Abstract

Reflectance measurements with spectroradiometers in the solar wavelength region (0.4–2.5 μm) are frequently conducted in the laboratory or in the field to characterize surface materials of artificial and natural targets. The spectral surface reflectance is calculated as the ratio of the signals obtained over the target surface and a reference panel, yielding a relative reflectance value. If the reflectance of the reference panel is known, the absolute target reflectance can be computed. This standard measurement technique assumes that the signal at the radiometer is due completely to reflected target and reference radiation. However, for field measurements in the 2.4–2.5-μm region with the Sun as the illumination source, the emitted thermal radiation is not a negligible part of the signal even at ambient temperatures, because the atmospheric transmittance, and thus the solar illumination level, is small in the atmospheric absorption regions. A new method is proposed that calculates reflectance values in the 2.4–2.5-μm region while it accounts for the reference panel reflectance and the emitted radiation. This technique needs instruments with noise-equivalent radiances of 2 orders of magnitude below currently commercially available instruments and requires measurement of the surface temperatures of target and reference. If the reference panel reflectance and temperature effects are neglected, the standard method yields reflectance errors up to 0.08 and 0.15 units for 7- and 2-nm bandwidth instruments, respectively. For the new method the corresponding errors can be reduced to approximately 0.01 units for the surface temperature range of 20–35 °C.

© 2003 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Bandpass-resampling effects for the retrieval of surface emissivity

Rudolf Richter and Cesar Coll
Appl. Opt. 41(18) 3523-3529 (2002)

Directional Effects Consideration to Improve out-doors Emissivity Retrieval in the 3–13 µm Domain

Keyvan Kanani, Laurent Poutier, Françoise Nerry, and Marc-Philippe Stoll
Opt. Express 15(19) 12464-12482 (2007)

Passive standoff detection of chemical warfare agents on surfaces

Jean-Marc Thériault, Eldon Puckrin, Jim Hancock, Pierre Lecavalier, Carmela Jackson Lepage, and James O. Jensen
Appl. Opt. 43(31) 5870-5885 (2004)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription