Abstract

Fabrication of micro optics for fiber optics applications is a challenge due to their size and the issues associated with alignment of the optics to single-mode fibers. This study summarizes a method for fabricating diffractive optical elements on the ends of coreless fiber segments for passive alignment to single-mode fibers. Results are presented for passively aligned diffractive lens elements used for both collimation and beam shaping.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Keiser, Optical Fiber Communications, 2nd ed. (McGraw-Hill, New York, 1991).
  2. E. G. Johnson, C. Koehler, T. Suleski, J. Stack, M. Feldman, “Micro-diffractive optics for integration with single-mode fibers,” in Micro-Optics Integration and Assemblies, M. R. Feldman, Y.-C. Lee, eds., Proc. SPIE3289, 76–82 (1998).
    [CrossRef]
  3. E. G. Johnson, M. R. Feldman, “Methods of Forming Optical rods including three-dimensional patterns on end faces Thereof,” U.S. Patent5,996,376.
  4. M. Kufner, S. Kufner, Micro-Optics and Lithography, (VUBPRESS, Belgium, 1997).
  5. E. G. Johnson, J. Stack, C. Koehler, T. Suleski, “Diffractive vortex lens for mode-matching graded index fiber,” in Diffractive Optics and Micro Optics, OSA Technical Digest (Optical Society of America, Washington D. C.2000),pp. 205–207.
  6. E. G. Johnson, J. Stack, C. Koehler, “Light coupling by a vortex lens into graded index fiber,” J. Lightwave Technol., 19, 753–758 (2001).
    [CrossRef]

2001 (1)

Feldman, M.

E. G. Johnson, C. Koehler, T. Suleski, J. Stack, M. Feldman, “Micro-diffractive optics for integration with single-mode fibers,” in Micro-Optics Integration and Assemblies, M. R. Feldman, Y.-C. Lee, eds., Proc. SPIE3289, 76–82 (1998).
[CrossRef]

Feldman, M. R.

E. G. Johnson, M. R. Feldman, “Methods of Forming Optical rods including three-dimensional patterns on end faces Thereof,” U.S. Patent5,996,376.

Johnson, E. G.

E. G. Johnson, J. Stack, C. Koehler, “Light coupling by a vortex lens into graded index fiber,” J. Lightwave Technol., 19, 753–758 (2001).
[CrossRef]

E. G. Johnson, J. Stack, C. Koehler, T. Suleski, “Diffractive vortex lens for mode-matching graded index fiber,” in Diffractive Optics and Micro Optics, OSA Technical Digest (Optical Society of America, Washington D. C.2000),pp. 205–207.

E. G. Johnson, M. R. Feldman, “Methods of Forming Optical rods including three-dimensional patterns on end faces Thereof,” U.S. Patent5,996,376.

E. G. Johnson, C. Koehler, T. Suleski, J. Stack, M. Feldman, “Micro-diffractive optics for integration with single-mode fibers,” in Micro-Optics Integration and Assemblies, M. R. Feldman, Y.-C. Lee, eds., Proc. SPIE3289, 76–82 (1998).
[CrossRef]

Keiser, G.

G. Keiser, Optical Fiber Communications, 2nd ed. (McGraw-Hill, New York, 1991).

Koehler, C.

E. G. Johnson, J. Stack, C. Koehler, “Light coupling by a vortex lens into graded index fiber,” J. Lightwave Technol., 19, 753–758 (2001).
[CrossRef]

E. G. Johnson, J. Stack, C. Koehler, T. Suleski, “Diffractive vortex lens for mode-matching graded index fiber,” in Diffractive Optics and Micro Optics, OSA Technical Digest (Optical Society of America, Washington D. C.2000),pp. 205–207.

E. G. Johnson, C. Koehler, T. Suleski, J. Stack, M. Feldman, “Micro-diffractive optics for integration with single-mode fibers,” in Micro-Optics Integration and Assemblies, M. R. Feldman, Y.-C. Lee, eds., Proc. SPIE3289, 76–82 (1998).
[CrossRef]

Kufner, M.

M. Kufner, S. Kufner, Micro-Optics and Lithography, (VUBPRESS, Belgium, 1997).

Kufner, S.

M. Kufner, S. Kufner, Micro-Optics and Lithography, (VUBPRESS, Belgium, 1997).

Stack, J.

E. G. Johnson, J. Stack, C. Koehler, “Light coupling by a vortex lens into graded index fiber,” J. Lightwave Technol., 19, 753–758 (2001).
[CrossRef]

E. G. Johnson, J. Stack, C. Koehler, T. Suleski, “Diffractive vortex lens for mode-matching graded index fiber,” in Diffractive Optics and Micro Optics, OSA Technical Digest (Optical Society of America, Washington D. C.2000),pp. 205–207.

E. G. Johnson, C. Koehler, T. Suleski, J. Stack, M. Feldman, “Micro-diffractive optics for integration with single-mode fibers,” in Micro-Optics Integration and Assemblies, M. R. Feldman, Y.-C. Lee, eds., Proc. SPIE3289, 76–82 (1998).
[CrossRef]

Suleski, T.

E. G. Johnson, C. Koehler, T. Suleski, J. Stack, M. Feldman, “Micro-diffractive optics for integration with single-mode fibers,” in Micro-Optics Integration and Assemblies, M. R. Feldman, Y.-C. Lee, eds., Proc. SPIE3289, 76–82 (1998).
[CrossRef]

E. G. Johnson, J. Stack, C. Koehler, T. Suleski, “Diffractive vortex lens for mode-matching graded index fiber,” in Diffractive Optics and Micro Optics, OSA Technical Digest (Optical Society of America, Washington D. C.2000),pp. 205–207.

J. Lightwave Technol. (1)

Other (5)

G. Keiser, Optical Fiber Communications, 2nd ed. (McGraw-Hill, New York, 1991).

E. G. Johnson, C. Koehler, T. Suleski, J. Stack, M. Feldman, “Micro-diffractive optics for integration with single-mode fibers,” in Micro-Optics Integration and Assemblies, M. R. Feldman, Y.-C. Lee, eds., Proc. SPIE3289, 76–82 (1998).
[CrossRef]

E. G. Johnson, M. R. Feldman, “Methods of Forming Optical rods including three-dimensional patterns on end faces Thereof,” U.S. Patent5,996,376.

M. Kufner, S. Kufner, Micro-Optics and Lithography, (VUBPRESS, Belgium, 1997).

E. G. Johnson, J. Stack, C. Koehler, T. Suleski, “Diffractive vortex lens for mode-matching graded index fiber,” in Diffractive Optics and Micro Optics, OSA Technical Digest (Optical Society of America, Washington D. C.2000),pp. 205–207.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Micro-rod concept for collimation of single-mode fiber.

Fig. 2
Fig. 2

Coreless glass fiber boule concept for fabricating wafers of micro rods for lithographic processing.

Fig. 3
Fig. 3

Standard 2 N photolithographic processing of diffractive optical elements.

Fig. 4
Fig. 4

Microscope image of 124-μm diameter micro rods polished and ready for lithographic processing.

Fig. 5
Fig. 5

Wafer-scanning image of 124-μm diameter micro-rod wafer: (a) unprocessed image, (b) binary image for micro-rod center calculations.

Fig. 6
Fig. 6

Mask viewer image of mapped hexagonal wafer.

Fig. 7
Fig. 7

Simulated phase function for the diffractive collimation lens. The focal length is 660 μm and the design wavelength is 1.310 μm.

Fig. 8
Fig. 8

Expanded view of lithographic mask for processing an array of collimating diffractive lenses.

Fig. 9
Fig. 9

Processed micro rods in wafer form with eight-phase level diffractive elements etched onto the ends.

Fig. 10
Fig. 10

Scanning electron microscope images of 124-μm diameter micro rods for single-mode fiber collimation.

Fig. 11
Fig. 11

Infrared image of the far-field spot for a collimated beam with the diffractive micro rod in a ferrule configuration.

Fig. 12
Fig. 12

Scanning electron microscopy of 124-μm diameter micro rods with multiplexed collimation and vortex phase functions.

Fig. 13
Fig. 13

Infrared image of far-field spot for a collimated beam with the diffractive lens/vortex micro rod in a ferrule configuration.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

N=3w24d+Δ2,
ϕr=-πnrodr2λf.
ϕr, θ=-nrodπr2λf+mθ,
θ=Arctanyx.

Metrics