Abstract

We have determined the glucose concentration of whole blood from mid-infrared spectra without sample preparation or use of chemical reagents. We selected 1119–1022 cm-1 as the optimal wavelength range for our measurement by making a first-loading vector analysis based on partial least-squares regression. We examined the influence of hemoglobin on samples by using different calibration right prediction sets. The accuracy of glucose prediction depended on the hemoglobin level in the calibration model; the sample set should represent the entire range of hemoglobin concentration. We obtained an accuracy of 5.9% in glucose prediction, and this value is well within a clinically acceptable range.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y.-J. Kim, G. Yoon, “Multicomponent assay for human serum using mid-infrared transmission spectroscopy based on component-optimized spectral region selected by a first loading vector analysis in partial least-squares regression,” Appl. Spectrosc. 56, 625–632 (2002).
    [CrossRef]
  2. H. M. Heise, R. Marbach, T. H. Koschinsky, F. A. Gries, “Multicomponent assay for blood substrates in human plasma by mid-infrared spectroscopy and its evaluation for clinical analysis,” Appl. Spectros. 48, 85–95 (1994).
    [CrossRef]
  3. R. A. Shaw, S. Kotowich, M. Leroux, H. H. Mantsch, “Multianalyte serum analysis using mid-infrared spectroscopy,” Ann. Clin. Biochem. 35, 624–632 (1998).
    [PubMed]
  4. W. Petrich, B. Dolenko, J. Fruh, M. Ganz, H. Greger, S. Jacob, F. Keller, A. E. Nikulin, M. Otto, O. Quarder, R. L. Somorjai, A. Staib, G. Werner, H. Wielinger, “Disease pattern recognition in infrared spectra of human sera with diabetes mellitus as an example,” Appl. Opt. 39, 3372–3379 (2000).
    [CrossRef]
  5. H. Zeller, P. Novak, R. Landgraf, “Blood glucose measurement by infrared technology,” Int. J. Artif. Organs, 12, 129–135 (1989).
    [PubMed]
  6. H. M. Heise, R. Marbach, G. Janatsch, J. D. Kruse-Jarres, “Multivariate determination of glucose in whole blood by attenuated total reflection infrared spectroscopy,” Anal. Chem. 61, 2009–2015 (1989).
    [CrossRef] [PubMed]
  7. K. J. Ward, D. M. Haaland, M. R. Robinson, R. P. Eaton, “Post-prandial blood glucose determination by quantitative mid-infrared spectroscopy,” Appl. Spectrosc. 46, 959–965 (1992).
    [CrossRef]
  8. P. Bhandare, Y. Mendelson, R. A. Peura, G. Janatsch, J. D. Kruse-Jarres, R. Marbach, H. M. Heise, “Multivariate determination of glucose in whole blood using partial least-squares and artificial neural networks based on mid-infrared spectroscopy,” Appl. Spectrosc. 47, 1214–1221 (1993).
    [CrossRef]
  9. G. Budinova, J. Salva, K. Volka, “Application of molecular spectroscopy in the mid-infrared region to the determination of glucose and cholesterol in whole blood and in blood serum,” Appl. Spectrosc. 51, 631–635 (1997).
    [CrossRef]
  10. R. Vonach, J. Buschmann, R. Falkoski, R. Schindler, B. Lendl, R. Kellner, “Application of mid-infrared transmission spectrometry to the direct determination of glucose in whole blood,” Appl. Spectrosc. 52, 820–822 (1998).
    [CrossRef]
  11. J. T. Kuenstner, K. H. J. Norris, “Spectrophotometry of human hemoglobin in the near infrared region from 1000 to 2500 nm,” Near Infrared Spectrosc. 2, 59–65 (1994).
    [CrossRef]
  12. D. M. Haaland, E. V. Thomas, “Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information,” Anal. Chem. 60, 1193–1202 (1988).
    [CrossRef]
  13. C. Petibois, G. Cazorla, A. Cassaigne, G. Deleris, “Plasma protein contents determined by Fourier-transform infrared spectroscopy,” Clin. Chem. 47, 730–738 (2001).
    [PubMed]
  14. D. D. Koch, T. Peters, “Selection and evaluation of methods,” in Tietz Textbook of Clinical Chemistry, C. A. Burtis, E. R. Ashwood, eds. (Saunders, Philadelphia, Pa., 1999), pp. 320–335.

2002

2001

C. Petibois, G. Cazorla, A. Cassaigne, G. Deleris, “Plasma protein contents determined by Fourier-transform infrared spectroscopy,” Clin. Chem. 47, 730–738 (2001).
[PubMed]

2000

1998

1997

1994

H. M. Heise, R. Marbach, T. H. Koschinsky, F. A. Gries, “Multicomponent assay for blood substrates in human plasma by mid-infrared spectroscopy and its evaluation for clinical analysis,” Appl. Spectros. 48, 85–95 (1994).
[CrossRef]

J. T. Kuenstner, K. H. J. Norris, “Spectrophotometry of human hemoglobin in the near infrared region from 1000 to 2500 nm,” Near Infrared Spectrosc. 2, 59–65 (1994).
[CrossRef]

1993

1992

1989

H. Zeller, P. Novak, R. Landgraf, “Blood glucose measurement by infrared technology,” Int. J. Artif. Organs, 12, 129–135 (1989).
[PubMed]

H. M. Heise, R. Marbach, G. Janatsch, J. D. Kruse-Jarres, “Multivariate determination of glucose in whole blood by attenuated total reflection infrared spectroscopy,” Anal. Chem. 61, 2009–2015 (1989).
[CrossRef] [PubMed]

1988

D. M. Haaland, E. V. Thomas, “Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information,” Anal. Chem. 60, 1193–1202 (1988).
[CrossRef]

Bhandare, P.

Budinova, G.

Buschmann, J.

Cassaigne, A.

C. Petibois, G. Cazorla, A. Cassaigne, G. Deleris, “Plasma protein contents determined by Fourier-transform infrared spectroscopy,” Clin. Chem. 47, 730–738 (2001).
[PubMed]

Cazorla, G.

C. Petibois, G. Cazorla, A. Cassaigne, G. Deleris, “Plasma protein contents determined by Fourier-transform infrared spectroscopy,” Clin. Chem. 47, 730–738 (2001).
[PubMed]

Deleris, G.

C. Petibois, G. Cazorla, A. Cassaigne, G. Deleris, “Plasma protein contents determined by Fourier-transform infrared spectroscopy,” Clin. Chem. 47, 730–738 (2001).
[PubMed]

Dolenko, B.

Eaton, R. P.

Falkoski, R.

Fruh, J.

Ganz, M.

Greger, H.

Gries, F. A.

H. M. Heise, R. Marbach, T. H. Koschinsky, F. A. Gries, “Multicomponent assay for blood substrates in human plasma by mid-infrared spectroscopy and its evaluation for clinical analysis,” Appl. Spectros. 48, 85–95 (1994).
[CrossRef]

Haaland, D. M.

K. J. Ward, D. M. Haaland, M. R. Robinson, R. P. Eaton, “Post-prandial blood glucose determination by quantitative mid-infrared spectroscopy,” Appl. Spectrosc. 46, 959–965 (1992).
[CrossRef]

D. M. Haaland, E. V. Thomas, “Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information,” Anal. Chem. 60, 1193–1202 (1988).
[CrossRef]

Heise, H. M.

H. M. Heise, R. Marbach, T. H. Koschinsky, F. A. Gries, “Multicomponent assay for blood substrates in human plasma by mid-infrared spectroscopy and its evaluation for clinical analysis,” Appl. Spectros. 48, 85–95 (1994).
[CrossRef]

P. Bhandare, Y. Mendelson, R. A. Peura, G. Janatsch, J. D. Kruse-Jarres, R. Marbach, H. M. Heise, “Multivariate determination of glucose in whole blood using partial least-squares and artificial neural networks based on mid-infrared spectroscopy,” Appl. Spectrosc. 47, 1214–1221 (1993).
[CrossRef]

H. M. Heise, R. Marbach, G. Janatsch, J. D. Kruse-Jarres, “Multivariate determination of glucose in whole blood by attenuated total reflection infrared spectroscopy,” Anal. Chem. 61, 2009–2015 (1989).
[CrossRef] [PubMed]

Jacob, S.

Janatsch, G.

Keller, F.

Kellner, R.

Kim, Y.-J.

Koch, D. D.

D. D. Koch, T. Peters, “Selection and evaluation of methods,” in Tietz Textbook of Clinical Chemistry, C. A. Burtis, E. R. Ashwood, eds. (Saunders, Philadelphia, Pa., 1999), pp. 320–335.

Koschinsky, T. H.

H. M. Heise, R. Marbach, T. H. Koschinsky, F. A. Gries, “Multicomponent assay for blood substrates in human plasma by mid-infrared spectroscopy and its evaluation for clinical analysis,” Appl. Spectros. 48, 85–95 (1994).
[CrossRef]

Kotowich, S.

R. A. Shaw, S. Kotowich, M. Leroux, H. H. Mantsch, “Multianalyte serum analysis using mid-infrared spectroscopy,” Ann. Clin. Biochem. 35, 624–632 (1998).
[PubMed]

Kruse-Jarres, J. D.

Kuenstner, J. T.

J. T. Kuenstner, K. H. J. Norris, “Spectrophotometry of human hemoglobin in the near infrared region from 1000 to 2500 nm,” Near Infrared Spectrosc. 2, 59–65 (1994).
[CrossRef]

Landgraf, R.

H. Zeller, P. Novak, R. Landgraf, “Blood glucose measurement by infrared technology,” Int. J. Artif. Organs, 12, 129–135 (1989).
[PubMed]

Lendl, B.

Leroux, M.

R. A. Shaw, S. Kotowich, M. Leroux, H. H. Mantsch, “Multianalyte serum analysis using mid-infrared spectroscopy,” Ann. Clin. Biochem. 35, 624–632 (1998).
[PubMed]

Mantsch, H. H.

R. A. Shaw, S. Kotowich, M. Leroux, H. H. Mantsch, “Multianalyte serum analysis using mid-infrared spectroscopy,” Ann. Clin. Biochem. 35, 624–632 (1998).
[PubMed]

Marbach, R.

H. M. Heise, R. Marbach, T. H. Koschinsky, F. A. Gries, “Multicomponent assay for blood substrates in human plasma by mid-infrared spectroscopy and its evaluation for clinical analysis,” Appl. Spectros. 48, 85–95 (1994).
[CrossRef]

P. Bhandare, Y. Mendelson, R. A. Peura, G. Janatsch, J. D. Kruse-Jarres, R. Marbach, H. M. Heise, “Multivariate determination of glucose in whole blood using partial least-squares and artificial neural networks based on mid-infrared spectroscopy,” Appl. Spectrosc. 47, 1214–1221 (1993).
[CrossRef]

H. M. Heise, R. Marbach, G. Janatsch, J. D. Kruse-Jarres, “Multivariate determination of glucose in whole blood by attenuated total reflection infrared spectroscopy,” Anal. Chem. 61, 2009–2015 (1989).
[CrossRef] [PubMed]

Mendelson, Y.

Nikulin, A. E.

Norris, K. H. J.

J. T. Kuenstner, K. H. J. Norris, “Spectrophotometry of human hemoglobin in the near infrared region from 1000 to 2500 nm,” Near Infrared Spectrosc. 2, 59–65 (1994).
[CrossRef]

Novak, P.

H. Zeller, P. Novak, R. Landgraf, “Blood glucose measurement by infrared technology,” Int. J. Artif. Organs, 12, 129–135 (1989).
[PubMed]

Otto, M.

Peters, T.

D. D. Koch, T. Peters, “Selection and evaluation of methods,” in Tietz Textbook of Clinical Chemistry, C. A. Burtis, E. R. Ashwood, eds. (Saunders, Philadelphia, Pa., 1999), pp. 320–335.

Petibois, C.

C. Petibois, G. Cazorla, A. Cassaigne, G. Deleris, “Plasma protein contents determined by Fourier-transform infrared spectroscopy,” Clin. Chem. 47, 730–738 (2001).
[PubMed]

Petrich, W.

Peura, R. A.

Quarder, O.

Robinson, M. R.

Salva, J.

Schindler, R.

Shaw, R. A.

R. A. Shaw, S. Kotowich, M. Leroux, H. H. Mantsch, “Multianalyte serum analysis using mid-infrared spectroscopy,” Ann. Clin. Biochem. 35, 624–632 (1998).
[PubMed]

Somorjai, R. L.

Staib, A.

Thomas, E. V.

D. M. Haaland, E. V. Thomas, “Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information,” Anal. Chem. 60, 1193–1202 (1988).
[CrossRef]

Volka, K.

Vonach, R.

Ward, K. J.

Werner, G.

Wielinger, H.

Yoon, G.

Zeller, H.

H. Zeller, P. Novak, R. Landgraf, “Blood glucose measurement by infrared technology,” Int. J. Artif. Organs, 12, 129–135 (1989).
[PubMed]

Anal. Chem.

H. M. Heise, R. Marbach, G. Janatsch, J. D. Kruse-Jarres, “Multivariate determination of glucose in whole blood by attenuated total reflection infrared spectroscopy,” Anal. Chem. 61, 2009–2015 (1989).
[CrossRef] [PubMed]

D. M. Haaland, E. V. Thomas, “Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information,” Anal. Chem. 60, 1193–1202 (1988).
[CrossRef]

Ann. Clin. Biochem.

R. A. Shaw, S. Kotowich, M. Leroux, H. H. Mantsch, “Multianalyte serum analysis using mid-infrared spectroscopy,” Ann. Clin. Biochem. 35, 624–632 (1998).
[PubMed]

Appl. Opt.

Appl. Spectros.

H. M. Heise, R. Marbach, T. H. Koschinsky, F. A. Gries, “Multicomponent assay for blood substrates in human plasma by mid-infrared spectroscopy and its evaluation for clinical analysis,” Appl. Spectros. 48, 85–95 (1994).
[CrossRef]

Appl. Spectrosc.

Clin. Chem.

C. Petibois, G. Cazorla, A. Cassaigne, G. Deleris, “Plasma protein contents determined by Fourier-transform infrared spectroscopy,” Clin. Chem. 47, 730–738 (2001).
[PubMed]

Int. J. Artif. Organs

H. Zeller, P. Novak, R. Landgraf, “Blood glucose measurement by infrared technology,” Int. J. Artif. Organs, 12, 129–135 (1989).
[PubMed]

Near Infrared Spectrosc.

J. T. Kuenstner, K. H. J. Norris, “Spectrophotometry of human hemoglobin in the near infrared region from 1000 to 2500 nm,” Near Infrared Spectrosc. 2, 59–65 (1994).
[CrossRef]

Other

D. D. Koch, T. Peters, “Selection and evaluation of methods,” in Tietz Textbook of Clinical Chemistry, C. A. Burtis, E. R. Ashwood, eds. (Saunders, Philadelphia, Pa., 1999), pp. 320–335.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Absorbance relative to wave number for 78 whole blood spectra in the region 1515–917 cm-1.

Fig. 2
Fig. 2

Spectra of glucose and hemoglobin in saline (0.9% NaCl solution). The concentrations for glucose and for hemoglobin are illustrated.

Fig. 3
Fig. 3

FLVs of glucose and hemoglobin obtained from the PLSR analysis that used all 78 samples.

Tables (4)

Tables Icon

Table 1 Standard Errors in Glucose Calibration in Different Spectral Regionsa

Tables Icon

Table 2 Number of Samples, Concentration Distributions, and Coefficients of Correlation between Hemoglobin and Glucose for Each Set

Tables Icon

Table 3 Calibration Analysis of Glucose for Four Calibration Sets of Different Hemoglobin Levelsa

Tables Icon

Table 4 Results of Predictions for the Four Calibration Models Summarized in Table 3

Metrics