Abstract

A frequency comparison was carried out between iodine-stabilized Nd:YAG lasers at 532 nm from the Bureau International des Poids et Mesures, the Centre for Metrology and Accreditation, the Czech Metrology Institute, and the Bureau National de Métrologie-Institut National de Métrologie. The frequency differences between lasers, as well as the frequency reproducibility of each system, were investigated. Pressure-, modulation-, and power-induced shifts were studied. A frequency dispersion (1 σ) of 3.5 kHz (6.2 × 10-12 in relative terms) with an average reproducibility for each laser of the order of 0.4 kHz (7.1 × 10-13 in relative terms) was observed over the duration of the comparison. Relative stabilities better than 1 × 10-13 at 1 s were demonstrated for the third-harmonic systems.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Comptes Rendus Seventeenth Conférence Générale des Poids et Mesures (Bureau International des Poids et Mesures, Sèvres, France, 1983), pp. 45–49.
  2. “Documents concerning the new definition of the metre,” Metrologia 19, 163–177 (1984).
  3. T. J. Quinn, “Practical realization of the definition of the metre (1997),” Metrologia 36, 211–244 (1999).
    [CrossRef]
  4. G. R. Hanes, K. M. Baird, J. De Remigis, “Stability, reproducibility, and absolute wavelength of a 633-nm He-Ne laser stabilized to an iodine hyperfine component,” Appl. Opt. 12, 1600–1605 (1973).
    [CrossRef] [PubMed]
  5. A. J. Wallard, “Frequency stabilization of the helium-neon laser by saturated absorption in iodine vapour,” J. Phys. E 5, 926–930 (1973).
    [CrossRef]
  6. J. L. Hall, L. Hollberg, T. Baer, H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
    [CrossRef]
  7. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980).
    [CrossRef] [PubMed]
  8. G. Camy, C. J. Bordé, M. Ducloy, “Heterodyne saturation spectroscopy through frequency modulation of the saturation beam,” Opt. Commun. 41, 325–330 (1982).
    [CrossRef]
  9. J. H. Shirley, “Modulation transfer processes in optical heterodyne saturation spectroscopy,” Opt. Lett. 11, 537–539 (1982).
    [CrossRef]
  10. M. L. Eickhoff, J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155–158 (1995).
    [CrossRef]
  11. J. Ye, L. Robertsson, S. Picard, L.-S. Ma, J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
    [CrossRef]
  12. P. A. Jungner, S. Swartz, M. Eickhoff, J. Ye, J. L. Hall, S. Waltman, “Absolute frequency of the molecular iodine transition R(56)32–0 near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995).
    [CrossRef]
  13. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, T. Hänch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
    [CrossRef] [PubMed]
  14. R. Holzwarth, M. Zimmermann, Th. Udem, T. W. Hänsch, A. Yu. Nevsky, J. von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. St. J. Russel, M. N. Skvortsov, S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73, 269–271 (2001).
    [CrossRef]
  15. K. Sugiyama, A. Onae, F.-L. Hong, H. Inaba, S. N. Slyurarev, T. Ikegami, J. Ishikawa, K. Minoshima, H. Matsumoto, J. C. Knight, W. J. Wadsworth, P. St. J. Russel, “Optical frequency measurement using an ultrafast mode-locked laser at NMIJ/AIST,” in Conference Proceedings of the Sixth Symposium on Frequency Standards and Metrology, P. Gill, ed. (World Scientific, Singapore, 2002), pp. 427–434.
    [CrossRef]
  16. L.-S. Ma, L. Robertsson, S. Picard, J.-M. Chartier, “The BIPM laser standards at 633 nm and 532 nm simultaneously linked to the SI second using a femtosecond laser in an optical clock configuration,” IEEE Trans. Instrum. Meas. (to be published).
  17. G. D. Rovera, F. Ducos, J.-J. Zondy, O. Acef, J.-P. Wallerand, J. C. Knight, P. St. J. Russel, “Absolute frequency measurements of an I2 stabilized Nd:YAG optical frequency standard,” Meas. Sci. Technol. 13, 918–922 (2002).
    [CrossRef]
  18. L. Robertsson, S. Picard, F.-L. Hong, Y. Millerioux, P. Juncar, L.-S. Ma, “International comparison of 127I2-stabilized frequency-doubled Nd:YAG lasers between the BIPM, the NRLM and the BNM-INM, October 2000,” Metrologia 38, 567–572 (2001).
    [CrossRef]
  19. L. Robertsson, L.-S. Ma, S. Picard, “Improved iodine-stabilized Nd:YAG lasers,” in Proceedings of Laser Frequency Stabilization, Standards, Measurement, and Applications, J. L. Hall, J. Ye, eds., Proc. SPIE4269, 268–271 (2001).
    [CrossRef]
  20. L. J. Gillespie, L. A. D. Fraser, “The normal vapor pressure of crystalline iodine,” J. Am. Chem. Soc. 58, 2260–2263 (1936).
    [CrossRef]
  21. Comité International des Poids et Mesures, Report of the 90th Meeting, October 2002 (Bureau International des Poids et Mesures, Sèvres, France), to be published.
  22. P. Cordiale, G. Galzerano, H. Schnatz, “International comparison of two iodine-stabilized frequency-doubled Nd:YAG lasers at λ = 532 nm,” Metrologia 37, 177–182 (2000).
    [CrossRef]
  23. P. Balling, “Measurement of frequency modulation amplitude of lasers to 1 part in 103,” Metrologia 38, 297–299 (2001).
    [CrossRef]
  24. H. R. Simonsen, U. Brand, F. Riehle, “International comparison of two iodine-stabilized He-Ne lasers at λ ≈ 543 nm,” Metrologia 31, 341–347 (1994/95).
    [CrossRef]
  25. J. L. Hall, L.-S. Ma, M. Taubman, B. Tieman, F.-L. Hong, O. Pfister, J. Ye, “Stabilization and frequency measurement of the I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48, 583–586 (1999).
    [CrossRef]
  26. M. Gläser, “Properties of a He-Ne laser at λ = 612 nm, stabilized by means of an external iodine absorption cell,” IEEE Trans. Instrum. Meas. 36, 604–608 (1987).
    [CrossRef]
  27. A. Titov, I. Malinovsky, M. Erin, “Asymmetry studies of iodine resonances and realization of unperturbed molecular transition in a laser standard at 633 nm,” Opt. Commun. 137, 165–173 (1997).
    [CrossRef]
  28. L. Robertsson, R. Goebel, S. Picard, L. Vitushkin, “Comparison of two wavelength reference laser systems at λ ≈ 515 nm, stabilized by different methods,” Metrologia 34, 495–501 (1997).
    [CrossRef]
  29. U. Brandt, “Frequency stabilization of a HeNe laser at 543.5 nm wavelength using frequency-modulation spectroscopy,” Opt. Commun. 100, 361–373 (1993).
    [CrossRef]
  30. M. Gläser, “An improved He-Ne laser at λ = 612 nm, stabilized by means of an external absorption cell,” Metrologia 23, 45–53 (1986).
    [CrossRef]
  31. L. Robertsson, “Line-shape distortion due to self-focusing effects when using frequency modulation techniques in saturation spectroscopy,” J. Mod. Opt. 41, 1327–1337 (1994).
    [CrossRef]
  32. H. R. Simonsen, F. Rose, “Absolute measurement of the hyperfine splittings of six molecular 127I2 lines around the He-Ne/I2 wavelength at λ ≈ 633 nm,” Metrologia 37, 651–658 (2000).
    [CrossRef]
  33. S. Gerstenkorn, P. Luc, Atlas du Spectre d’Absorption de la Molécule d’iode 14800–20000 cm-1. Complément: identification des Transitions du Systèm (B-X) (Editions du Centre National de la Recherche Scientifique, Orsay, France, 1985).
  34. F.-L. Hong, J. Ye, L.-S. Ma, S. Picard, Ch. J. Bordé, J. L. Hall, “Rotation dependence of electric quadrupole hyperfine interaction in the ground state of molecular iodine by high-resolution laser spectroscopy,” J. Opt. Soc. Am. B 18, 379–387 (2001).
    [CrossRef]
  35. A. Yu. Nevsky, R. Holzwarth, J. Reichert, Th. Udem, T. W. Hänsch, J. von Zanthier, H. Walther, H. Schnatz, F. Riehle, P. V. Pokasov, M. N. Skvortsov, S. N. Bagayev, “Frequency comparison and absolute frequency measurement of I2-stabilized lasers at 532 nm,” Opt. Commun. 192, 263–272 (2001).
    [CrossRef]
  36. D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966).
    [CrossRef]
  37. A. Arie, R. L. Byer, “Laser heterodyne spectroscopy of 127I2 hyperfine structure near 532 nm,” J. Opt. Soc. Am. B 10, 1990–1997 (1993).
    [CrossRef]
  38. A. Arie, R. L. Byer, “Laser heterodyne spectroscopy of 127I2 hyperfine structure near 532 nm: erratum,” J. Opt. Soc. Am. B 10, 866 (1994).
    [CrossRef]
  39. M. L. Eickhoff, “Two new methods for real-time precision refractometry and a precise test of the hyperfine Hamiltonian via modulation transfer spectroscopy of molecular iodine at 532 nm,” Ph.D. dissertation, University of Colorado, Boulder, Colo., 1994.
  40. Ch. J. Bordé, G. Camy, B. Decomps, J.-P. Descoubes, J. Vigué, “High precision saturation spectroscopy of 127I2 with argon lasers at 5145 Å and 5017 Å: I—main resonances,” J. Phys. 42, 1393–1411 (1981).
    [CrossRef]
  41. S. Picard-Fredin, A. Razet, “On the hyperfine structure of iodine: 2. To calculate hyperfine constants on the basis of experimental data,” Rapport BIPM 91/2 (Bureau International des Poids et mesures, Sèvres, France, 1991).
  42. J.-P. Wallerand, F. du Burck, B. Mercier, A. N. Goncharov, M. Himbert, Ch. J. Bordé, “Frequency measurements of hyperfine splittings in ground rovibronic states of I2 by stimulated resonant Raman spectroscopy,” Eur. Phys. J. D 6, 63–76 (1999).
  43. A. Yokozeki, J. S. Muenter, “Laser fluorescence state selected and detected molecular beam magnetic resonance in I2,” J. Chem. Phys. 72, 3796–3804 (1980).
    [CrossRef]

2002

G. D. Rovera, F. Ducos, J.-J. Zondy, O. Acef, J.-P. Wallerand, J. C. Knight, P. St. J. Russel, “Absolute frequency measurements of an I2 stabilized Nd:YAG optical frequency standard,” Meas. Sci. Technol. 13, 918–922 (2002).
[CrossRef]

2001

L. Robertsson, S. Picard, F.-L. Hong, Y. Millerioux, P. Juncar, L.-S. Ma, “International comparison of 127I2-stabilized frequency-doubled Nd:YAG lasers between the BIPM, the NRLM and the BNM-INM, October 2000,” Metrologia 38, 567–572 (2001).
[CrossRef]

P. Balling, “Measurement of frequency modulation amplitude of lasers to 1 part in 103,” Metrologia 38, 297–299 (2001).
[CrossRef]

R. Holzwarth, M. Zimmermann, Th. Udem, T. W. Hänsch, A. Yu. Nevsky, J. von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. St. J. Russel, M. N. Skvortsov, S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73, 269–271 (2001).
[CrossRef]

F.-L. Hong, J. Ye, L.-S. Ma, S. Picard, Ch. J. Bordé, J. L. Hall, “Rotation dependence of electric quadrupole hyperfine interaction in the ground state of molecular iodine by high-resolution laser spectroscopy,” J. Opt. Soc. Am. B 18, 379–387 (2001).
[CrossRef]

A. Yu. Nevsky, R. Holzwarth, J. Reichert, Th. Udem, T. W. Hänsch, J. von Zanthier, H. Walther, H. Schnatz, F. Riehle, P. V. Pokasov, M. N. Skvortsov, S. N. Bagayev, “Frequency comparison and absolute frequency measurement of I2-stabilized lasers at 532 nm,” Opt. Commun. 192, 263–272 (2001).
[CrossRef]

2000

P. Cordiale, G. Galzerano, H. Schnatz, “International comparison of two iodine-stabilized frequency-doubled Nd:YAG lasers at λ = 532 nm,” Metrologia 37, 177–182 (2000).
[CrossRef]

H. R. Simonsen, F. Rose, “Absolute measurement of the hyperfine splittings of six molecular 127I2 lines around the He-Ne/I2 wavelength at λ ≈ 633 nm,” Metrologia 37, 651–658 (2000).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, T. Hänch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

1999

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

J. L. Hall, L.-S. Ma, M. Taubman, B. Tieman, F.-L. Hong, O. Pfister, J. Ye, “Stabilization and frequency measurement of the I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48, 583–586 (1999).
[CrossRef]

T. J. Quinn, “Practical realization of the definition of the metre (1997),” Metrologia 36, 211–244 (1999).
[CrossRef]

J.-P. Wallerand, F. du Burck, B. Mercier, A. N. Goncharov, M. Himbert, Ch. J. Bordé, “Frequency measurements of hyperfine splittings in ground rovibronic states of I2 by stimulated resonant Raman spectroscopy,” Eur. Phys. J. D 6, 63–76 (1999).

1997

A. Titov, I. Malinovsky, M. Erin, “Asymmetry studies of iodine resonances and realization of unperturbed molecular transition in a laser standard at 633 nm,” Opt. Commun. 137, 165–173 (1997).
[CrossRef]

L. Robertsson, R. Goebel, S. Picard, L. Vitushkin, “Comparison of two wavelength reference laser systems at λ ≈ 515 nm, stabilized by different methods,” Metrologia 34, 495–501 (1997).
[CrossRef]

1995

M. L. Eickhoff, J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155–158 (1995).
[CrossRef]

P. A. Jungner, S. Swartz, M. Eickhoff, J. Ye, J. L. Hall, S. Waltman, “Absolute frequency of the molecular iodine transition R(56)32–0 near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995).
[CrossRef]

1994

L. Robertsson, “Line-shape distortion due to self-focusing effects when using frequency modulation techniques in saturation spectroscopy,” J. Mod. Opt. 41, 1327–1337 (1994).
[CrossRef]

A. Arie, R. L. Byer, “Laser heterodyne spectroscopy of 127I2 hyperfine structure near 532 nm: erratum,” J. Opt. Soc. Am. B 10, 866 (1994).
[CrossRef]

1993

A. Arie, R. L. Byer, “Laser heterodyne spectroscopy of 127I2 hyperfine structure near 532 nm,” J. Opt. Soc. Am. B 10, 1990–1997 (1993).
[CrossRef]

U. Brandt, “Frequency stabilization of a HeNe laser at 543.5 nm wavelength using frequency-modulation spectroscopy,” Opt. Commun. 100, 361–373 (1993).
[CrossRef]

1987

M. Gläser, “Properties of a He-Ne laser at λ = 612 nm, stabilized by means of an external iodine absorption cell,” IEEE Trans. Instrum. Meas. 36, 604–608 (1987).
[CrossRef]

1986

M. Gläser, “An improved He-Ne laser at λ = 612 nm, stabilized by means of an external absorption cell,” Metrologia 23, 45–53 (1986).
[CrossRef]

1984

“Documents concerning the new definition of the metre,” Metrologia 19, 163–177 (1984).

1982

G. Camy, C. J. Bordé, M. Ducloy, “Heterodyne saturation spectroscopy through frequency modulation of the saturation beam,” Opt. Commun. 41, 325–330 (1982).
[CrossRef]

J. H. Shirley, “Modulation transfer processes in optical heterodyne saturation spectroscopy,” Opt. Lett. 11, 537–539 (1982).
[CrossRef]

1981

J. L. Hall, L. Hollberg, T. Baer, H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

Ch. J. Bordé, G. Camy, B. Decomps, J.-P. Descoubes, J. Vigué, “High precision saturation spectroscopy of 127I2 with argon lasers at 5145 Å and 5017 Å: I—main resonances,” J. Phys. 42, 1393–1411 (1981).
[CrossRef]

1980

A. Yokozeki, J. S. Muenter, “Laser fluorescence state selected and detected molecular beam magnetic resonance in I2,” J. Chem. Phys. 72, 3796–3804 (1980).
[CrossRef]

G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980).
[CrossRef] [PubMed]

1973

1966

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966).
[CrossRef]

1936

L. J. Gillespie, L. A. D. Fraser, “The normal vapor pressure of crystalline iodine,” J. Am. Chem. Soc. 58, 2260–2263 (1936).
[CrossRef]

Acef, O.

G. D. Rovera, F. Ducos, J.-J. Zondy, O. Acef, J.-P. Wallerand, J. C. Knight, P. St. J. Russel, “Absolute frequency measurements of an I2 stabilized Nd:YAG optical frequency standard,” Meas. Sci. Technol. 13, 918–922 (2002).
[CrossRef]

Allan, D. W.

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966).
[CrossRef]

Arie, A.

A. Arie, R. L. Byer, “Laser heterodyne spectroscopy of 127I2 hyperfine structure near 532 nm: erratum,” J. Opt. Soc. Am. B 10, 866 (1994).
[CrossRef]

A. Arie, R. L. Byer, “Laser heterodyne spectroscopy of 127I2 hyperfine structure near 532 nm,” J. Opt. Soc. Am. B 10, 1990–1997 (1993).
[CrossRef]

Baer, T.

J. L. Hall, L. Hollberg, T. Baer, H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

Bagayev, S. N.

A. Yu. Nevsky, R. Holzwarth, J. Reichert, Th. Udem, T. W. Hänsch, J. von Zanthier, H. Walther, H. Schnatz, F. Riehle, P. V. Pokasov, M. N. Skvortsov, S. N. Bagayev, “Frequency comparison and absolute frequency measurement of I2-stabilized lasers at 532 nm,” Opt. Commun. 192, 263–272 (2001).
[CrossRef]

R. Holzwarth, M. Zimmermann, Th. Udem, T. W. Hänsch, A. Yu. Nevsky, J. von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. St. J. Russel, M. N. Skvortsov, S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73, 269–271 (2001).
[CrossRef]

Baird, K. M.

Balling, P.

P. Balling, “Measurement of frequency modulation amplitude of lasers to 1 part in 103,” Metrologia 38, 297–299 (2001).
[CrossRef]

Bjorklund, G. C.

Bordé, C. J.

G. Camy, C. J. Bordé, M. Ducloy, “Heterodyne saturation spectroscopy through frequency modulation of the saturation beam,” Opt. Commun. 41, 325–330 (1982).
[CrossRef]

Bordé, Ch. J.

F.-L. Hong, J. Ye, L.-S. Ma, S. Picard, Ch. J. Bordé, J. L. Hall, “Rotation dependence of electric quadrupole hyperfine interaction in the ground state of molecular iodine by high-resolution laser spectroscopy,” J. Opt. Soc. Am. B 18, 379–387 (2001).
[CrossRef]

J.-P. Wallerand, F. du Burck, B. Mercier, A. N. Goncharov, M. Himbert, Ch. J. Bordé, “Frequency measurements of hyperfine splittings in ground rovibronic states of I2 by stimulated resonant Raman spectroscopy,” Eur. Phys. J. D 6, 63–76 (1999).

Ch. J. Bordé, G. Camy, B. Decomps, J.-P. Descoubes, J. Vigué, “High precision saturation spectroscopy of 127I2 with argon lasers at 5145 Å and 5017 Å: I—main resonances,” J. Phys. 42, 1393–1411 (1981).
[CrossRef]

Brand, U.

H. R. Simonsen, U. Brand, F. Riehle, “International comparison of two iodine-stabilized He-Ne lasers at λ ≈ 543 nm,” Metrologia 31, 341–347 (1994/95).
[CrossRef]

Brandt, U.

U. Brandt, “Frequency stabilization of a HeNe laser at 543.5 nm wavelength using frequency-modulation spectroscopy,” Opt. Commun. 100, 361–373 (1993).
[CrossRef]

Byer, R. L.

A. Arie, R. L. Byer, “Laser heterodyne spectroscopy of 127I2 hyperfine structure near 532 nm: erratum,” J. Opt. Soc. Am. B 10, 866 (1994).
[CrossRef]

A. Arie, R. L. Byer, “Laser heterodyne spectroscopy of 127I2 hyperfine structure near 532 nm,” J. Opt. Soc. Am. B 10, 1990–1997 (1993).
[CrossRef]

Camy, G.

G. Camy, C. J. Bordé, M. Ducloy, “Heterodyne saturation spectroscopy through frequency modulation of the saturation beam,” Opt. Commun. 41, 325–330 (1982).
[CrossRef]

Ch. J. Bordé, G. Camy, B. Decomps, J.-P. Descoubes, J. Vigué, “High precision saturation spectroscopy of 127I2 with argon lasers at 5145 Å and 5017 Å: I—main resonances,” J. Phys. 42, 1393–1411 (1981).
[CrossRef]

Chartier, J.-M.

L.-S. Ma, L. Robertsson, S. Picard, J.-M. Chartier, “The BIPM laser standards at 633 nm and 532 nm simultaneously linked to the SI second using a femtosecond laser in an optical clock configuration,” IEEE Trans. Instrum. Meas. (to be published).

Cordiale, P.

P. Cordiale, G. Galzerano, H. Schnatz, “International comparison of two iodine-stabilized frequency-doubled Nd:YAG lasers at λ = 532 nm,” Metrologia 37, 177–182 (2000).
[CrossRef]

Cundiff, S. T.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, T. Hänch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

De Remigis, J.

Decomps, B.

Ch. J. Bordé, G. Camy, B. Decomps, J.-P. Descoubes, J. Vigué, “High precision saturation spectroscopy of 127I2 with argon lasers at 5145 Å and 5017 Å: I—main resonances,” J. Phys. 42, 1393–1411 (1981).
[CrossRef]

Descoubes, J.-P.

Ch. J. Bordé, G. Camy, B. Decomps, J.-P. Descoubes, J. Vigué, “High precision saturation spectroscopy of 127I2 with argon lasers at 5145 Å and 5017 Å: I—main resonances,” J. Phys. 42, 1393–1411 (1981).
[CrossRef]

Diddams, S. A.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, T. Hänch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

du Burck, F.

J.-P. Wallerand, F. du Burck, B. Mercier, A. N. Goncharov, M. Himbert, Ch. J. Bordé, “Frequency measurements of hyperfine splittings in ground rovibronic states of I2 by stimulated resonant Raman spectroscopy,” Eur. Phys. J. D 6, 63–76 (1999).

Ducloy, M.

G. Camy, C. J. Bordé, M. Ducloy, “Heterodyne saturation spectroscopy through frequency modulation of the saturation beam,” Opt. Commun. 41, 325–330 (1982).
[CrossRef]

Ducos, F.

G. D. Rovera, F. Ducos, J.-J. Zondy, O. Acef, J.-P. Wallerand, J. C. Knight, P. St. J. Russel, “Absolute frequency measurements of an I2 stabilized Nd:YAG optical frequency standard,” Meas. Sci. Technol. 13, 918–922 (2002).
[CrossRef]

Eickhoff, M.

P. A. Jungner, S. Swartz, M. Eickhoff, J. Ye, J. L. Hall, S. Waltman, “Absolute frequency of the molecular iodine transition R(56)32–0 near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995).
[CrossRef]

Eickhoff, M. L.

M. L. Eickhoff, J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155–158 (1995).
[CrossRef]

M. L. Eickhoff, “Two new methods for real-time precision refractometry and a precise test of the hyperfine Hamiltonian via modulation transfer spectroscopy of molecular iodine at 532 nm,” Ph.D. dissertation, University of Colorado, Boulder, Colo., 1994.

Erin, M.

A. Titov, I. Malinovsky, M. Erin, “Asymmetry studies of iodine resonances and realization of unperturbed molecular transition in a laser standard at 633 nm,” Opt. Commun. 137, 165–173 (1997).
[CrossRef]

Fraser, L. A. D.

L. J. Gillespie, L. A. D. Fraser, “The normal vapor pressure of crystalline iodine,” J. Am. Chem. Soc. 58, 2260–2263 (1936).
[CrossRef]

Galzerano, G.

P. Cordiale, G. Galzerano, H. Schnatz, “International comparison of two iodine-stabilized frequency-doubled Nd:YAG lasers at λ = 532 nm,” Metrologia 37, 177–182 (2000).
[CrossRef]

Gerstenkorn, S.

S. Gerstenkorn, P. Luc, Atlas du Spectre d’Absorption de la Molécule d’iode 14800–20000 cm-1. Complément: identification des Transitions du Systèm (B-X) (Editions du Centre National de la Recherche Scientifique, Orsay, France, 1985).

Gillespie, L. J.

L. J. Gillespie, L. A. D. Fraser, “The normal vapor pressure of crystalline iodine,” J. Am. Chem. Soc. 58, 2260–2263 (1936).
[CrossRef]

Gläser, M.

M. Gläser, “Properties of a He-Ne laser at λ = 612 nm, stabilized by means of an external iodine absorption cell,” IEEE Trans. Instrum. Meas. 36, 604–608 (1987).
[CrossRef]

M. Gläser, “An improved He-Ne laser at λ = 612 nm, stabilized by means of an external absorption cell,” Metrologia 23, 45–53 (1986).
[CrossRef]

Goebel, R.

L. Robertsson, R. Goebel, S. Picard, L. Vitushkin, “Comparison of two wavelength reference laser systems at λ ≈ 515 nm, stabilized by different methods,” Metrologia 34, 495–501 (1997).
[CrossRef]

Goncharov, A. N.

J.-P. Wallerand, F. du Burck, B. Mercier, A. N. Goncharov, M. Himbert, Ch. J. Bordé, “Frequency measurements of hyperfine splittings in ground rovibronic states of I2 by stimulated resonant Raman spectroscopy,” Eur. Phys. J. D 6, 63–76 (1999).

Hall, J. L.

F.-L. Hong, J. Ye, L.-S. Ma, S. Picard, Ch. J. Bordé, J. L. Hall, “Rotation dependence of electric quadrupole hyperfine interaction in the ground state of molecular iodine by high-resolution laser spectroscopy,” J. Opt. Soc. Am. B 18, 379–387 (2001).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, T. Hänch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

J. L. Hall, L.-S. Ma, M. Taubman, B. Tieman, F.-L. Hong, O. Pfister, J. Ye, “Stabilization and frequency measurement of the I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48, 583–586 (1999).
[CrossRef]

P. A. Jungner, S. Swartz, M. Eickhoff, J. Ye, J. L. Hall, S. Waltman, “Absolute frequency of the molecular iodine transition R(56)32–0 near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995).
[CrossRef]

M. L. Eickhoff, J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155–158 (1995).
[CrossRef]

J. L. Hall, L. Hollberg, T. Baer, H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

Hänch, T.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, T. Hänch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Hanes, G. R.

Hänsch, T. W.

R. Holzwarth, M. Zimmermann, Th. Udem, T. W. Hänsch, A. Yu. Nevsky, J. von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. St. J. Russel, M. N. Skvortsov, S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73, 269–271 (2001).
[CrossRef]

A. Yu. Nevsky, R. Holzwarth, J. Reichert, Th. Udem, T. W. Hänsch, J. von Zanthier, H. Walther, H. Schnatz, F. Riehle, P. V. Pokasov, M. N. Skvortsov, S. N. Bagayev, “Frequency comparison and absolute frequency measurement of I2-stabilized lasers at 532 nm,” Opt. Commun. 192, 263–272 (2001).
[CrossRef]

Himbert, M.

J.-P. Wallerand, F. du Burck, B. Mercier, A. N. Goncharov, M. Himbert, Ch. J. Bordé, “Frequency measurements of hyperfine splittings in ground rovibronic states of I2 by stimulated resonant Raman spectroscopy,” Eur. Phys. J. D 6, 63–76 (1999).

Hollberg, L.

J. L. Hall, L. Hollberg, T. Baer, H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

Holzwarth, R.

A. Yu. Nevsky, R. Holzwarth, J. Reichert, Th. Udem, T. W. Hänsch, J. von Zanthier, H. Walther, H. Schnatz, F. Riehle, P. V. Pokasov, M. N. Skvortsov, S. N. Bagayev, “Frequency comparison and absolute frequency measurement of I2-stabilized lasers at 532 nm,” Opt. Commun. 192, 263–272 (2001).
[CrossRef]

R. Holzwarth, M. Zimmermann, Th. Udem, T. W. Hänsch, A. Yu. Nevsky, J. von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. St. J. Russel, M. N. Skvortsov, S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73, 269–271 (2001).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, T. Hänch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Hong, F.-L.

F.-L. Hong, J. Ye, L.-S. Ma, S. Picard, Ch. J. Bordé, J. L. Hall, “Rotation dependence of electric quadrupole hyperfine interaction in the ground state of molecular iodine by high-resolution laser spectroscopy,” J. Opt. Soc. Am. B 18, 379–387 (2001).
[CrossRef]

L. Robertsson, S. Picard, F.-L. Hong, Y. Millerioux, P. Juncar, L.-S. Ma, “International comparison of 127I2-stabilized frequency-doubled Nd:YAG lasers between the BIPM, the NRLM and the BNM-INM, October 2000,” Metrologia 38, 567–572 (2001).
[CrossRef]

J. L. Hall, L.-S. Ma, M. Taubman, B. Tieman, F.-L. Hong, O. Pfister, J. Ye, “Stabilization and frequency measurement of the I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48, 583–586 (1999).
[CrossRef]

K. Sugiyama, A. Onae, F.-L. Hong, H. Inaba, S. N. Slyurarev, T. Ikegami, J. Ishikawa, K. Minoshima, H. Matsumoto, J. C. Knight, W. J. Wadsworth, P. St. J. Russel, “Optical frequency measurement using an ultrafast mode-locked laser at NMIJ/AIST,” in Conference Proceedings of the Sixth Symposium on Frequency Standards and Metrology, P. Gill, ed. (World Scientific, Singapore, 2002), pp. 427–434.
[CrossRef]

Ikegami, T.

K. Sugiyama, A. Onae, F.-L. Hong, H. Inaba, S. N. Slyurarev, T. Ikegami, J. Ishikawa, K. Minoshima, H. Matsumoto, J. C. Knight, W. J. Wadsworth, P. St. J. Russel, “Optical frequency measurement using an ultrafast mode-locked laser at NMIJ/AIST,” in Conference Proceedings of the Sixth Symposium on Frequency Standards and Metrology, P. Gill, ed. (World Scientific, Singapore, 2002), pp. 427–434.
[CrossRef]

Inaba, H.

K. Sugiyama, A. Onae, F.-L. Hong, H. Inaba, S. N. Slyurarev, T. Ikegami, J. Ishikawa, K. Minoshima, H. Matsumoto, J. C. Knight, W. J. Wadsworth, P. St. J. Russel, “Optical frequency measurement using an ultrafast mode-locked laser at NMIJ/AIST,” in Conference Proceedings of the Sixth Symposium on Frequency Standards and Metrology, P. Gill, ed. (World Scientific, Singapore, 2002), pp. 427–434.
[CrossRef]

Ishikawa, J.

K. Sugiyama, A. Onae, F.-L. Hong, H. Inaba, S. N. Slyurarev, T. Ikegami, J. Ishikawa, K. Minoshima, H. Matsumoto, J. C. Knight, W. J. Wadsworth, P. St. J. Russel, “Optical frequency measurement using an ultrafast mode-locked laser at NMIJ/AIST,” in Conference Proceedings of the Sixth Symposium on Frequency Standards and Metrology, P. Gill, ed. (World Scientific, Singapore, 2002), pp. 427–434.
[CrossRef]

Jones, D. J.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, T. Hänch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Juncar, P.

L. Robertsson, S. Picard, F.-L. Hong, Y. Millerioux, P. Juncar, L.-S. Ma, “International comparison of 127I2-stabilized frequency-doubled Nd:YAG lasers between the BIPM, the NRLM and the BNM-INM, October 2000,” Metrologia 38, 567–572 (2001).
[CrossRef]

Jungner, P. A.

P. A. Jungner, S. Swartz, M. Eickhoff, J. Ye, J. L. Hall, S. Waltman, “Absolute frequency of the molecular iodine transition R(56)32–0 near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995).
[CrossRef]

Knight, J. C.

G. D. Rovera, F. Ducos, J.-J. Zondy, O. Acef, J.-P. Wallerand, J. C. Knight, P. St. J. Russel, “Absolute frequency measurements of an I2 stabilized Nd:YAG optical frequency standard,” Meas. Sci. Technol. 13, 918–922 (2002).
[CrossRef]

R. Holzwarth, M. Zimmermann, Th. Udem, T. W. Hänsch, A. Yu. Nevsky, J. von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. St. J. Russel, M. N. Skvortsov, S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73, 269–271 (2001).
[CrossRef]

K. Sugiyama, A. Onae, F.-L. Hong, H. Inaba, S. N. Slyurarev, T. Ikegami, J. Ishikawa, K. Minoshima, H. Matsumoto, J. C. Knight, W. J. Wadsworth, P. St. J. Russel, “Optical frequency measurement using an ultrafast mode-locked laser at NMIJ/AIST,” in Conference Proceedings of the Sixth Symposium on Frequency Standards and Metrology, P. Gill, ed. (World Scientific, Singapore, 2002), pp. 427–434.
[CrossRef]

Luc, P.

S. Gerstenkorn, P. Luc, Atlas du Spectre d’Absorption de la Molécule d’iode 14800–20000 cm-1. Complément: identification des Transitions du Systèm (B-X) (Editions du Centre National de la Recherche Scientifique, Orsay, France, 1985).

Ma, L.-S.

L. Robertsson, S. Picard, F.-L. Hong, Y. Millerioux, P. Juncar, L.-S. Ma, “International comparison of 127I2-stabilized frequency-doubled Nd:YAG lasers between the BIPM, the NRLM and the BNM-INM, October 2000,” Metrologia 38, 567–572 (2001).
[CrossRef]

F.-L. Hong, J. Ye, L.-S. Ma, S. Picard, Ch. J. Bordé, J. L. Hall, “Rotation dependence of electric quadrupole hyperfine interaction in the ground state of molecular iodine by high-resolution laser spectroscopy,” J. Opt. Soc. Am. B 18, 379–387 (2001).
[CrossRef]

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

J. L. Hall, L.-S. Ma, M. Taubman, B. Tieman, F.-L. Hong, O. Pfister, J. Ye, “Stabilization and frequency measurement of the I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48, 583–586 (1999).
[CrossRef]

L.-S. Ma, L. Robertsson, S. Picard, J.-M. Chartier, “The BIPM laser standards at 633 nm and 532 nm simultaneously linked to the SI second using a femtosecond laser in an optical clock configuration,” IEEE Trans. Instrum. Meas. (to be published).

L. Robertsson, L.-S. Ma, S. Picard, “Improved iodine-stabilized Nd:YAG lasers,” in Proceedings of Laser Frequency Stabilization, Standards, Measurement, and Applications, J. L. Hall, J. Ye, eds., Proc. SPIE4269, 268–271 (2001).
[CrossRef]

Malinovsky, I.

A. Titov, I. Malinovsky, M. Erin, “Asymmetry studies of iodine resonances and realization of unperturbed molecular transition in a laser standard at 633 nm,” Opt. Commun. 137, 165–173 (1997).
[CrossRef]

Matsumoto, H.

K. Sugiyama, A. Onae, F.-L. Hong, H. Inaba, S. N. Slyurarev, T. Ikegami, J. Ishikawa, K. Minoshima, H. Matsumoto, J. C. Knight, W. J. Wadsworth, P. St. J. Russel, “Optical frequency measurement using an ultrafast mode-locked laser at NMIJ/AIST,” in Conference Proceedings of the Sixth Symposium on Frequency Standards and Metrology, P. Gill, ed. (World Scientific, Singapore, 2002), pp. 427–434.
[CrossRef]

Mercier, B.

J.-P. Wallerand, F. du Burck, B. Mercier, A. N. Goncharov, M. Himbert, Ch. J. Bordé, “Frequency measurements of hyperfine splittings in ground rovibronic states of I2 by stimulated resonant Raman spectroscopy,” Eur. Phys. J. D 6, 63–76 (1999).

Millerioux, Y.

L. Robertsson, S. Picard, F.-L. Hong, Y. Millerioux, P. Juncar, L.-S. Ma, “International comparison of 127I2-stabilized frequency-doubled Nd:YAG lasers between the BIPM, the NRLM and the BNM-INM, October 2000,” Metrologia 38, 567–572 (2001).
[CrossRef]

Minoshima, K.

K. Sugiyama, A. Onae, F.-L. Hong, H. Inaba, S. N. Slyurarev, T. Ikegami, J. Ishikawa, K. Minoshima, H. Matsumoto, J. C. Knight, W. J. Wadsworth, P. St. J. Russel, “Optical frequency measurement using an ultrafast mode-locked laser at NMIJ/AIST,” in Conference Proceedings of the Sixth Symposium on Frequency Standards and Metrology, P. Gill, ed. (World Scientific, Singapore, 2002), pp. 427–434.
[CrossRef]

Muenter, J. S.

A. Yokozeki, J. S. Muenter, “Laser fluorescence state selected and detected molecular beam magnetic resonance in I2,” J. Chem. Phys. 72, 3796–3804 (1980).
[CrossRef]

Nevsky, A. Yu.

A. Yu. Nevsky, R. Holzwarth, J. Reichert, Th. Udem, T. W. Hänsch, J. von Zanthier, H. Walther, H. Schnatz, F. Riehle, P. V. Pokasov, M. N. Skvortsov, S. N. Bagayev, “Frequency comparison and absolute frequency measurement of I2-stabilized lasers at 532 nm,” Opt. Commun. 192, 263–272 (2001).
[CrossRef]

R. Holzwarth, M. Zimmermann, Th. Udem, T. W. Hänsch, A. Yu. Nevsky, J. von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. St. J. Russel, M. N. Skvortsov, S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73, 269–271 (2001).
[CrossRef]

Onae, A.

K. Sugiyama, A. Onae, F.-L. Hong, H. Inaba, S. N. Slyurarev, T. Ikegami, J. Ishikawa, K. Minoshima, H. Matsumoto, J. C. Knight, W. J. Wadsworth, P. St. J. Russel, “Optical frequency measurement using an ultrafast mode-locked laser at NMIJ/AIST,” in Conference Proceedings of the Sixth Symposium on Frequency Standards and Metrology, P. Gill, ed. (World Scientific, Singapore, 2002), pp. 427–434.
[CrossRef]

Pfister, O.

J. L. Hall, L.-S. Ma, M. Taubman, B. Tieman, F.-L. Hong, O. Pfister, J. Ye, “Stabilization and frequency measurement of the I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48, 583–586 (1999).
[CrossRef]

Picard, S.

L. Robertsson, S. Picard, F.-L. Hong, Y. Millerioux, P. Juncar, L.-S. Ma, “International comparison of 127I2-stabilized frequency-doubled Nd:YAG lasers between the BIPM, the NRLM and the BNM-INM, October 2000,” Metrologia 38, 567–572 (2001).
[CrossRef]

F.-L. Hong, J. Ye, L.-S. Ma, S. Picard, Ch. J. Bordé, J. L. Hall, “Rotation dependence of electric quadrupole hyperfine interaction in the ground state of molecular iodine by high-resolution laser spectroscopy,” J. Opt. Soc. Am. B 18, 379–387 (2001).
[CrossRef]

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

L. Robertsson, R. Goebel, S. Picard, L. Vitushkin, “Comparison of two wavelength reference laser systems at λ ≈ 515 nm, stabilized by different methods,” Metrologia 34, 495–501 (1997).
[CrossRef]

L.-S. Ma, L. Robertsson, S. Picard, J.-M. Chartier, “The BIPM laser standards at 633 nm and 532 nm simultaneously linked to the SI second using a femtosecond laser in an optical clock configuration,” IEEE Trans. Instrum. Meas. (to be published).

L. Robertsson, L.-S. Ma, S. Picard, “Improved iodine-stabilized Nd:YAG lasers,” in Proceedings of Laser Frequency Stabilization, Standards, Measurement, and Applications, J. L. Hall, J. Ye, eds., Proc. SPIE4269, 268–271 (2001).
[CrossRef]

Picard-Fredin, S.

S. Picard-Fredin, A. Razet, “On the hyperfine structure of iodine: 2. To calculate hyperfine constants on the basis of experimental data,” Rapport BIPM 91/2 (Bureau International des Poids et mesures, Sèvres, France, 1991).

Pokasov, P. V.

A. Yu. Nevsky, R. Holzwarth, J. Reichert, Th. Udem, T. W. Hänsch, J. von Zanthier, H. Walther, H. Schnatz, F. Riehle, P. V. Pokasov, M. N. Skvortsov, S. N. Bagayev, “Frequency comparison and absolute frequency measurement of I2-stabilized lasers at 532 nm,” Opt. Commun. 192, 263–272 (2001).
[CrossRef]

Quinn, T. J.

T. J. Quinn, “Practical realization of the definition of the metre (1997),” Metrologia 36, 211–244 (1999).
[CrossRef]

Ranka, J. K.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, T. Hänch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Razet, A.

S. Picard-Fredin, A. Razet, “On the hyperfine structure of iodine: 2. To calculate hyperfine constants on the basis of experimental data,” Rapport BIPM 91/2 (Bureau International des Poids et mesures, Sèvres, France, 1991).

Reichert, J.

A. Yu. Nevsky, R. Holzwarth, J. Reichert, Th. Udem, T. W. Hänsch, J. von Zanthier, H. Walther, H. Schnatz, F. Riehle, P. V. Pokasov, M. N. Skvortsov, S. N. Bagayev, “Frequency comparison and absolute frequency measurement of I2-stabilized lasers at 532 nm,” Opt. Commun. 192, 263–272 (2001).
[CrossRef]

Riehle, F.

A. Yu. Nevsky, R. Holzwarth, J. Reichert, Th. Udem, T. W. Hänsch, J. von Zanthier, H. Walther, H. Schnatz, F. Riehle, P. V. Pokasov, M. N. Skvortsov, S. N. Bagayev, “Frequency comparison and absolute frequency measurement of I2-stabilized lasers at 532 nm,” Opt. Commun. 192, 263–272 (2001).
[CrossRef]

H. R. Simonsen, U. Brand, F. Riehle, “International comparison of two iodine-stabilized He-Ne lasers at λ ≈ 543 nm,” Metrologia 31, 341–347 (1994/95).
[CrossRef]

Robertsson, L.

L. Robertsson, S. Picard, F.-L. Hong, Y. Millerioux, P. Juncar, L.-S. Ma, “International comparison of 127I2-stabilized frequency-doubled Nd:YAG lasers between the BIPM, the NRLM and the BNM-INM, October 2000,” Metrologia 38, 567–572 (2001).
[CrossRef]

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

L. Robertsson, R. Goebel, S. Picard, L. Vitushkin, “Comparison of two wavelength reference laser systems at λ ≈ 515 nm, stabilized by different methods,” Metrologia 34, 495–501 (1997).
[CrossRef]

L. Robertsson, “Line-shape distortion due to self-focusing effects when using frequency modulation techniques in saturation spectroscopy,” J. Mod. Opt. 41, 1327–1337 (1994).
[CrossRef]

L.-S. Ma, L. Robertsson, S. Picard, J.-M. Chartier, “The BIPM laser standards at 633 nm and 532 nm simultaneously linked to the SI second using a femtosecond laser in an optical clock configuration,” IEEE Trans. Instrum. Meas. (to be published).

L. Robertsson, L.-S. Ma, S. Picard, “Improved iodine-stabilized Nd:YAG lasers,” in Proceedings of Laser Frequency Stabilization, Standards, Measurement, and Applications, J. L. Hall, J. Ye, eds., Proc. SPIE4269, 268–271 (2001).
[CrossRef]

Robinson, H. G.

J. L. Hall, L. Hollberg, T. Baer, H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

Rose, F.

H. R. Simonsen, F. Rose, “Absolute measurement of the hyperfine splittings of six molecular 127I2 lines around the He-Ne/I2 wavelength at λ ≈ 633 nm,” Metrologia 37, 651–658 (2000).
[CrossRef]

Rovera, G. D.

G. D. Rovera, F. Ducos, J.-J. Zondy, O. Acef, J.-P. Wallerand, J. C. Knight, P. St. J. Russel, “Absolute frequency measurements of an I2 stabilized Nd:YAG optical frequency standard,” Meas. Sci. Technol. 13, 918–922 (2002).
[CrossRef]

Russel, P. St. J.

G. D. Rovera, F. Ducos, J.-J. Zondy, O. Acef, J.-P. Wallerand, J. C. Knight, P. St. J. Russel, “Absolute frequency measurements of an I2 stabilized Nd:YAG optical frequency standard,” Meas. Sci. Technol. 13, 918–922 (2002).
[CrossRef]

R. Holzwarth, M. Zimmermann, Th. Udem, T. W. Hänsch, A. Yu. Nevsky, J. von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. St. J. Russel, M. N. Skvortsov, S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73, 269–271 (2001).
[CrossRef]

K. Sugiyama, A. Onae, F.-L. Hong, H. Inaba, S. N. Slyurarev, T. Ikegami, J. Ishikawa, K. Minoshima, H. Matsumoto, J. C. Knight, W. J. Wadsworth, P. St. J. Russel, “Optical frequency measurement using an ultrafast mode-locked laser at NMIJ/AIST,” in Conference Proceedings of the Sixth Symposium on Frequency Standards and Metrology, P. Gill, ed. (World Scientific, Singapore, 2002), pp. 427–434.
[CrossRef]

Schnatz, H.

A. Yu. Nevsky, R. Holzwarth, J. Reichert, Th. Udem, T. W. Hänsch, J. von Zanthier, H. Walther, H. Schnatz, F. Riehle, P. V. Pokasov, M. N. Skvortsov, S. N. Bagayev, “Frequency comparison and absolute frequency measurement of I2-stabilized lasers at 532 nm,” Opt. Commun. 192, 263–272 (2001).
[CrossRef]

P. Cordiale, G. Galzerano, H. Schnatz, “International comparison of two iodine-stabilized frequency-doubled Nd:YAG lasers at λ = 532 nm,” Metrologia 37, 177–182 (2000).
[CrossRef]

Shirley, J. H.

Simonsen, H. R.

H. R. Simonsen, F. Rose, “Absolute measurement of the hyperfine splittings of six molecular 127I2 lines around the He-Ne/I2 wavelength at λ ≈ 633 nm,” Metrologia 37, 651–658 (2000).
[CrossRef]

H. R. Simonsen, U. Brand, F. Riehle, “International comparison of two iodine-stabilized He-Ne lasers at λ ≈ 543 nm,” Metrologia 31, 341–347 (1994/95).
[CrossRef]

Skvortsov, M. N.

A. Yu. Nevsky, R. Holzwarth, J. Reichert, Th. Udem, T. W. Hänsch, J. von Zanthier, H. Walther, H. Schnatz, F. Riehle, P. V. Pokasov, M. N. Skvortsov, S. N. Bagayev, “Frequency comparison and absolute frequency measurement of I2-stabilized lasers at 532 nm,” Opt. Commun. 192, 263–272 (2001).
[CrossRef]

R. Holzwarth, M. Zimmermann, Th. Udem, T. W. Hänsch, A. Yu. Nevsky, J. von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. St. J. Russel, M. N. Skvortsov, S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73, 269–271 (2001).
[CrossRef]

Slyurarev, S. N.

K. Sugiyama, A. Onae, F.-L. Hong, H. Inaba, S. N. Slyurarev, T. Ikegami, J. Ishikawa, K. Minoshima, H. Matsumoto, J. C. Knight, W. J. Wadsworth, P. St. J. Russel, “Optical frequency measurement using an ultrafast mode-locked laser at NMIJ/AIST,” in Conference Proceedings of the Sixth Symposium on Frequency Standards and Metrology, P. Gill, ed. (World Scientific, Singapore, 2002), pp. 427–434.
[CrossRef]

Sugiyama, K.

K. Sugiyama, A. Onae, F.-L. Hong, H. Inaba, S. N. Slyurarev, T. Ikegami, J. Ishikawa, K. Minoshima, H. Matsumoto, J. C. Knight, W. J. Wadsworth, P. St. J. Russel, “Optical frequency measurement using an ultrafast mode-locked laser at NMIJ/AIST,” in Conference Proceedings of the Sixth Symposium on Frequency Standards and Metrology, P. Gill, ed. (World Scientific, Singapore, 2002), pp. 427–434.
[CrossRef]

Swartz, S.

P. A. Jungner, S. Swartz, M. Eickhoff, J. Ye, J. L. Hall, S. Waltman, “Absolute frequency of the molecular iodine transition R(56)32–0 near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995).
[CrossRef]

Taubman, M.

J. L. Hall, L.-S. Ma, M. Taubman, B. Tieman, F.-L. Hong, O. Pfister, J. Ye, “Stabilization and frequency measurement of the I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48, 583–586 (1999).
[CrossRef]

Tieman, B.

J. L. Hall, L.-S. Ma, M. Taubman, B. Tieman, F.-L. Hong, O. Pfister, J. Ye, “Stabilization and frequency measurement of the I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48, 583–586 (1999).
[CrossRef]

Titov, A.

A. Titov, I. Malinovsky, M. Erin, “Asymmetry studies of iodine resonances and realization of unperturbed molecular transition in a laser standard at 633 nm,” Opt. Commun. 137, 165–173 (1997).
[CrossRef]

Udem, T.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, T. Hänch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Udem, Th.

A. Yu. Nevsky, R. Holzwarth, J. Reichert, Th. Udem, T. W. Hänsch, J. von Zanthier, H. Walther, H. Schnatz, F. Riehle, P. V. Pokasov, M. N. Skvortsov, S. N. Bagayev, “Frequency comparison and absolute frequency measurement of I2-stabilized lasers at 532 nm,” Opt. Commun. 192, 263–272 (2001).
[CrossRef]

R. Holzwarth, M. Zimmermann, Th. Udem, T. W. Hänsch, A. Yu. Nevsky, J. von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. St. J. Russel, M. N. Skvortsov, S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73, 269–271 (2001).
[CrossRef]

Vigué, J.

Ch. J. Bordé, G. Camy, B. Decomps, J.-P. Descoubes, J. Vigué, “High precision saturation spectroscopy of 127I2 with argon lasers at 5145 Å and 5017 Å: I—main resonances,” J. Phys. 42, 1393–1411 (1981).
[CrossRef]

Vitushkin, L.

L. Robertsson, R. Goebel, S. Picard, L. Vitushkin, “Comparison of two wavelength reference laser systems at λ ≈ 515 nm, stabilized by different methods,” Metrologia 34, 495–501 (1997).
[CrossRef]

von Zanthier, J.

A. Yu. Nevsky, R. Holzwarth, J. Reichert, Th. Udem, T. W. Hänsch, J. von Zanthier, H. Walther, H. Schnatz, F. Riehle, P. V. Pokasov, M. N. Skvortsov, S. N. Bagayev, “Frequency comparison and absolute frequency measurement of I2-stabilized lasers at 532 nm,” Opt. Commun. 192, 263–272 (2001).
[CrossRef]

R. Holzwarth, M. Zimmermann, Th. Udem, T. W. Hänsch, A. Yu. Nevsky, J. von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. St. J. Russel, M. N. Skvortsov, S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73, 269–271 (2001).
[CrossRef]

Wadsworth, W. J.

R. Holzwarth, M. Zimmermann, Th. Udem, T. W. Hänsch, A. Yu. Nevsky, J. von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. St. J. Russel, M. N. Skvortsov, S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73, 269–271 (2001).
[CrossRef]

K. Sugiyama, A. Onae, F.-L. Hong, H. Inaba, S. N. Slyurarev, T. Ikegami, J. Ishikawa, K. Minoshima, H. Matsumoto, J. C. Knight, W. J. Wadsworth, P. St. J. Russel, “Optical frequency measurement using an ultrafast mode-locked laser at NMIJ/AIST,” in Conference Proceedings of the Sixth Symposium on Frequency Standards and Metrology, P. Gill, ed. (World Scientific, Singapore, 2002), pp. 427–434.
[CrossRef]

Wallard, A. J.

A. J. Wallard, “Frequency stabilization of the helium-neon laser by saturated absorption in iodine vapour,” J. Phys. E 5, 926–930 (1973).
[CrossRef]

Wallerand, J.-P.

G. D. Rovera, F. Ducos, J.-J. Zondy, O. Acef, J.-P. Wallerand, J. C. Knight, P. St. J. Russel, “Absolute frequency measurements of an I2 stabilized Nd:YAG optical frequency standard,” Meas. Sci. Technol. 13, 918–922 (2002).
[CrossRef]

J.-P. Wallerand, F. du Burck, B. Mercier, A. N. Goncharov, M. Himbert, Ch. J. Bordé, “Frequency measurements of hyperfine splittings in ground rovibronic states of I2 by stimulated resonant Raman spectroscopy,” Eur. Phys. J. D 6, 63–76 (1999).

Walther, H.

A. Yu. Nevsky, R. Holzwarth, J. Reichert, Th. Udem, T. W. Hänsch, J. von Zanthier, H. Walther, H. Schnatz, F. Riehle, P. V. Pokasov, M. N. Skvortsov, S. N. Bagayev, “Frequency comparison and absolute frequency measurement of I2-stabilized lasers at 532 nm,” Opt. Commun. 192, 263–272 (2001).
[CrossRef]

R. Holzwarth, M. Zimmermann, Th. Udem, T. W. Hänsch, A. Yu. Nevsky, J. von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. St. J. Russel, M. N. Skvortsov, S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73, 269–271 (2001).
[CrossRef]

Waltman, S.

P. A. Jungner, S. Swartz, M. Eickhoff, J. Ye, J. L. Hall, S. Waltman, “Absolute frequency of the molecular iodine transition R(56)32–0 near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995).
[CrossRef]

Windeler, R. S.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, T. Hänch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Ye, J.

F.-L. Hong, J. Ye, L.-S. Ma, S. Picard, Ch. J. Bordé, J. L. Hall, “Rotation dependence of electric quadrupole hyperfine interaction in the ground state of molecular iodine by high-resolution laser spectroscopy,” J. Opt. Soc. Am. B 18, 379–387 (2001).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, T. Hänch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

J. L. Hall, L.-S. Ma, M. Taubman, B. Tieman, F.-L. Hong, O. Pfister, J. Ye, “Stabilization and frequency measurement of the I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48, 583–586 (1999).
[CrossRef]

P. A. Jungner, S. Swartz, M. Eickhoff, J. Ye, J. L. Hall, S. Waltman, “Absolute frequency of the molecular iodine transition R(56)32–0 near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995).
[CrossRef]

Yokozeki, A.

A. Yokozeki, J. S. Muenter, “Laser fluorescence state selected and detected molecular beam magnetic resonance in I2,” J. Chem. Phys. 72, 3796–3804 (1980).
[CrossRef]

Zimmermann, M.

R. Holzwarth, M. Zimmermann, Th. Udem, T. W. Hänsch, A. Yu. Nevsky, J. von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. St. J. Russel, M. N. Skvortsov, S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73, 269–271 (2001).
[CrossRef]

Zondy, J.-J.

G. D. Rovera, F. Ducos, J.-J. Zondy, O. Acef, J.-P. Wallerand, J. C. Knight, P. St. J. Russel, “Absolute frequency measurements of an I2 stabilized Nd:YAG optical frequency standard,” Meas. Sci. Technol. 13, 918–922 (2002).
[CrossRef]

Appl. Opt.

Appl. Phys. B

R. Holzwarth, M. Zimmermann, Th. Udem, T. W. Hänsch, A. Yu. Nevsky, J. von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. St. J. Russel, M. N. Skvortsov, S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73, 269–271 (2001).
[CrossRef]

Appl. Phys. Lett.

J. L. Hall, L. Hollberg, T. Baer, H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

Eur. Phys. J. D

J.-P. Wallerand, F. du Burck, B. Mercier, A. N. Goncharov, M. Himbert, Ch. J. Bordé, “Frequency measurements of hyperfine splittings in ground rovibronic states of I2 by stimulated resonant Raman spectroscopy,” Eur. Phys. J. D 6, 63–76 (1999).

IEEE Trans. Instrum. Meas.

M. L. Eickhoff, J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155–158 (1995).
[CrossRef]

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
[CrossRef]

P. A. Jungner, S. Swartz, M. Eickhoff, J. Ye, J. L. Hall, S. Waltman, “Absolute frequency of the molecular iodine transition R(56)32–0 near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995).
[CrossRef]

J. L. Hall, L.-S. Ma, M. Taubman, B. Tieman, F.-L. Hong, O. Pfister, J. Ye, “Stabilization and frequency measurement of the I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48, 583–586 (1999).
[CrossRef]

M. Gläser, “Properties of a He-Ne laser at λ = 612 nm, stabilized by means of an external iodine absorption cell,” IEEE Trans. Instrum. Meas. 36, 604–608 (1987).
[CrossRef]

J. Am. Chem. Soc.

L. J. Gillespie, L. A. D. Fraser, “The normal vapor pressure of crystalline iodine,” J. Am. Chem. Soc. 58, 2260–2263 (1936).
[CrossRef]

J. Chem. Phys.

A. Yokozeki, J. S. Muenter, “Laser fluorescence state selected and detected molecular beam magnetic resonance in I2,” J. Chem. Phys. 72, 3796–3804 (1980).
[CrossRef]

J. Mod. Opt.

L. Robertsson, “Line-shape distortion due to self-focusing effects when using frequency modulation techniques in saturation spectroscopy,” J. Mod. Opt. 41, 1327–1337 (1994).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys.

Ch. J. Bordé, G. Camy, B. Decomps, J.-P. Descoubes, J. Vigué, “High precision saturation spectroscopy of 127I2 with argon lasers at 5145 Å and 5017 Å: I—main resonances,” J. Phys. 42, 1393–1411 (1981).
[CrossRef]

J. Phys. E

A. J. Wallard, “Frequency stabilization of the helium-neon laser by saturated absorption in iodine vapour,” J. Phys. E 5, 926–930 (1973).
[CrossRef]

Meas. Sci. Technol.

G. D. Rovera, F. Ducos, J.-J. Zondy, O. Acef, J.-P. Wallerand, J. C. Knight, P. St. J. Russel, “Absolute frequency measurements of an I2 stabilized Nd:YAG optical frequency standard,” Meas. Sci. Technol. 13, 918–922 (2002).
[CrossRef]

Metrologia

L. Robertsson, S. Picard, F.-L. Hong, Y. Millerioux, P. Juncar, L.-S. Ma, “International comparison of 127I2-stabilized frequency-doubled Nd:YAG lasers between the BIPM, the NRLM and the BNM-INM, October 2000,” Metrologia 38, 567–572 (2001).
[CrossRef]

P. Cordiale, G. Galzerano, H. Schnatz, “International comparison of two iodine-stabilized frequency-doubled Nd:YAG lasers at λ = 532 nm,” Metrologia 37, 177–182 (2000).
[CrossRef]

P. Balling, “Measurement of frequency modulation amplitude of lasers to 1 part in 103,” Metrologia 38, 297–299 (2001).
[CrossRef]

H. R. Simonsen, U. Brand, F. Riehle, “International comparison of two iodine-stabilized He-Ne lasers at λ ≈ 543 nm,” Metrologia 31, 341–347 (1994/95).
[CrossRef]

L. Robertsson, R. Goebel, S. Picard, L. Vitushkin, “Comparison of two wavelength reference laser systems at λ ≈ 515 nm, stabilized by different methods,” Metrologia 34, 495–501 (1997).
[CrossRef]

M. Gläser, “An improved He-Ne laser at λ = 612 nm, stabilized by means of an external absorption cell,” Metrologia 23, 45–53 (1986).
[CrossRef]

“Documents concerning the new definition of the metre,” Metrologia 19, 163–177 (1984).

T. J. Quinn, “Practical realization of the definition of the metre (1997),” Metrologia 36, 211–244 (1999).
[CrossRef]

H. R. Simonsen, F. Rose, “Absolute measurement of the hyperfine splittings of six molecular 127I2 lines around the He-Ne/I2 wavelength at λ ≈ 633 nm,” Metrologia 37, 651–658 (2000).
[CrossRef]

Opt. Commun.

G. Camy, C. J. Bordé, M. Ducloy, “Heterodyne saturation spectroscopy through frequency modulation of the saturation beam,” Opt. Commun. 41, 325–330 (1982).
[CrossRef]

A. Yu. Nevsky, R. Holzwarth, J. Reichert, Th. Udem, T. W. Hänsch, J. von Zanthier, H. Walther, H. Schnatz, F. Riehle, P. V. Pokasov, M. N. Skvortsov, S. N. Bagayev, “Frequency comparison and absolute frequency measurement of I2-stabilized lasers at 532 nm,” Opt. Commun. 192, 263–272 (2001).
[CrossRef]

U. Brandt, “Frequency stabilization of a HeNe laser at 543.5 nm wavelength using frequency-modulation spectroscopy,” Opt. Commun. 100, 361–373 (1993).
[CrossRef]

A. Titov, I. Malinovsky, M. Erin, “Asymmetry studies of iodine resonances and realization of unperturbed molecular transition in a laser standard at 633 nm,” Opt. Commun. 137, 165–173 (1997).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, T. Hänch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Proc. IEEE

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966).
[CrossRef]

Other

M. L. Eickhoff, “Two new methods for real-time precision refractometry and a precise test of the hyperfine Hamiltonian via modulation transfer spectroscopy of molecular iodine at 532 nm,” Ph.D. dissertation, University of Colorado, Boulder, Colo., 1994.

S. Gerstenkorn, P. Luc, Atlas du Spectre d’Absorption de la Molécule d’iode 14800–20000 cm-1. Complément: identification des Transitions du Systèm (B-X) (Editions du Centre National de la Recherche Scientifique, Orsay, France, 1985).

Comptes Rendus Seventeenth Conférence Générale des Poids et Mesures (Bureau International des Poids et Mesures, Sèvres, France, 1983), pp. 45–49.

L. Robertsson, L.-S. Ma, S. Picard, “Improved iodine-stabilized Nd:YAG lasers,” in Proceedings of Laser Frequency Stabilization, Standards, Measurement, and Applications, J. L. Hall, J. Ye, eds., Proc. SPIE4269, 268–271 (2001).
[CrossRef]

K. Sugiyama, A. Onae, F.-L. Hong, H. Inaba, S. N. Slyurarev, T. Ikegami, J. Ishikawa, K. Minoshima, H. Matsumoto, J. C. Knight, W. J. Wadsworth, P. St. J. Russel, “Optical frequency measurement using an ultrafast mode-locked laser at NMIJ/AIST,” in Conference Proceedings of the Sixth Symposium on Frequency Standards and Metrology, P. Gill, ed. (World Scientific, Singapore, 2002), pp. 427–434.
[CrossRef]

L.-S. Ma, L. Robertsson, S. Picard, J.-M. Chartier, “The BIPM laser standards at 633 nm and 532 nm simultaneously linked to the SI second using a femtosecond laser in an optical clock configuration,” IEEE Trans. Instrum. Meas. (to be published).

Comité International des Poids et Mesures, Report of the 90th Meeting, October 2002 (Bureau International des Poids et Mesures, Sèvres, France), to be published.

S. Picard-Fredin, A. Razet, “On the hyperfine structure of iodine: 2. To calculate hyperfine constants on the basis of experimental data,” Rapport BIPM 91/2 (Bureau International des Poids et mesures, Sèvres, France, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Measured frequency stability f(X) - f(A) of the unstabilized lasers at 532 nm, where X represents the studied laser and A represents the laser used as a reference. From top to bottom, the free-running stability in megahertz is shown for the MIKESY1, INMY1, CMIY1, and the BIPM A lasers. The large drift for the CMIY1 was due to a temporary problem with the temperature control of the Nd:YAG crystal.

Fig. 2
Fig. 2

Measured MIFS for the INMY1 (□ ), INMY2 (■), MIKESY1 (▲), CMIY1 (♦), and CMIY1 (♢) with reversed PZT polarity, shown as a function of the modulation width ΔM. The frequency offset in the figure is arbitrary. The measurements were carried out by use of the a 10 component.

Fig. 3
Fig. 3

Measured POIFS for the INMY2 (squares), the CMIY1 (diamonds), and the MIKESY1 (triangles), shown as a function of the power density P. All measurements were carried out by use of the a 10 component.

Fig. 4
Fig. 4

Measured PIFS for the INMY1 with INM1 (open squares), INMY2 with NIM/BIPM347 (filled squares), CMIY1 with ISI9 (filled diamonds), CMIY1 with ISI7 with reversed PZT polarity (open diamonds), MIKESY1 with ISI2 (filled triangles), and MIKESY1 with NIM/BIPM339 (open triangles), shown as a function of the iodine pressure p. All measurements were carried out by use of the a 10 component.

Fig. 5
Fig. 5

Frequency shift induced by misalignment for the BNM-INM systems: The vertical (filled circles) and horizontal (open circles) frequency sensitivities of the INMY1 system can be compared with the less sensitive setup INMY2, of which the frequency dependence of the horizontal alignment is indicated by filled squares.

Fig. 6
Fig. 6

Result of frequency difference measurements Δf for the INMY1 (open squares), INMY2 (filled squares), MIKESY1 (triangles), and CMIY1 (diamonds), shown as a function of the time of the measurement, where the BIPM A was used as a reference.

Fig. 7
Fig. 7

Relative Allan standard deviation for the MIKESY1 (filled triangles), the INMY2 (squares), and the CMIY1 (diamonds) with the BIPM A used as a reference. Open triangles, the MIKESY1 results using the longer NIM/BIPM339 iodine cell.

Fig. 8
Fig. 8

Frequency difference of the hyperfine components a n measured by the BIPM (open squares), the BNM-INM (filled squares), the MIKES (triangles), the CMI (filled diamonds), and the JILA-NIST (open diamonds) and given by the CIPM 1997 (×) and the arithmetic mean of the same data excluding the CIPM 1997 values.

Tables (6)

Tables Icon

Table 1 Compilation of Principal Parameters and Characteristics of the Laser Systems

Tables Icon

Table 2 Modulation-Induced Frequency Shifta

Tables Icon

Table 3 Pressure-Induced Frequency Shifta

Tables Icon

Table 4 Results of All Frequency Measurements Made between 13 and 23 May 2001, Corrected to a Cold-Finger Temperature of -15 °C

Tables Icon

Table 5 Compilation of Relative Frequency Measurements of the Complete Hyperfine Structure of the R(56)32–0 Transition in 127I2

Tables Icon

Table 6 Mean Value of the Fitted Four Different Hyperfine Constants of the Upper State B for the R(56)32–0 Transition Made in This Papera

Metrics