Abstract

In this work we study the feasibility of using silver halide sensitized gelatin based on PFG-01 (Slavich) emulsions to construct uniaxial compound lenses. This processing is able to introduce variations in the thickness and refractive index of the emulsion. We prove that these changes are not sufficient to provide the observed variations in Bragg conditions in the reconstruction and that a shear-type effect must exist to explain the performance of processed emulsions. We study the characteristics of a compound lens, obtaining acceptable image quality, good resolution, and the typical field limitation of volume holographic elements.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Kim, B. S. Choi, S. Kim, J. M. Kim, H. I. Bjelkhagen, N. J. Phillips, “Holographic optical elements recorded in silver halide sensitized gelatin emulsions. Part I: Transmission holographic optical elements,” Appl. Opt. 40, 622–632 (2001).
    [CrossRef]
  2. J. M. Kim, B. S. Choi, Y. S. Choi, J. M. Kim, H. I. Bjelkhagen, N. J. Phillips, “Holographic optical elements recorded in silver halide sensitized gelatin emulsions. Part 2. Reflection holographic optical elements,” Appl. Opt. 41, 1522–1533 (2002).
    [CrossRef] [PubMed]
  3. A. Belendez, C. Neipp, I. Pascual, “Silver halide sensitized gelatin holograms in Slavich PFG-01 red-sensitive emulsion,” J. Mod. Opt. 46, 1913–1925 (1999).
  4. J. Atencia, A. M. López, M. Quintanilla, “HOE recording with non-spherical waves,” J. Opt. A: Pure Appl. Opt. 3, 53–60 (2001).
    [CrossRef]
  5. R. R. A. Syms, L. Solymar, “Planar volume phase holograms formed in bleached photographic emulsions,” Appl. Opt. 22, 1479–1496 (1983).
    [CrossRef] [PubMed]
  6. A. Beléndez, I. Pascual, A. Fimia, “Model for analyzing the effects of processing on recording material in thick holograms,” J. Opt. Soc. Am. A 9, 1214–1223 (1992).
    [CrossRef]
  7. A. M. López, J. Atencia, J. Tornos, M. Quintanilla, “Partitioned-field uniaxial holographic lenses,” Appl. Opt. 41, 1872–1881 (2002).
    [CrossRef] [PubMed]
  8. H. Schüte, C. G. Stojanoff, “Effects of process control and exposure energy upon the inner structure and the optical properties of volume holograms in dichromated gelatin films,” in Practical Holography XI and Holographic Materials III, S. A. Benton, T. J. Trout, eds., Proc. SPIE3011, 255–266 (1997).
    [CrossRef]
  9. J. Atencia, I. Arias, M. Quintanilla, A. García, A. M. López, “Field improvement in an uniaxial centered lens composed of two stacked-volume holographic elements,” Appl. Opt. 38, 4011–4018 (1999).
    [CrossRef]

2002 (2)

2001 (2)

1999 (2)

A. Belendez, C. Neipp, I. Pascual, “Silver halide sensitized gelatin holograms in Slavich PFG-01 red-sensitive emulsion,” J. Mod. Opt. 46, 1913–1925 (1999).

J. Atencia, I. Arias, M. Quintanilla, A. García, A. M. López, “Field improvement in an uniaxial centered lens composed of two stacked-volume holographic elements,” Appl. Opt. 38, 4011–4018 (1999).
[CrossRef]

1992 (1)

1983 (1)

Arias, I.

Atencia, J.

Belendez, A.

A. Belendez, C. Neipp, I. Pascual, “Silver halide sensitized gelatin holograms in Slavich PFG-01 red-sensitive emulsion,” J. Mod. Opt. 46, 1913–1925 (1999).

Beléndez, A.

Bjelkhagen, H. I.

Choi, B. S.

Choi, Y. S.

Fimia, A.

García, A.

Kim, J. M.

Kim, M.

Kim, S.

López, A. M.

Neipp, C.

A. Belendez, C. Neipp, I. Pascual, “Silver halide sensitized gelatin holograms in Slavich PFG-01 red-sensitive emulsion,” J. Mod. Opt. 46, 1913–1925 (1999).

Pascual, I.

A. Belendez, C. Neipp, I. Pascual, “Silver halide sensitized gelatin holograms in Slavich PFG-01 red-sensitive emulsion,” J. Mod. Opt. 46, 1913–1925 (1999).

A. Beléndez, I. Pascual, A. Fimia, “Model for analyzing the effects of processing on recording material in thick holograms,” J. Opt. Soc. Am. A 9, 1214–1223 (1992).
[CrossRef]

Phillips, N. J.

Quintanilla, M.

Schüte, H.

H. Schüte, C. G. Stojanoff, “Effects of process control and exposure energy upon the inner structure and the optical properties of volume holograms in dichromated gelatin films,” in Practical Holography XI and Holographic Materials III, S. A. Benton, T. J. Trout, eds., Proc. SPIE3011, 255–266 (1997).
[CrossRef]

Solymar, L.

Stojanoff, C. G.

H. Schüte, C. G. Stojanoff, “Effects of process control and exposure energy upon the inner structure and the optical properties of volume holograms in dichromated gelatin films,” in Practical Holography XI and Holographic Materials III, S. A. Benton, T. J. Trout, eds., Proc. SPIE3011, 255–266 (1997).
[CrossRef]

Syms, R. R. A.

Tornos, J.

Appl. Opt. (5)

J. Mod. Opt. (1)

A. Belendez, C. Neipp, I. Pascual, “Silver halide sensitized gelatin holograms in Slavich PFG-01 red-sensitive emulsion,” J. Mod. Opt. 46, 1913–1925 (1999).

J. Opt. A: Pure Appl. Opt. (1)

J. Atencia, A. M. López, M. Quintanilla, “HOE recording with non-spherical waves,” J. Opt. A: Pure Appl. Opt. 3, 53–60 (2001).
[CrossRef]

J. Opt. Soc. Am. A (1)

Other (1)

H. Schüte, C. G. Stojanoff, “Effects of process control and exposure energy upon the inner structure and the optical properties of volume holograms in dichromated gelatin films,” in Practical Holography XI and Holographic Materials III, S. A. Benton, T. J. Trout, eds., Proc. SPIE3011, 255–266 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagrams of: (a) the recording of two off-axis holograms H I and H II, (b) the reconstruction geometry in which the sandwich H I + H II behaves as a uniaxial lens.

Fig. 2
Fig. 2

(a) Recording geometry of a grating, (b) Bragg conditions after processing with only thickness variation, (c) Bragg conditions after processing with only refractive index variation.

Fig. 3
Fig. 3

Comparison between fringe slants before and after processing.

Fig. 4
Fig. 4

Difference e a evaluated in air as a function of the shrinkage factor a for different values of the refractive index n′ for a 30°-grating working at normal incidence.

Fig. 5
Fig. 5

Zero-order efficiency (η0) as a function of the reconstruction angle for a 30° grating with an exposure of 600 μJ/cm2. A and A* correspond to +1-order efficiency of the first harmonic grating. B and B* correspond to +1-order efficiency of the second harmonic grating.

Fig. 6
Fig. 6

Zero-order efficiency (η0) as a function of the reconstruction angle for a 45° grating. A and A* correspond to +1-order efficiency of the first harmonic grating. B corresponds to +1-order efficiency of the second harmonic grating.

Fig. 7
Fig. 7

Zero-order efficiency as a function of the reconstruction angle for one of the biaxial lenses. A and A* correspond to +1-order efficiency of the first harmonic grating. B and B* correspond to +1-order efficiency of the second harmonic grating.

Fig. 8
Fig. 8

First-order efficiency of the uniaxial composed lens as a function of the incidence angle.

Fig. 9
Fig. 9

Image of a square distribution with a 5-mm period given by the compound uniaxial lens.

Fig. 10
Fig. 10

Image of a 1951 U.S. Air Force test pattern given by the uniaxial compound lens.

Tables (2)

Tables Icon

Table 1 Refractive Index and Thickness of Unprocessed Plates, Unexposed and Processed Plates, Uniformly Exposed Plates, and Holographic Gratings

Tables Icon

Table 2 Deviation of Bragg Conditions for Different Exposures and Recording Geometries

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

2d sin θC=λn,
D=dcos θC.
Dsin εi-sin εd=λn,
θS=arctantan θCa
d=d cos θScos θC.
2d sin θB=λn
sin θB=n sin 2θC2n cosarctantan θCa.

Metrics