Abstract

Pressure sensing in an internal combustion engine with an intrinsic fiber Fabry-Perot interferometer (FFPI) integrated with a spark plug is demonstrated for the first time. The spark plug was used for the ignition of the cylinder in which it was mounted. The FFPI element, protected with a copper/gold coating, was embedded in a groove in the spark-plug housing. Gas pressure in the engine induced longitudinal strain in this housing, which was also experienced by the fiber-optic sensing element. The sensor was monitored with a signal conditioning unit containing a chirped distributed-feedback laser. Pressure sensitivities as high as 0.00339 radians round-trip phase shift per pounds per square inch of pressure were observed. Measured pressure versus time traces showed good agreement with those from a piezoelectric reference sensor mounted in the same engine cylinder.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Powell, “Engine control using cylinder pressure: past, present, and future,” J. Dynamic Systems, Measurement, and Control 115, 343–350 (1993).
    [CrossRef]
  2. W. Wang, E. C. Chirwa, E. Zhou, K. Holmes, C. Nwagboso, “Fuzzy ignition timing control for a spark ignition engine,” Proc. Inst. Mech. Eng. D 214, 297–306 (2000).
    [CrossRef]
  3. S. Park, P. Yoon, M. Sunwoo, “Feedback error learning neural networks for spark advance control using cylinder pressure,” Proc. Inst. Mech. Eng. D 215, 625–636 (2001).
    [CrossRef]
  4. R. A. Atkins, J. H. Gardner, W. N. Gibler, C. E. Lee, M. D. Oakland, M. O. Spears, V. P. Swenson, H. F. Taylor, J. J. McCoy, G. Beshouri, “Fiber-optic pressure sensors for internal combustion engines,” Appl. Opt. 33, 1315–1320 (1994).
    [CrossRef] [PubMed]
  5. C. E. Lee, H. F. Taylor, “A fiber optic pressure sensor for internal combustion engines,” Sensors 15 (3), 20–25 (1998).
  6. R. H. Kuratle, T. Minoyama, “Measuring spark plugs with integrated cylinder pressure sensor,” SAE Paper 948352 (Society of Automotive Engineers, Warrendale, Pa., 1994).
  7. M. C. Sellnau, F. A. Matekunas, P. A. Battiston, C. F. Chang, D. R. Lancaster, “Cylinder-pressure-based engine control using pressure-ratio-management and low-cost non-intrusive cylinder pressure sensors,” SAE Paper 2000-01-0932 (Society of Automotive Engineers, Warrendale, Pa., 2000).
    [CrossRef]
  8. G. He, M. T. Wlodarczyk, “Evaluation of a spark-plug-integrated fiber-optic combustion pressure sensor,” SAE Paper 940318 (Society of Automotive Engineers, Warrendale, Pa., 1994).
    [CrossRef]
  9. M. T. Wlodarczyk, “A fiber-optic combustion pressure sensor system for automotive engine control,” Sensors 11 (6), 35–45 (1994).
  10. C. E. Lee, H. F. Taylor, “Interferometric optical fiber sensors using internal mirrors,” Electron. Lett. 24, 193–195 (1988).
    [CrossRef]
  11. W. Lee, J. Lee, C. Henderson, H. F. Taylor, R. James, C. E. Lee, V. Swenson, R. A. Atkins, W. G. Gemeiner, “Railroad bridge instrumentation with fiber-optic sensors,” Appl. Opt. 38, 1110–1114 (1999).
    [CrossRef]
  12. R. Sadkowski, C. E. Lee, H. F. Taylor, “Multiplexed inter-ferometric fiber-optic sensors with digital signal processing,” Appl. Opt. 34, 5861–5866 (1995).
    [CrossRef] [PubMed]
  13. G. B. Hocker, “Fiber-optic sensing of pressure and temperature,” Appl. Opt. 18, 1445–1448 (1979).
    [CrossRef] [PubMed]
  14. American Institute of Physics Handbook, 3rd ed. (McGraw-Hill, New York, 1972), pp. 2–68.

2001 (1)

S. Park, P. Yoon, M. Sunwoo, “Feedback error learning neural networks for spark advance control using cylinder pressure,” Proc. Inst. Mech. Eng. D 215, 625–636 (2001).
[CrossRef]

2000 (1)

W. Wang, E. C. Chirwa, E. Zhou, K. Holmes, C. Nwagboso, “Fuzzy ignition timing control for a spark ignition engine,” Proc. Inst. Mech. Eng. D 214, 297–306 (2000).
[CrossRef]

1999 (1)

1998 (1)

C. E. Lee, H. F. Taylor, “A fiber optic pressure sensor for internal combustion engines,” Sensors 15 (3), 20–25 (1998).

1995 (1)

1994 (2)

1993 (1)

J. D. Powell, “Engine control using cylinder pressure: past, present, and future,” J. Dynamic Systems, Measurement, and Control 115, 343–350 (1993).
[CrossRef]

1988 (1)

C. E. Lee, H. F. Taylor, “Interferometric optical fiber sensors using internal mirrors,” Electron. Lett. 24, 193–195 (1988).
[CrossRef]

1979 (1)

Atkins, R. A.

Battiston, P. A.

M. C. Sellnau, F. A. Matekunas, P. A. Battiston, C. F. Chang, D. R. Lancaster, “Cylinder-pressure-based engine control using pressure-ratio-management and low-cost non-intrusive cylinder pressure sensors,” SAE Paper 2000-01-0932 (Society of Automotive Engineers, Warrendale, Pa., 2000).
[CrossRef]

Beshouri, G.

Chang, C. F.

M. C. Sellnau, F. A. Matekunas, P. A. Battiston, C. F. Chang, D. R. Lancaster, “Cylinder-pressure-based engine control using pressure-ratio-management and low-cost non-intrusive cylinder pressure sensors,” SAE Paper 2000-01-0932 (Society of Automotive Engineers, Warrendale, Pa., 2000).
[CrossRef]

Chirwa, E. C.

W. Wang, E. C. Chirwa, E. Zhou, K. Holmes, C. Nwagboso, “Fuzzy ignition timing control for a spark ignition engine,” Proc. Inst. Mech. Eng. D 214, 297–306 (2000).
[CrossRef]

Gardner, J. H.

Gemeiner, W. G.

Gibler, W. N.

He, G.

G. He, M. T. Wlodarczyk, “Evaluation of a spark-plug-integrated fiber-optic combustion pressure sensor,” SAE Paper 940318 (Society of Automotive Engineers, Warrendale, Pa., 1994).
[CrossRef]

Henderson, C.

Hocker, G. B.

Holmes, K.

W. Wang, E. C. Chirwa, E. Zhou, K. Holmes, C. Nwagboso, “Fuzzy ignition timing control for a spark ignition engine,” Proc. Inst. Mech. Eng. D 214, 297–306 (2000).
[CrossRef]

James, R.

Kuratle, R. H.

R. H. Kuratle, T. Minoyama, “Measuring spark plugs with integrated cylinder pressure sensor,” SAE Paper 948352 (Society of Automotive Engineers, Warrendale, Pa., 1994).

Lancaster, D. R.

M. C. Sellnau, F. A. Matekunas, P. A. Battiston, C. F. Chang, D. R. Lancaster, “Cylinder-pressure-based engine control using pressure-ratio-management and low-cost non-intrusive cylinder pressure sensors,” SAE Paper 2000-01-0932 (Society of Automotive Engineers, Warrendale, Pa., 2000).
[CrossRef]

Lee, C. E.

Lee, J.

Lee, W.

Matekunas, F. A.

M. C. Sellnau, F. A. Matekunas, P. A. Battiston, C. F. Chang, D. R. Lancaster, “Cylinder-pressure-based engine control using pressure-ratio-management and low-cost non-intrusive cylinder pressure sensors,” SAE Paper 2000-01-0932 (Society of Automotive Engineers, Warrendale, Pa., 2000).
[CrossRef]

McCoy, J. J.

Minoyama, T.

R. H. Kuratle, T. Minoyama, “Measuring spark plugs with integrated cylinder pressure sensor,” SAE Paper 948352 (Society of Automotive Engineers, Warrendale, Pa., 1994).

Nwagboso, C.

W. Wang, E. C. Chirwa, E. Zhou, K. Holmes, C. Nwagboso, “Fuzzy ignition timing control for a spark ignition engine,” Proc. Inst. Mech. Eng. D 214, 297–306 (2000).
[CrossRef]

Oakland, M. D.

Park, S.

S. Park, P. Yoon, M. Sunwoo, “Feedback error learning neural networks for spark advance control using cylinder pressure,” Proc. Inst. Mech. Eng. D 215, 625–636 (2001).
[CrossRef]

Powell, J. D.

J. D. Powell, “Engine control using cylinder pressure: past, present, and future,” J. Dynamic Systems, Measurement, and Control 115, 343–350 (1993).
[CrossRef]

Sadkowski, R.

Sellnau, M. C.

M. C. Sellnau, F. A. Matekunas, P. A. Battiston, C. F. Chang, D. R. Lancaster, “Cylinder-pressure-based engine control using pressure-ratio-management and low-cost non-intrusive cylinder pressure sensors,” SAE Paper 2000-01-0932 (Society of Automotive Engineers, Warrendale, Pa., 2000).
[CrossRef]

Spears, M. O.

Sunwoo, M.

S. Park, P. Yoon, M. Sunwoo, “Feedback error learning neural networks for spark advance control using cylinder pressure,” Proc. Inst. Mech. Eng. D 215, 625–636 (2001).
[CrossRef]

Swenson, V.

Swenson, V. P.

Taylor, H. F.

Wang, W.

W. Wang, E. C. Chirwa, E. Zhou, K. Holmes, C. Nwagboso, “Fuzzy ignition timing control for a spark ignition engine,” Proc. Inst. Mech. Eng. D 214, 297–306 (2000).
[CrossRef]

Wlodarczyk, M. T.

M. T. Wlodarczyk, “A fiber-optic combustion pressure sensor system for automotive engine control,” Sensors 11 (6), 35–45 (1994).

G. He, M. T. Wlodarczyk, “Evaluation of a spark-plug-integrated fiber-optic combustion pressure sensor,” SAE Paper 940318 (Society of Automotive Engineers, Warrendale, Pa., 1994).
[CrossRef]

Yoon, P.

S. Park, P. Yoon, M. Sunwoo, “Feedback error learning neural networks for spark advance control using cylinder pressure,” Proc. Inst. Mech. Eng. D 215, 625–636 (2001).
[CrossRef]

Zhou, E.

W. Wang, E. C. Chirwa, E. Zhou, K. Holmes, C. Nwagboso, “Fuzzy ignition timing control for a spark ignition engine,” Proc. Inst. Mech. Eng. D 214, 297–306 (2000).
[CrossRef]

Appl. Opt. (4)

Electron. Lett. (1)

C. E. Lee, H. F. Taylor, “Interferometric optical fiber sensors using internal mirrors,” Electron. Lett. 24, 193–195 (1988).
[CrossRef]

J. Dynamic Systems, Measurement, and Control (1)

J. D. Powell, “Engine control using cylinder pressure: past, present, and future,” J. Dynamic Systems, Measurement, and Control 115, 343–350 (1993).
[CrossRef]

Proc. Inst. Mech. Eng. D (2)

W. Wang, E. C. Chirwa, E. Zhou, K. Holmes, C. Nwagboso, “Fuzzy ignition timing control for a spark ignition engine,” Proc. Inst. Mech. Eng. D 214, 297–306 (2000).
[CrossRef]

S. Park, P. Yoon, M. Sunwoo, “Feedback error learning neural networks for spark advance control using cylinder pressure,” Proc. Inst. Mech. Eng. D 215, 625–636 (2001).
[CrossRef]

Sensors (2)

C. E. Lee, H. F. Taylor, “A fiber optic pressure sensor for internal combustion engines,” Sensors 15 (3), 20–25 (1998).

M. T. Wlodarczyk, “A fiber-optic combustion pressure sensor system for automotive engine control,” Sensors 11 (6), 35–45 (1994).

Other (4)

American Institute of Physics Handbook, 3rd ed. (McGraw-Hill, New York, 1972), pp. 2–68.

R. H. Kuratle, T. Minoyama, “Measuring spark plugs with integrated cylinder pressure sensor,” SAE Paper 948352 (Society of Automotive Engineers, Warrendale, Pa., 1994).

M. C. Sellnau, F. A. Matekunas, P. A. Battiston, C. F. Chang, D. R. Lancaster, “Cylinder-pressure-based engine control using pressure-ratio-management and low-cost non-intrusive cylinder pressure sensors,” SAE Paper 2000-01-0932 (Society of Automotive Engineers, Warrendale, Pa., 2000).
[CrossRef]

G. He, M. T. Wlodarczyk, “Evaluation of a spark-plug-integrated fiber-optic combustion pressure sensor,” SAE Paper 940318 (Society of Automotive Engineers, Warrendale, Pa., 1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

FFPI sensing element prepared for embedding in a spark plug.

Fig. 2
Fig. 2

Schematic illustration of a spark-plug-embedded fiber-optic sensor. The approximate locations of the two internal mirrors in the FFPI sensing element, which define the region over which the strain is sensed, are indicated by arrows in the diagram.

Fig. 3
Fig. 3

Photograph of spark-plug-embedded fiber-optic pressure sensor.

Fig. 4
Fig. 4

Arrangement for testing spark-plug-embedded sensor in Onan engine.

Fig. 5
Fig. 5

Comparison of pressure response of spark-plug-embedded fiber-optic sensor 0829-2 with that of a piezoelectric reference. Both sensors were deployed in the same cylinder of a four-cylinder Onan engine, operating at 860 revolutions per minute. The spark plug containing the fiber-optic sensor was used for ignition of that cylinder.

Fig. 6
Fig. 6

Cross section of spark plug showing the location of an FFPI sensor embedded in a groove cut in the steel housing, which has inner and outer diameters of d i and d o , respectively.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Sz=PAb/Aw,
Sz=1.87P.
εz=Sz/Eh,
εx=εy=-vfSz/Eh,
Δnx=-n3/2P11εx+P12εx+P12εz,
Δnx/n=-n2Sz/2EhP121-vf-vfP11,
Δnx/n=-0.217Sz/Eh.
ΔnxLnL= Δnxn+ ΔLL,
ΔnxL/nL=0.783Sz/Eh.
ΔnxL/nL=7.32×10-13P,
ϕ=4πnxL/λ.
Δϕ=1.24×10-7P.
Δϕ=8.54×10-3P,

Metrics