne wind lidar concept for the Atmospheric Dynamics Mission (ALADIN),” in Advances in Laser Remote Sensing, Selected papers presented at the 20th International Laser Radar Conference, A. Dabas, C. Loth, J. Pelon, eds. (Ecole Polytechnique, Palaiseau, France, 2000), pp. 15–18.

Eloranta, E.

D. Wylie, P. Pironen, W. Wolf, E. Eloranta, “Understanding satellite cirrus cloud climatologies with calibrated lidar optical depths,” J. Atmos. Sci. 52, 4327–4343 (1995).
[CrossRef]

Eloranta, E. W.

Elouragini, S.

Fabre, F.

D. Morançais, F. Fabre, P. Berlioz, R. Mauer, A. Culoma, “Spaceborne wind lidar concept for the Atmospheric Dynamics Mission (ALADIN),” in Advances in Laser Remote Sensing, Selected papers presented at the 20th International Laser Radar Conference, A. Dabas, C. Loth, J. Pelon, eds. (Ecole Polytechnique, Palaiseau, France, 2000), pp. 15–18.

Fiocco, G.

G. Benedetti-Michellangeli, F. Congeduti, G. Fiocco, “Measurement of aerosol motion and wind velocity in the lower troposphere by Doppler optical radar,” J. Atmos. Sci. 29, 906–910 (1972).
[CrossRef]

G. Fiocco, G. Benedetti-Michelangeli, K. Maischberger, E. Madonna, “Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nature (London) Phys. Sci. 229, 78–79 (1971).
[CrossRef]

Flamant, P. H.

L. Sauvage, H. Chepfer, V. Trouillet, P. H. Flamant, G. Brogniez, J. Pelon, F. Albers, “Remote sensing of cirrus radiative properties during EUCREX’94. Case study of 17 April 1994. Part I: Observations,” Mon. Weather Rev. 127, 504–519 (1999).
[CrossRef]

S. Elouragini, P. H. Flamant, “Iterative method to determine an average backscatter-to-extinction ratio in cirrus clouds,” Appl. Opt. 35, 1512–1518 (1996).
[CrossRef] [PubMed]

Gardner, C. S.

A. H. Omar, C. S. Gardner, “Observation of high altitude clouds over the equatorial region exhibiting extremely cold temperatures,” in Proceedings of the 19th International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwemmer, eds., NASA Conf. Publ. CP-1998-207671 (NASA, Greenbelt, Md., 1998), pp. 253–256.

Garnier, A.

Gentry, B. M.

Giuliani, G.

Y. K. Park, G. Giuliani, R. L. Byer, “Single axial mode operation of a Q-switched Nd:YAG oscillator by injection seeding,” IEEE J. Quantum Electron. QE-20, 117–125 (1984).
[CrossRef]

Hair, J. W.

Hart, W.

J. D. Spinhirne, W. Hart, “Cirrus structure and radiative parameters from airborne lidar and spectral radiometer observations: the 28 October FIRE study,” Mon. Weather Rev. 118, 2329–2343 (1990).
[CrossRef]

Hauchecorne, A.

Hays, P. B.

Hertzog, A.

Kobayashi, T.

Z. Liu, T. Kobayashi, “Differential discrimination technique for incoherent Doppler lidar to measure atmospheric wind and backscatter ratio,” Opt. Rev. 3, 47–52 (1996).
[CrossRef]

Korb, C. L.

Korevaar, E.

Kremer, R.

Krueger, D. A.

Liu, Z.

Z. Liu, I. Matsui, N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38, 1661–1670 (1999).
[CrossRef]

Z. Liu, T. Kobayashi, “Differential discrimination technique for incoherent Doppler lidar to measure atmospheric wind and backscatter ratio,” Opt. Rev. 3, 47–52 (1996).
[CrossRef]

Madonna, E.

G. Fiocco, G. Benedetti-Michelangeli, K. Maischberger, E. Madonna, “Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nature (London) Phys. Sci. 229, 78–79 (1971).
[CrossRef]

Maischberger, K.

G. Fiocco, G. Benedetti-Michelangeli, K. Maischberger, E. Madonna, “Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nature (London) Phys. Sci. 229, 78–79 (1971).
[CrossRef]

Matsui, I.

Z. Liu, I. Matsui, N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38, 1661–1670 (1999).
[CrossRef]

Mauer, R.

D. Morançais, F. Fabre, P. Berlioz, R. Mauer, A. Culoma, “Spaceborne wind lidar concept for the Atmospheric Dynamics Mission (ALADIN),” in Advances in Laser Remote Sensing, Selected papers presented at the 20th International Laser Radar Conference, A. Dabas, C. Loth, J. Pelon, eds. (Ecole Polytechnique, Palaiseau, France, 2000), pp. 15–18.

McDermid, I. S.

Meador, W. E.

W. E. Meador, W. R. Weaver, “Two-stream approximation to radiative transfer in planetary atmospheres: a unified description of existing methods and a new improvement,” J. Atmos. Sci. 37, 630–643 (1980).
[CrossRef]

Menders, J.

Morançais, D.

D. Morançais, F. Fabre, P. Berlioz, R. Mauer, A. Culoma, “Spaceborne wind lidar concept for the Atmospheric Dynamics Mission (ALADIN),” in Advances in Laser Remote Sensing, Selected papers presented at the 20th International Laser Radar Conference, A. Dabas, C. Loth, J. Pelon, eds. (Ecole Polytechnique, Palaiseau, France, 2000), pp. 15–18.

Omar, A. H.

A. H. Omar, C. S. Gardner, “Observation of high altitude clouds over the equatorial region exhibiting extremely cold temperatures,” in Proceedings of the 19th International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwemmer, eds., NASA Conf. Publ. CP-1998-207671 (NASA, Greenbelt, Md., 1998), pp. 253–256.

Park, Y. K.

Y. K. Park, G. Giuliani, R. L. Byer, “Single axial mode operation of a Q-switched Nd:YAG oscillator by injection seeding,” IEEE J. Quantum Electron. QE-20, 117–125 (1984).
[CrossRef]

Pelon, J.

L. Sauvage, H. Chepfer, V. Trouillet, P. H. Flamant, G. Brogniez, J. Pelon, F. Albers, “Remote sensing of cirrus radiative properties during EUCREX’94. Case study of 17 April 1994. Part I: Observations,” Mon. Weather Rev. 127, 504–519 (1999).
[CrossRef]

Pironen, P.

D. Wylie, P. Pironen, W. Wolf, E. Eloranta, “Understanding satellite cirrus cloud climatologies with calibrated lidar optical depths,” J. Atmos. Sci. 52, 4327–4343 (1995).
[CrossRef]

P. Pironen, E. W. Eloranta, “Demonstration of high-spectral-resolution lidar based on an iodine absorption filter,” Opt. Lett. 19, 234–236 (1994).
[CrossRef]

Platt, C. M. R.

C. M. R. Platt, “A parametrization of the visible extinction coefficient of ice clouds in terms of the ice/water content,” J. Atmos. Sci. 54, 2083–2098 (1998).
[CrossRef]

Porteneuve, J.

Rees, D.

Rivers, M.

Roesler, F. L.

Sauvage, L.

L. Sauvage, H. Chepfer, V. Trouillet, P. H. Flamant, G. Brogniez, J. Pelon, F. Albers, “Remote sensing of cirrus radiative properties during EUCREX’94. Case study of 17 April 1994. Part I: Observations,” Mon. Weather Rev. 127, 504–519 (1999).
[CrossRef]

Searcy, P. A.

She, C. Y.

C. Y. She, “Non-resonant laser atmospheric scattering spectrum and lidar bandwidths,” in Advances in Laser Remote Sensing, Selected papers presented at the 20th International Laser Radar Conference, A. Dabas, C. Loth, J. Pelon, eds., (Ecole Polytechnique, Palaiseau, France, 2000), pp. 81–84.

She, C.-Y.

Shipley, S. T.

Souprayen, C.

Spinhirne, J. D.

J. D. Spinhirne, W. Hart, “Cirrus structure and radiative parameters from airborne lidar and spectral radiometer observations: the 28 October FIRE study,” Mon. Weather Rev. 118, 2329–2343 (1990).
[CrossRef]

Sroga, J. T.

Sugimoto, N.

Z. Liu, I. Matsui, N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38, 1661–1670 (1999).
[CrossRef]

Tracy, D. H.

Trauger, J. T.

Trouillet, V.

L. Sauvage, H. Chepfer, V. Trouillet, P. H. Flamant, G. Brogniez, J. Pelon, F. Albers, “Remote sensing of cirrus radiative properties during EUCREX’94. Case study of 17 April 1994. Part I: Observations,” Mon. Weather Rev. 127, 504–519 (1999).
[CrossRef]

Tryon, P. J.

Weaver, W. R.

W. E. Meador, W. R. Weaver, “Two-stream approximation to radiative transfer in planetary atmospheres: a unified description of existing methods and a new improvement,” J. Atmos. Sci. 37, 630–643 (1980).
[CrossRef]

Weinman, J. A.

Weng, C. Y.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975), pp. 312–316.

Wolf, W.

D. Wylie, P. Pironen, W. Wolf, E. Eloranta, “Understanding satellite cirrus cloud climatologies with calibrated lidar optical depths,” J. Atmos. Sci. 52, 4327–4343 (1995).
[CrossRef]

Wylie, D.

D. Wylie, P. Pironen, W. Wolf, E. Eloranta, “Understanding satellite cirrus cloud climatologies with calibrated lidar optical depths,” J. Atmos. Sci. 52, 4327–4343 (1995).
[CrossRef]

Appl. Opt.

S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory,” Appl. Opt. 22, 3716–3724 (1983).
[CrossRef] [PubMed]

J. T. Sroga, E. W. Eloranta, S. T. Shipley, F. L. Roesler, P. J. Tryon, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 2: Calibration and data analysis,” Appl. Opt. 22, 3725–3732 (1983).
[CrossRef] [PubMed]

D. Rees, I. S. McDermid, “Doppler lidar atmospheric wind sensor: reevaluation of a 355-nm incoherent Doppler lidar,” Appl. Opt. 29, 4133–4144 (1990).
[CrossRef] [PubMed]

C. L. Korb, B. M. Gentry, C. Y. Weng, “Edge technique: theory and application to the lidar measurement of atmospheric wind,” Appl. Opt. 31, 4202–4213 (1992).
[CrossRef] [PubMed]

V. J. Abreu, J. E. Barnes, P. B. Hays, “Observations of winds with an incoherent lidar detector,” Appl. Opt. 31, 4509–4514 (1992).
[CrossRef] [PubMed]

S. Elouragini, P. H. Flamant, “Iterative method to determine an average backscatter-to-extinction ratio in cirrus clouds,” Appl. Opt. 35, 1512–1518 (1996).
[CrossRef] [PubMed]

L. R. Bissonnette, “Multiple-scattering lidar equation,” Appl. Opt. 35, 6449–6465 (1996).
[CrossRef] [PubMed]

C. Souprayen, A. Garnier, A. Hertzog, A. Hauchecorne, J. Porteneuve, “Rayleigh-Mie Doppler wind lidar for atmospheric measurements. I. Instrumental setup, validation, and first climatological results,” Appl. Opt. 38, 2410–2421 (1999).
[CrossRef]

C. Souprayen, A. Garnier, A. Hertzog, “Rayleigh-Mie Doppler wind lidar for atmospheric measurements. II. Mie scattering effect, theory, and calibration,” Appl. Opt. 38, 2422–2431 (1999).
[CrossRef]

D. Bruneau, “Mach-Zehnder interferometer as a spectral analyzer for molecular Doppler wind lidar,” Appl. Opt. 40, 391–399 (2001).
[CrossRef]

J. W. Hair, L. M. Caldwell, D. A. Krueger, C.-Y. She, “High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles,” Appl. Opt. 40, 5280–5294 (2001).
[CrossRef]

D. Bruneau, “Fringe-imaging Mach-Zehnder interferometer as a spectral analyzer for molecular Doppler wind lidar,” Appl. Opt. 41, 503–510 (2002).
[CrossRef] [PubMed]

Geophys. Res. Lett.

M. L. Chanin, A. Garnier, A. Hauchecorne, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

IEEE J. Quantum Electron.

Y. K. Park, G. Giuliani, R. L. Byer, “Single axial mode operation of a Q-switched Nd:YAG oscillator by injection seeding,” IEEE J. Quantum Electron. QE-20, 117–125 (1984).
[CrossRef]

J. Atmos. Sci.

G. Benedetti-Michellangeli, F. Congeduti, G. Fiocco, “Measurement of aerosol motion and wind velocity in the lower troposphere by Doppler optical radar,” J. Atmos. Sci. 29, 906–910 (1972).
[CrossRef]

W. E. Meador, W. R. Weaver, “Two-stream approximation to radiative transfer in planetary atmospheres: a unified description of existing methods and a new improvement,” J. Atmos. Sci. 37, 630–643 (1980).
[CrossRef]

D. Wylie, P. Pironen, W. Wolf, E. Eloranta, “Understanding satellite cirrus cloud climatologies with calibrated lidar optical depths,” J. Atmos. Sci. 52, 4327–4343 (1995).
[CrossRef]

C. M. R. Platt, “A parametrization of the visible extinction coefficient of ice clouds in terms of the ice/water content,” J. Atmos. Sci. 54, 2083–2098 (1998).
[CrossRef]

Mon. Weather Rev.

L. Sauvage, H. Chepfer, V. Trouillet, P. H. Flamant, G. Brogniez, J. Pelon, F. Albers, “Remote sensing of cirrus radiative properties during EUCREX’94. Case study of 17 April 1994. Part I: Observations,” Mon. Weather Rev. 127, 504–519 (1999).
[CrossRef]

J. D. Spinhirne, W. Hart, “Cirrus structure and radiative parameters from airborne lidar and spectral radiometer observations: the 28 October FIRE study,” Mon. Weather Rev. 118, 2329–2343 (1990).
[CrossRef]

Nature (London) Phys. Sci.

G. Fiocco, G. Benedetti-Michelangeli, K. Maischberger, E. Madonna, “Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nature (London) Phys. Sci. 229, 78–79 (1971).
[CrossRef]

Opt. Eng.

Z. Liu, I. Matsui, N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38, 1661–1670 (1999).
[CrossRef]

Opt. Lett.

Opt. Rev.

Z. Liu, T. Kobayashi, “Differential discrimination technique for incoherent Doppler lidar to measure atmospheric wind and backscatter ratio,” Opt. Rev. 3, 47–52 (1996).
[CrossRef]

Other

D. Morançais, F. Fabre, P. Berlioz, R. Mauer, A. Culoma, “Spaceborne wind lidar concept for the Atmospheric Dynamics Mission (ALADIN),” in Advances in Laser Remote Sensing, Selected papers presented at the 20th International Laser Radar Conference, A. Dabas, C. Loth, J. Pelon, eds. (Ecole Polytechnique, Palaiseau, France, 2000), pp. 15–18.

C. Y. She, “Non-resonant laser atmospheric scattering spectrum and lidar bandwidths,” in Advances in Laser Remote Sensing, Selected papers presented at the 20th International Laser Radar Conference, A. Dabas, C. Loth, J. Pelon, eds., (Ecole Polytechnique, Palaiseau, France, 2000), pp. 81–84.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975), pp. 312–316.

A. H. Omar, C. S. Gardner, “Observation of high altitude clouds over the equatorial region exhibiting extremely cold temperatures,” in Proceedings of the 19th International Laser Radar Conference, U. N. Singh, S. Ismail, G. K. Schwemmer, eds., NASA Conf. Publ. CP-1998-207671 (NASA, Greenbelt, Md., 1998), pp. 253–256.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Atmospheric signal normalized spectral energy distribution for R β = 1.05.

Fig. 2
Fig. 2

Quadrichannel Mach-Zehnder configuration: M, mirror; BS, beam splitter; QWP, quarter-wave plate; D1, D2, D3, D4, detectors.

Fig. 3
Fig. 3

Fringe-imaging Mach-Zehnder interferometer configuration: M, mirror; BS, beam splitter; D1, D2, detectors.

Fig. 4
Fig. 4

Normalized backscatter ratio error (diamonds and scale at right) and radial wind speed (circles and scale at left) as a function of R β for OPDs of (a) λ0 = 532 nm and (b) λ0 = 355 nm.

Fig. 5
Fig. 5

Normalized backscatter ratio error (diamonds and scale at right) and radial wind speed (circles and scale at left) as a function of R β for F B factors of (a) λ0 = 532 nm and (b) λ0 = 355 nm.

Fig. 6
Fig. 6

Atmospheric model of (a) backscatter ratio and (b) atmospheric vertical transmission.

Fig. 7
Fig. 7

Airborne lidar for λ0 = 532 nm: (a) β p and α p relative errors and (b) vertical wind error.

Fig. 8
Fig. 8

Airborne lidar for λ0 = 355 nm: (a) β p and α p relative errors and (b) vertical wind error.

Fig. 9
Fig. 9

Spaceborne lidar for λ0 = 355 nm: (a) β p and α p relative errors and (b) radial wind error.

Tables (3)

Tables Icon

Table 1 Main Characteristics of Simulated Airborne Lidar

Tables Icon

Table 2 Main Characteristics of Simulated Spaceborne Lidar

Tables Icon

Table 3 Evolution of Accuracies with the Interferometer OPDa

Equations (80)

Equations on this page are rendered with MathJax. Learn more.

Ia=1Rβ Im+Rβ-1Rβ Ip,
Rβ=βp+βmβm
Ixσ=1γxπexp-σ-σ2γx2,
σ=σ01+2V/c,
γu,mol=2σ0c Vu,mol=2σ0c2kTm1/2,
γm=γe2+γu,mol21/2,
γmγu,mol=2σ0c2kTm1/2.
γp=γe2+γu,part21/2.
SNR=ηN¯A1+N¯BN¯A1/2,
Ti=IdiI=ai41-Mi sinφ+i-1π2,
φ0=2πlσ0, δφ=4πσ0lVc,
Si=ηId=ηNAai41+MiMa sinφ+i-1π2,
Ma=1Rβ Mm+Rβ-1Rβ Mp,
Mm=exp-π2γm2l2,
Mp=exp-π2γp2l2.
Q1=S1-a1/a3S3M3S1+a1/a3M1S3,Q2=S2-a2/a4S4M4S2+a2/a4M2S4.
Q1=Ma sin φ, Q2=Ma cos φ, φ=arctanQ1Q2.
Rβ=Mp-MmMp-Q12+Q221/2.
V=c4πσ0larctanQ1Q2-arctanQ1,0Q2,0,
Mp=Q1,02+Q2,021/2.
εRβ2SNRRβ2Mp-Mm ×1+FBMa21-12sin22φ1/2,
FB=N¯B-N¯AN¯B+N¯A
εVc4πσ0l2SNRMa1+12 FBMa2 sin22φ1/2.
l=l0+θx,
φ=2πσl0+θx.
Ti=ai21+MiMa sin φ.
Si,j=ηNAai2P1--1iMiMa sinφ+φj,
φ=φ0+δφ=2πσ0l01+2V/c,φj=2πσ0j-1θd.
φj=2πj-1P.
Qj=S1,j-a1/a2S2,jM2S1,j+a1/a2M1S2,j.
I1=2Pj=1P Qj cos φj, I2=2Pj=1P Qj sin φj.
I1=Ma sin φ, I2=Ma cos φ.
Rβ=Mp-MmMp-I12+I221/2.
V=c4πσ0larctanI1I2-arctanI1,0I2,0,
εRβ2SNRRβ2Mp-Mm1+34 FBMa21/2,
εVc4πσ0l02SNRMa1+FBMa241/2.
lβ=2 logγm/γp1/2πγm-γp.
βp=βmRβ-1.
εβp=βmεRβ.
Sr=i=1Nc Sir2,
Sr=kinstRββm exp-2 r=0r αdr,
αr+δr/212δrRβr+δr-RβrRβr+βmr+δr-βmrβmr-Srr+δr-SrrSrr,
εα12δr2SNR1+2Rβ2Mp-Mm21+34 FBMA2 -RβMp-Mm MA1+FB1/2.
varQ1Q¯12varS1-S2S¯1-S¯22+varS1+S2S¯1+S¯22-2 covS1-S2, S1+S2S¯1-S¯2S¯1+S¯2,
Q¯1S¯1-S¯2S¯1+S¯2.
varS1-S2=varS1+S2=varS1+varS2,
covS1-S2, S1+S2=varS1-varS2.
varQ11+Q¯12varS1+varS2S¯1+S¯22-2Q¯1varS1-varS2S¯1+S¯22.
varQ11+FB1Q¯12SNR12,
SNR1=ηN¯A11+N¯B1/N¯A11/2
FB1=N¯B1-N¯A1N¯B1+N¯A1
varQSQ¯12 varQ1+Q¯22 varQ2Q¯12+Q¯22.
varQS2SNR21+FBQ¯14+Q¯24Q¯12+Q¯22,
FB=N¯B-N¯AN¯B+N¯A.
εRβ=Rβ2Mp-MmvarQS1/2 2SNRRβ2Mp-Mm1+FBMa21-12sin22φ1/2.
varRQR¯Q2varQ1Q¯12+varQ2Q¯22Q¯12Q¯221+FB1Q¯12Q1¯2SNR12+1+FB2Q¯22Q¯22SNR22.
varRQ2SNR2Q¯12Q¯221Q¯12+1Q¯22+2FB.
varRQ2SNR21Ma2 cos4 φ×1+12 FBMa2 sin22φ.
εφ=varRQ1/2dRQ/dφ=2SNRMa×1+12 FBMa2 sin22φ1/2.
εVc4πσ0l2SNRMa1+12 FBMa2 sin22φ1/2.
varI1=4P2j=1PvarQjcos2 φj,varI2=4P2j=1PvarQjsin2 φj.
varQj=1+FBjQ¯j2SNRj2,
varI1=4PSNR2j=1P1+FBMa2 sin2φ+φjcos2 φj,varI2=4PSNR2j=1P1+FBMa2 sin2φ+φjsin2 φj,covI1, I2=4PSNR2j=1P1+FBMa2 sin2φ+φjsin φj cos φj.
varI1=2SNR21+FBMa221+2 sin2 φ,varI2=2SNR21+FBMa221+2 cos2 φcovI1, I2=FBMa22SNR2sin2φ.
varIS=Ī12 varI1+Ī22 varI2+2Ī1Ī2covI1, I2Ī12+Ī22.
varIS=2SNR21+34 FBMa2.
εRβ=Rβ2Mp-MmvarIS1/2 2SNRRβ2Mp-Mm1+34 FBMa21/2.
varRIR¯I2varI1I¯12+varI2I¯22-2 covI1, I2I¯1I¯2.
varRI=2SNR21Ma2 cos4 φ1+FBMa24.
εφ=varRI)1/2dRI/dφ=2SNRMa1+FBMa241/2,
εV=c4πσ0l02SNRMa1+FBMa241/2.
varRβR¯β2r+δr=varRβR¯β2r,
varSrS¯r2r+δr=varSrS¯r2r,
covRβ, SrR¯βS¯rr+δr=covRβ, SrR¯βS¯rr,
varα=12δr2varRβR¯β2+varSrS¯r2-2 covRβ, SrR¯βS¯r.
varSrS¯r2=1SNR2,
varRβR¯β2=2SNR2R¯β2Mp-Mm21+34 FBMa2.
covRβ, SrR¯βS¯r=-4Mp-MmPS¯rR¯β×jS¯2,j varS1,j-S¯1,j varS2,jS¯1,j+S¯2,j2×sinφ+φj,
covRβ, SrR¯βS¯r=1SNR2R¯βMa2Mp-Mm1+FB.
varα=12δr21SNR21+2R¯β2Mp-Mm2×1+34 FBMa2-R¯βMaMp-Mm1+FB.

Metrics