Abstract

Scanning illumination systems provide for a powerful and flexible means for controlling illumination coherence properties. Here we present a scanning Fourier synthesis illuminator that enables microfield extreme ultraviolet lithography to be performed on an intrinsically coherent synchrotron undulator beamline. The effectiveness of the system is demonstrated through a variety of print experiments, including the use of resolution enhancing coherence functions that enable the printing of 50-nm line-space features by use of a lithographic optic with a numerical aperture of 0.1 and an operational wavelength of 13.4 nm.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription