Abstract

Reflectance measurements with spectroradiometers in the solar wavelength region (0.4–2.5 μm) are frequently conducted in the laboratory or in the field to characterize surface materials of artificial and natural targets. The spectral surface reflectance is calculated as the ratio of the signals obtained over the target surface and a reference panel, yielding a relative reflectance value. If the reflectance of the reference panel is known, the absolute target reflectance can be computed. This standard measurement technique assumes that the signal at the radiometer is due completely to reflected target and reference radiation. However, for field measurements in the 2.4–2.5-μm region with the Sun as the illumination source, the emitted thermal radiation is not a negligible part of the signal even at ambient temperatures, because the atmospheric transmittance, and thus the solar illumination level, is small in the atmospheric absorption regions. A new method is proposed that calculates reflectance values in the 2.4–2.5-μm region while it accounts for the reference panel reflectance and the emitted radiation. This technique needs instruments with noise-equivalent radiances of 2 orders of magnitude below currently commercially available instruments and requires measurement of the surface temperatures of target and reference. If the reference panel reflectance and temperature effects are neglected, the standard method yields reflectance errors up to 0.08 and 0.15 units for 7- and 2-nm bandwidth instruments, respectively. For the new method the corresponding errors can be reduced to approximately 0.01 units for the surface temperature range of 20–35 °C.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. A. Kruse, “Use of Airborne Imaging Spectrometer data to map minerals associated with hydrothermally altered rocks in the northern Grapevine Mountains, Nevada and California,” Remote Sens. Environ. 24, 31–51 (1988).
    [CrossRef]
  2. F. A. Kruse, A. B. Lefkoff, J. B. Dietz, “Expert system-based mineral mapping in northern Death Valley, California/Nevada, using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 44, 309–336 (1993).
    [CrossRef]
  3. P. N. Slater, S. F. Biggar, R. G. Holm, R. D. Jackson, Y. Mao, M. S. Moran, J. M. Palmer, B. Yuan, “Reflectance and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sens. Environ. 22, 11–37 (1987).
    [CrossRef]
  4. R. Richter, “On the in-flight absolute calibration of high spatial resolution spaceborne sensors using small ground targets,” Int. J. Remote Sens. 18, 2827–2833 (1997).
    [CrossRef]
  5. R. Richter, A. Müller, “Vicarious calibration of imaging spectrometers in the reflective region,” ESA SP-499 (European Space Agency, Noordwijk, The Netherlands, 2001), pp. 111–115.
  6. C. I. Grove, S. J. Hook, E. D. Paylor, “Laboratory reflectance spectra for 160 minerals 0.4–2.5 μm,” JPL publication 92-2 (Jet Propulsion Laboratory, Pasadena, Calif., 1992).
  7. A. Berk, L. S. Bernstein, G. P. Anderson, P. K. Acharya, D. C. Bobertson, J. H. Chetwynd, S. M. Adler-Golden, “MOD TRAN cloud and multiple scattering upgrades with application to AVIRIS,” Remote Sens. Environ. 65, 367–375 (1998).
    [CrossRef]
  8. M. J. Duggin, T. Cunia, “Ground reflectance measurement techniques: a comparison,” Appl. Opt. 22, 3771–3777 (1983).
    [CrossRef] [PubMed]
  9. P. N. Slater, “Radiometric considerations in remote sensing,” Proc. IEEE 73, 997–1011 (1985).
    [CrossRef]
  10. V. R. Weidner, J. J. Hsia, B. Adams, “Laboratory intercomparison study of pressed polytetrafluoroethylene powder reflectance standards,” Appl. Opt. 24, 2225–2230 (1985).
    [CrossRef] [PubMed]
  11. P. R. Spyak, C. Lansard, “Reflectance properties of pressed Algoflon F6: a replacement reflectance-standard material for Halon,” Appl. Opt. 36, 2963–2970 (1997).
    [CrossRef] [PubMed]
  12. K. Stamnes, S. C. Tsay, W. Wiscombe, K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988).
    [CrossRef] [PubMed]
  13. Guide to Reflectance Coatings and Materials (Labsphere, Inc., North Sutton, N.H., 2002), www.labsphere.com .
  14. V. R. Weidner, J. J. Hsia, “Reflection properties of pressed polytetrafluoroethylene powder,” J. Opt. Soc. Am. 71, 856–861 (1981).
    [CrossRef]
  15. M. E. Schaepman, S. Dangel, “Solid laboratory calibration of a nonimaging spectroradiometer,” Appl. Opt. 39, 3754–3764 (2000).
    [CrossRef]
  16. Geophysical Environmental Research Corp., 16 Bennett Common, Millbrook, N.Y. 12545; http://www.ger.com/ .
  17. D. Hatchell, ed., ASD Technical Guide, 3rd ed. (Analytical Spectral Devices, Inc., 5335 Sterling Drive, Boulder, Colo., 1999), p. 19-1.
  18. Analytical Spectral Devices, http://www.asdi.com/ .
  19. W. L. Wolfe, G. J. Zissis, eds., The Infrared Handbook (U.S. Office of Naval Research, Washington, D.C., 1985).

2000 (1)

1998 (1)

A. Berk, L. S. Bernstein, G. P. Anderson, P. K. Acharya, D. C. Bobertson, J. H. Chetwynd, S. M. Adler-Golden, “MOD TRAN cloud and multiple scattering upgrades with application to AVIRIS,” Remote Sens. Environ. 65, 367–375 (1998).
[CrossRef]

1997 (2)

R. Richter, “On the in-flight absolute calibration of high spatial resolution spaceborne sensors using small ground targets,” Int. J. Remote Sens. 18, 2827–2833 (1997).
[CrossRef]

P. R. Spyak, C. Lansard, “Reflectance properties of pressed Algoflon F6: a replacement reflectance-standard material for Halon,” Appl. Opt. 36, 2963–2970 (1997).
[CrossRef] [PubMed]

1993 (1)

F. A. Kruse, A. B. Lefkoff, J. B. Dietz, “Expert system-based mineral mapping in northern Death Valley, California/Nevada, using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 44, 309–336 (1993).
[CrossRef]

1988 (2)

F. A. Kruse, “Use of Airborne Imaging Spectrometer data to map minerals associated with hydrothermally altered rocks in the northern Grapevine Mountains, Nevada and California,” Remote Sens. Environ. 24, 31–51 (1988).
[CrossRef]

K. Stamnes, S. C. Tsay, W. Wiscombe, K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988).
[CrossRef] [PubMed]

1987 (1)

P. N. Slater, S. F. Biggar, R. G. Holm, R. D. Jackson, Y. Mao, M. S. Moran, J. M. Palmer, B. Yuan, “Reflectance and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sens. Environ. 22, 11–37 (1987).
[CrossRef]

1985 (2)

1983 (1)

1981 (1)

Acharya, P. K.

A. Berk, L. S. Bernstein, G. P. Anderson, P. K. Acharya, D. C. Bobertson, J. H. Chetwynd, S. M. Adler-Golden, “MOD TRAN cloud and multiple scattering upgrades with application to AVIRIS,” Remote Sens. Environ. 65, 367–375 (1998).
[CrossRef]

Adams, B.

Adler-Golden, S. M.

A. Berk, L. S. Bernstein, G. P. Anderson, P. K. Acharya, D. C. Bobertson, J. H. Chetwynd, S. M. Adler-Golden, “MOD TRAN cloud and multiple scattering upgrades with application to AVIRIS,” Remote Sens. Environ. 65, 367–375 (1998).
[CrossRef]

Anderson, G. P.

A. Berk, L. S. Bernstein, G. P. Anderson, P. K. Acharya, D. C. Bobertson, J. H. Chetwynd, S. M. Adler-Golden, “MOD TRAN cloud and multiple scattering upgrades with application to AVIRIS,” Remote Sens. Environ. 65, 367–375 (1998).
[CrossRef]

Berk, A.

A. Berk, L. S. Bernstein, G. P. Anderson, P. K. Acharya, D. C. Bobertson, J. H. Chetwynd, S. M. Adler-Golden, “MOD TRAN cloud and multiple scattering upgrades with application to AVIRIS,” Remote Sens. Environ. 65, 367–375 (1998).
[CrossRef]

Bernstein, L. S.

A. Berk, L. S. Bernstein, G. P. Anderson, P. K. Acharya, D. C. Bobertson, J. H. Chetwynd, S. M. Adler-Golden, “MOD TRAN cloud and multiple scattering upgrades with application to AVIRIS,” Remote Sens. Environ. 65, 367–375 (1998).
[CrossRef]

Biggar, S. F.

P. N. Slater, S. F. Biggar, R. G. Holm, R. D. Jackson, Y. Mao, M. S. Moran, J. M. Palmer, B. Yuan, “Reflectance and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sens. Environ. 22, 11–37 (1987).
[CrossRef]

Bobertson, D. C.

A. Berk, L. S. Bernstein, G. P. Anderson, P. K. Acharya, D. C. Bobertson, J. H. Chetwynd, S. M. Adler-Golden, “MOD TRAN cloud and multiple scattering upgrades with application to AVIRIS,” Remote Sens. Environ. 65, 367–375 (1998).
[CrossRef]

Chetwynd, J. H.

A. Berk, L. S. Bernstein, G. P. Anderson, P. K. Acharya, D. C. Bobertson, J. H. Chetwynd, S. M. Adler-Golden, “MOD TRAN cloud and multiple scattering upgrades with application to AVIRIS,” Remote Sens. Environ. 65, 367–375 (1998).
[CrossRef]

Cunia, T.

Dangel, S.

Dietz, J. B.

F. A. Kruse, A. B. Lefkoff, J. B. Dietz, “Expert system-based mineral mapping in northern Death Valley, California/Nevada, using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 44, 309–336 (1993).
[CrossRef]

Duggin, M. J.

Grove, C. I.

C. I. Grove, S. J. Hook, E. D. Paylor, “Laboratory reflectance spectra for 160 minerals 0.4–2.5 μm,” JPL publication 92-2 (Jet Propulsion Laboratory, Pasadena, Calif., 1992).

Holm, R. G.

P. N. Slater, S. F. Biggar, R. G. Holm, R. D. Jackson, Y. Mao, M. S. Moran, J. M. Palmer, B. Yuan, “Reflectance and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sens. Environ. 22, 11–37 (1987).
[CrossRef]

Hook, S. J.

C. I. Grove, S. J. Hook, E. D. Paylor, “Laboratory reflectance spectra for 160 minerals 0.4–2.5 μm,” JPL publication 92-2 (Jet Propulsion Laboratory, Pasadena, Calif., 1992).

Hsia, J. J.

Jackson, R. D.

P. N. Slater, S. F. Biggar, R. G. Holm, R. D. Jackson, Y. Mao, M. S. Moran, J. M. Palmer, B. Yuan, “Reflectance and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sens. Environ. 22, 11–37 (1987).
[CrossRef]

Jayaweera, K.

Kruse, F. A.

F. A. Kruse, A. B. Lefkoff, J. B. Dietz, “Expert system-based mineral mapping in northern Death Valley, California/Nevada, using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 44, 309–336 (1993).
[CrossRef]

F. A. Kruse, “Use of Airborne Imaging Spectrometer data to map minerals associated with hydrothermally altered rocks in the northern Grapevine Mountains, Nevada and California,” Remote Sens. Environ. 24, 31–51 (1988).
[CrossRef]

Lansard, C.

Lefkoff, A. B.

F. A. Kruse, A. B. Lefkoff, J. B. Dietz, “Expert system-based mineral mapping in northern Death Valley, California/Nevada, using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 44, 309–336 (1993).
[CrossRef]

Mao, Y.

P. N. Slater, S. F. Biggar, R. G. Holm, R. D. Jackson, Y. Mao, M. S. Moran, J. M. Palmer, B. Yuan, “Reflectance and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sens. Environ. 22, 11–37 (1987).
[CrossRef]

Moran, M. S.

P. N. Slater, S. F. Biggar, R. G. Holm, R. D. Jackson, Y. Mao, M. S. Moran, J. M. Palmer, B. Yuan, “Reflectance and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sens. Environ. 22, 11–37 (1987).
[CrossRef]

Müller, A.

R. Richter, A. Müller, “Vicarious calibration of imaging spectrometers in the reflective region,” ESA SP-499 (European Space Agency, Noordwijk, The Netherlands, 2001), pp. 111–115.

Palmer, J. M.

P. N. Slater, S. F. Biggar, R. G. Holm, R. D. Jackson, Y. Mao, M. S. Moran, J. M. Palmer, B. Yuan, “Reflectance and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sens. Environ. 22, 11–37 (1987).
[CrossRef]

Paylor, E. D.

C. I. Grove, S. J. Hook, E. D. Paylor, “Laboratory reflectance spectra for 160 minerals 0.4–2.5 μm,” JPL publication 92-2 (Jet Propulsion Laboratory, Pasadena, Calif., 1992).

Richter, R.

R. Richter, “On the in-flight absolute calibration of high spatial resolution spaceborne sensors using small ground targets,” Int. J. Remote Sens. 18, 2827–2833 (1997).
[CrossRef]

R. Richter, A. Müller, “Vicarious calibration of imaging spectrometers in the reflective region,” ESA SP-499 (European Space Agency, Noordwijk, The Netherlands, 2001), pp. 111–115.

Schaepman, M. E.

Slater, P. N.

P. N. Slater, S. F. Biggar, R. G. Holm, R. D. Jackson, Y. Mao, M. S. Moran, J. M. Palmer, B. Yuan, “Reflectance and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sens. Environ. 22, 11–37 (1987).
[CrossRef]

P. N. Slater, “Radiometric considerations in remote sensing,” Proc. IEEE 73, 997–1011 (1985).
[CrossRef]

Spyak, P. R.

Stamnes, K.

Tsay, S. C.

Weidner, V. R.

Wiscombe, W.

Yuan, B.

P. N. Slater, S. F. Biggar, R. G. Holm, R. D. Jackson, Y. Mao, M. S. Moran, J. M. Palmer, B. Yuan, “Reflectance and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sens. Environ. 22, 11–37 (1987).
[CrossRef]

Appl. Opt. (5)

Int. J. Remote Sens. (1)

R. Richter, “On the in-flight absolute calibration of high spatial resolution spaceborne sensors using small ground targets,” Int. J. Remote Sens. 18, 2827–2833 (1997).
[CrossRef]

J. Opt. Soc. Am. (1)

Proc. IEEE (1)

P. N. Slater, “Radiometric considerations in remote sensing,” Proc. IEEE 73, 997–1011 (1985).
[CrossRef]

Remote Sens. Environ. (4)

A. Berk, L. S. Bernstein, G. P. Anderson, P. K. Acharya, D. C. Bobertson, J. H. Chetwynd, S. M. Adler-Golden, “MOD TRAN cloud and multiple scattering upgrades with application to AVIRIS,” Remote Sens. Environ. 65, 367–375 (1998).
[CrossRef]

F. A. Kruse, “Use of Airborne Imaging Spectrometer data to map minerals associated with hydrothermally altered rocks in the northern Grapevine Mountains, Nevada and California,” Remote Sens. Environ. 24, 31–51 (1988).
[CrossRef]

F. A. Kruse, A. B. Lefkoff, J. B. Dietz, “Expert system-based mineral mapping in northern Death Valley, California/Nevada, using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 44, 309–336 (1993).
[CrossRef]

P. N. Slater, S. F. Biggar, R. G. Holm, R. D. Jackson, Y. Mao, M. S. Moran, J. M. Palmer, B. Yuan, “Reflectance and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sens. Environ. 22, 11–37 (1987).
[CrossRef]

Other (7)

R. Richter, A. Müller, “Vicarious calibration of imaging spectrometers in the reflective region,” ESA SP-499 (European Space Agency, Noordwijk, The Netherlands, 2001), pp. 111–115.

C. I. Grove, S. J. Hook, E. D. Paylor, “Laboratory reflectance spectra for 160 minerals 0.4–2.5 μm,” JPL publication 92-2 (Jet Propulsion Laboratory, Pasadena, Calif., 1992).

Guide to Reflectance Coatings and Materials (Labsphere, Inc., North Sutton, N.H., 2002), www.labsphere.com .

Geophysical Environmental Research Corp., 16 Bennett Common, Millbrook, N.Y. 12545; http://www.ger.com/ .

D. Hatchell, ed., ASD Technical Guide, 3rd ed. (Analytical Spectral Devices, Inc., 5335 Sterling Drive, Boulder, Colo., 1999), p. 19-1.

Analytical Spectral Devices, http://www.asdi.com/ .

W. L. Wolfe, G. J. Zissis, eds., The Infrared Handbook (U.S. Office of Naval Research, Washington, D.C., 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Reflectance spectra of three minerals and vegetation.

Fig. 2
Fig. 2

Atmospheric transmittance for a 1-m vertical path (top), and a 40° zenith path from ground to space (bottom). MODTRAN calculation with a mid-latitude summer atmosphere, rural aerosol, 23-km visibility, 2-g cm-2 water vapor column. The solid and dotted curves represent a spectral average with moving windows of 7 and 2 nm, respectively.

Fig. 3
Fig. 3

Schematic sketch of the standard method for reflectance measurements.

Fig. 4
Fig. 4

Schematic sketch of the improved method for reflectance measurements.

Fig. 5
Fig. 5

Spectral radiance values for a target reflectance of 0.05 and a solar zenith angle of 40° with the target at sea level. The solid and dotted curves represent a spectral average over 7 and 2 nm, respectively, the same atmospheric parameters as in Fig. 2.

Fig. 6
Fig. 6

Level-0 target reflectance showing the temperature influence that is due to emitted target and reference radiation at T = 35 °C for bandwidths of 2 and 7 nm, dotted and solid curves, respectively.

Fig. 7
Fig. 7

Level-0 target reflectance showing the influence of different surface temperatures (20 and 35 °C, left) and the influence of the reflectance of the reference panel (BaSO4 with ρ2 = 0.85 and Spectralon with ρ2 = 0.95, right). Results are calculated for a 7-nm bandwidth.

Fig. 8
Fig. 8

Comparison of target reflectances of levels 1, 2, and 3 (dotted, dashed, and solid curves, respectively) obtained for bias-free reflectance of the reference panels and bias-free surface temperatures (results are calculated for a 7-nm bandwidth).

Fig. 9
Fig. 9

Influence of a bias of 0.05 reflectance units of the reference panels on the accuracy of the target reflectance measurement for a dark target (ρ1 = 0.05) and a bright (ρ1 = 0.40) target. The dotted, dashed, and solid curves represent levels -1, -2, and -3 reflectance values, respectively.

Fig. 10
Fig. 10

Influence of a ±1 °C surface temperature bias on the retrieved (level-3) reflectance values for a dark target (ρ1 = 0.05) and a bright (ρ1 = 0.40) target. The dotted curves indicate a bias of +1 °C for target and reference, the dashed curves indicate a bias of -1 °C for both surfaces with respect to the reference temperatures of 20 °C and 35 °C. The solid curve represents the level-0 reflectance for comparison that does not account for the reference panel reflectance and the emitted radiance.

Fig. 11
Fig. 11

Influence of a ±1 °C surface temperature bias on the retrieved (level-3) reflectance values for a spectrally varying surface reflectance (calcite). The dotted and dashed curves indicate a bias of +1 °C and -1 °C for both surfaces with respect to the reference temperature of 35 °C. The upper solid curve represents the level-0 reflectance for comparison that does not account for the Spectralon panel reflectance and emitted radiance. The lower solid curve indicates the true reflectance spectrum.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

ρ1rel=DN1DN2,
Li=c*DNi=ρiEg/π, i=1, 2,
ρ1rel=L1/cL2/c=ρ1ρ2.
ρ1abs=ρ1relρ2.
Li=Lp+τρiEg/π+τiLbbTi, i=1, 2,
Li=Lp+Lreflectedρi+Lemittedρi, Ti, i=1, 2.
ρ1L0=DN1DN2=L1/cL2/c=Lp+Lreflectedρ1+Lemittedρ1, T1Lp+Lreflectedρ2+Lemittedρ2, T2.
ρ1L12.432-2.438 μm=0.5*ρ1L02.430 μm+ρ1L02.442 μm,
ρ1L12.443-2.450 μm=0.5*ρ1L02.442 μm+ρ1L02.455 μm,
ρ1L12.470-2.475 μm=0.5*ρ1L02.467 μm+ρ1L02.478 μm,
ρ1L12.480-2.500 μm=ρ1L02.478 μm.
ρ1L2=L1-Lemittedρ1L1, T1-LpL2-Lemittedρ2, T2-Lp.
ρ1L3=ρ1L2ρ2.

Metrics