Abstract

Techniques for high-speed delay scanning are important for low-coherence interferometry, optical coherence tomography, pump probe measurements, and other applications. We demonstrate a novel scanning delay line using a multiple-pass cavity. Differential delays are accumulated with each pass so that millimeter delays can be generated with tens of micrometer mirror displacements. With special design criteria, misalignment sensitivity can be dramatically reduced. The system is demonstrated to scan 6 m/s at 2-kHz repetition rates. Real-time optical coherence tomography imaging with 500 pixel images at four frames/s is performed. Using a Cr:forsterite laser source, we obtained axial image resolutions of 6 μm with 92-dB sensitivity.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. U. Morgner, F. X. Kartner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser,” Opt. Lett. 24, 411–413 (1999).
    [CrossRef]
  3. W. Drexler, U. Morgner, F. Kartner, C. Pitris, S. Boppart, X. Li, E. Ippen, J. Fujimoto, “In vivo ultrahigh resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
    [CrossRef]
  4. U. Morgner, W. Drexler, X. Li, F. X. Kaertner, C. Pitris, S. A. Boppart, E. P. Ippen, J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).
    [CrossRef]
  5. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992).
    [CrossRef] [PubMed]
  6. Y. Pan, E. Lankenau, J. Welzel, R. Birngruber, R. Engelhardt, “Optical coherence-gated imaging of biological tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1029–1034 (1996).
    [CrossRef]
  7. J. Ballif, R. Gianotti, Ph. Chavanne, R. Wälti, R. P. Salathé, “Rapid and scalable scans at 21 m/s in optical low-coherence reflectometry,” Opt. Lett. 22, 757–759 (1997).
    [CrossRef] [PubMed]
  8. N. Delachenal, R. Walti, R. Gianotti, S. Christov, P. Wagner, R. P. Salathe, U. Durr, G. Ulbers, “Robust and rapid optical low-coherence reflectometer using a polygon mirror,” Opt. Commun. 162, 195–199 (1999).
    [CrossRef]
  9. A. Sergeev, V. Gelikonov, G. Gelikonov, F. Feldchtein, R. Kuranov, N. Gladkova, N. Shakhova, L. Suopova, A. Shakhov, I. Kuznetzova, A. Denisenko, V. Pochinko, Y. Chumakov, O. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. Exp. 1, 432–440 (1997); http://www.opticsexpress.org .
    [CrossRef]
  10. G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, J. G. Fujimoto, “Rapid acquisition of in vivo biological images by use of optical coherence tomography,” Opt. Lett. 21, 1408–1410 (1996).
    [CrossRef] [PubMed]
  11. J. Heritage, A. Weiner, R. Thurston, “Picosecond pulse shaping by spectral phase and amplitude manipulation,” Opt. Lett. 10, 609–611 (1985).
    [CrossRef] [PubMed]
  12. G. Tearney, B. Bouma, J. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1813 (1997).
    [CrossRef]
  13. A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Exp. 3, 219–2291998; http://www.opticsexpress.org .
    [CrossRef]
  14. N. G. Chen, Q. Zhu, “Rotary mirror array for high-speed optical coherence tomography,” Opt. Lett. 27, 607–609 (2002).
    [CrossRef]
  15. D. Herriott, H. Kogelnik, R. Kompfner, “Off-axis paths in spherical interferometers,” Appl. Opt. 3, 523–526 (1964).
    [CrossRef]
  16. D. Herriott, H. Schulte, “Folded optical delay lines,” Appl. Opt. 4, 883–889 (1965).
    [CrossRef]
  17. W. Trutna, R. Byer, “Multiple-pass Raman gain cell,” Appl. Opt. 19, 301–312 (1980).
    [CrossRef] [PubMed]
  18. J. Altmann, R. Baumgart, C. Weitkamp, “Two-mirror multipass absorption cell,” Appl. Opt. 20, 995–999 (1981).
    [CrossRef] [PubMed]
  19. D. Kaur, A. de Souza, J. Wanna, A. Hammad Sammeer, L. Mercorelli, D. Perry, “Multipass cell for molecular beam absorption spectroscopy,” Appl. Opt. 29, 119–124 (1990).
    [CrossRef] [PubMed]
  20. J. McManus, P. Kebabian, M. Zahniser, “Astigmatic mirror multipass absorption cells for long-path-length spectroscopy,” Appl. Opt. 34, 3336–3348 (1995).
    [CrossRef] [PubMed]
  21. S. H. Cho, B. E. Bouma, E. P. Ippen, J. G. Fujimoto, “Low-repetition-rate high-peak-power Kerr-lens mode-locked Ti:Al2O3 laser with a multiple-pass cavity,” Opt. Lett. 24, 417–419 (1999).
    [CrossRef]
  22. S. H. Cho, F. X. Kärtner, U. Morgner, E. P. Ippen, J. G. Fujimoto, J. E. Cunningham, W. H. Knox, “Generation of 90-nJ pulses with a 4-MHz repetition-rate Kerr-lens mode-locked Ti:Al2O3 laser operating with net positive and negative intracavity dispersion,” Opt. Lett. 26, 560–562 (2001).
    [CrossRef]
  23. A. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

2002

2001

2000

1999

1998

A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Exp. 3, 219–2291998; http://www.opticsexpress.org .
[CrossRef]

1997

J. Ballif, R. Gianotti, Ph. Chavanne, R. Wälti, R. P. Salathé, “Rapid and scalable scans at 21 m/s in optical low-coherence reflectometry,” Opt. Lett. 22, 757–759 (1997).
[CrossRef] [PubMed]

G. Tearney, B. Bouma, J. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1813 (1997).
[CrossRef]

A. Sergeev, V. Gelikonov, G. Gelikonov, F. Feldchtein, R. Kuranov, N. Gladkova, N. Shakhova, L. Suopova, A. Shakhov, I. Kuznetzova, A. Denisenko, V. Pochinko, Y. Chumakov, O. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. Exp. 1, 432–440 (1997); http://www.opticsexpress.org .
[CrossRef]

1996

G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, J. G. Fujimoto, “Rapid acquisition of in vivo biological images by use of optical coherence tomography,” Opt. Lett. 21, 1408–1410 (1996).
[CrossRef] [PubMed]

Y. Pan, E. Lankenau, J. Welzel, R. Birngruber, R. Engelhardt, “Optical coherence-gated imaging of biological tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1029–1034 (1996).
[CrossRef]

1995

1992

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

1990

1985

1981

1980

1965

1964

Altmann, J.

Angelow, G.

Ballif, J.

Baumgart, R.

Birngruber, R.

Y. Pan, E. Lankenau, J. Welzel, R. Birngruber, R. Engelhardt, “Optical coherence-gated imaging of biological tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1029–1034 (1996).
[CrossRef]

Boppart, S.

Boppart, S. A.

Bouma, B.

Bouma, B. E.

Brezinski, M. E.

Byer, R.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Chavanne, Ph.

Chen, N. G.

Chen, Y.

Cho, S. H.

Christov, S.

N. Delachenal, R. Walti, R. Gianotti, S. Christov, P. Wagner, R. P. Salathe, U. Durr, G. Ulbers, “Robust and rapid optical low-coherence reflectometer using a polygon mirror,” Opt. Commun. 162, 195–199 (1999).
[CrossRef]

Chumakov, Y.

A. Sergeev, V. Gelikonov, G. Gelikonov, F. Feldchtein, R. Kuranov, N. Gladkova, N. Shakhova, L. Suopova, A. Shakhov, I. Kuznetzova, A. Denisenko, V. Pochinko, Y. Chumakov, O. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. Exp. 1, 432–440 (1997); http://www.opticsexpress.org .
[CrossRef]

Cunningham, J. E.

de Souza, A.

Delachenal, N.

N. Delachenal, R. Walti, R. Gianotti, S. Christov, P. Wagner, R. P. Salathe, U. Durr, G. Ulbers, “Robust and rapid optical low-coherence reflectometer using a polygon mirror,” Opt. Commun. 162, 195–199 (1999).
[CrossRef]

Denisenko, A.

A. Sergeev, V. Gelikonov, G. Gelikonov, F. Feldchtein, R. Kuranov, N. Gladkova, N. Shakhova, L. Suopova, A. Shakhov, I. Kuznetzova, A. Denisenko, V. Pochinko, Y. Chumakov, O. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. Exp. 1, 432–440 (1997); http://www.opticsexpress.org .
[CrossRef]

Drexler, W.

Durr, U.

N. Delachenal, R. Walti, R. Gianotti, S. Christov, P. Wagner, R. P. Salathe, U. Durr, G. Ulbers, “Robust and rapid optical low-coherence reflectometer using a polygon mirror,” Opt. Commun. 162, 195–199 (1999).
[CrossRef]

Engelhardt, R.

Y. Pan, E. Lankenau, J. Welzel, R. Birngruber, R. Engelhardt, “Optical coherence-gated imaging of biological tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1029–1034 (1996).
[CrossRef]

Feldchtein, F.

A. Sergeev, V. Gelikonov, G. Gelikonov, F. Feldchtein, R. Kuranov, N. Gladkova, N. Shakhova, L. Suopova, A. Shakhov, I. Kuznetzova, A. Denisenko, V. Pochinko, Y. Chumakov, O. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. Exp. 1, 432–440 (1997); http://www.opticsexpress.org .
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J.

Fujimoto, J. G.

S. H. Cho, F. X. Kärtner, U. Morgner, E. P. Ippen, J. G. Fujimoto, J. E. Cunningham, W. H. Knox, “Generation of 90-nJ pulses with a 4-MHz repetition-rate Kerr-lens mode-locked Ti:Al2O3 laser operating with net positive and negative intracavity dispersion,” Opt. Lett. 26, 560–562 (2001).
[CrossRef]

U. Morgner, W. Drexler, X. Li, F. X. Kaertner, C. Pitris, S. A. Boppart, E. P. Ippen, J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).
[CrossRef]

U. Morgner, F. X. Kartner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser,” Opt. Lett. 24, 411–413 (1999).
[CrossRef]

S. H. Cho, B. E. Bouma, E. P. Ippen, J. G. Fujimoto, “Low-repetition-rate high-peak-power Kerr-lens mode-locked Ti:Al2O3 laser with a multiple-pass cavity,” Opt. Lett. 24, 417–419 (1999).
[CrossRef]

G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, J. G. Fujimoto, “Rapid acquisition of in vivo biological images by use of optical coherence tomography,” Opt. Lett. 21, 1408–1410 (1996).
[CrossRef] [PubMed]

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Gelikonov, G.

A. Sergeev, V. Gelikonov, G. Gelikonov, F. Feldchtein, R. Kuranov, N. Gladkova, N. Shakhova, L. Suopova, A. Shakhov, I. Kuznetzova, A. Denisenko, V. Pochinko, Y. Chumakov, O. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. Exp. 1, 432–440 (1997); http://www.opticsexpress.org .
[CrossRef]

Gelikonov, V.

A. Sergeev, V. Gelikonov, G. Gelikonov, F. Feldchtein, R. Kuranov, N. Gladkova, N. Shakhova, L. Suopova, A. Shakhov, I. Kuznetzova, A. Denisenko, V. Pochinko, Y. Chumakov, O. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. Exp. 1, 432–440 (1997); http://www.opticsexpress.org .
[CrossRef]

Gianotti, R.

N. Delachenal, R. Walti, R. Gianotti, S. Christov, P. Wagner, R. P. Salathe, U. Durr, G. Ulbers, “Robust and rapid optical low-coherence reflectometer using a polygon mirror,” Opt. Commun. 162, 195–199 (1999).
[CrossRef]

J. Ballif, R. Gianotti, Ph. Chavanne, R. Wälti, R. P. Salathé, “Rapid and scalable scans at 21 m/s in optical low-coherence reflectometry,” Opt. Lett. 22, 757–759 (1997).
[CrossRef] [PubMed]

Gladkova, N.

A. Sergeev, V. Gelikonov, G. Gelikonov, F. Feldchtein, R. Kuranov, N. Gladkova, N. Shakhova, L. Suopova, A. Shakhov, I. Kuznetzova, A. Denisenko, V. Pochinko, Y. Chumakov, O. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. Exp. 1, 432–440 (1997); http://www.opticsexpress.org .
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hammad Sammeer, A.

Haus, H. A.

Hee, M. R.

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Heritage, J.

Herriott, D.

Huang, D.

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Ippen, E.

Ippen, E. P.

Izatt, J. A.

A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Exp. 3, 219–2291998; http://www.opticsexpress.org .
[CrossRef]

Kaertner, F. X.

Kartner, F.

Kartner, F. X.

Kärtner, F. X.

Kaur, D.

Kebabian, P.

Knox, W. H.

Kogelnik, H.

Kompfner, R.

Kulkarni, M. D.

A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Exp. 3, 219–2291998; http://www.opticsexpress.org .
[CrossRef]

Kuranov, R.

A. Sergeev, V. Gelikonov, G. Gelikonov, F. Feldchtein, R. Kuranov, N. Gladkova, N. Shakhova, L. Suopova, A. Shakhov, I. Kuznetzova, A. Denisenko, V. Pochinko, Y. Chumakov, O. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. Exp. 1, 432–440 (1997); http://www.opticsexpress.org .
[CrossRef]

Kuznetzova, I.

A. Sergeev, V. Gelikonov, G. Gelikonov, F. Feldchtein, R. Kuranov, N. Gladkova, N. Shakhova, L. Suopova, A. Shakhov, I. Kuznetzova, A. Denisenko, V. Pochinko, Y. Chumakov, O. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. Exp. 1, 432–440 (1997); http://www.opticsexpress.org .
[CrossRef]

Lankenau, E.

Y. Pan, E. Lankenau, J. Welzel, R. Birngruber, R. Engelhardt, “Optical coherence-gated imaging of biological tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1029–1034 (1996).
[CrossRef]

Li, X.

Lin, C. P.

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

McManus, J.

Mercorelli, L.

Morgner, U.

Pan, Y.

Y. Pan, E. Lankenau, J. Welzel, R. Birngruber, R. Engelhardt, “Optical coherence-gated imaging of biological tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1029–1034 (1996).
[CrossRef]

Perry, D.

Pitris, C.

Pochinko, V.

A. Sergeev, V. Gelikonov, G. Gelikonov, F. Feldchtein, R. Kuranov, N. Gladkova, N. Shakhova, L. Suopova, A. Shakhov, I. Kuznetzova, A. Denisenko, V. Pochinko, Y. Chumakov, O. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. Exp. 1, 432–440 (1997); http://www.opticsexpress.org .
[CrossRef]

Puliafito, C. A.

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Rollins, A. M.

A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Exp. 3, 219–2291998; http://www.opticsexpress.org .
[CrossRef]

Salathe, R. P.

N. Delachenal, R. Walti, R. Gianotti, S. Christov, P. Wagner, R. P. Salathe, U. Durr, G. Ulbers, “Robust and rapid optical low-coherence reflectometer using a polygon mirror,” Opt. Commun. 162, 195–199 (1999).
[CrossRef]

Salathé, R. P.

Scheuer, V.

Schulte, H.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Sergeev, A.

A. Sergeev, V. Gelikonov, G. Gelikonov, F. Feldchtein, R. Kuranov, N. Gladkova, N. Shakhova, L. Suopova, A. Shakhov, I. Kuznetzova, A. Denisenko, V. Pochinko, Y. Chumakov, O. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. Exp. 1, 432–440 (1997); http://www.opticsexpress.org .
[CrossRef]

Shakhov, A.

A. Sergeev, V. Gelikonov, G. Gelikonov, F. Feldchtein, R. Kuranov, N. Gladkova, N. Shakhova, L. Suopova, A. Shakhov, I. Kuznetzova, A. Denisenko, V. Pochinko, Y. Chumakov, O. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. Exp. 1, 432–440 (1997); http://www.opticsexpress.org .
[CrossRef]

Shakhova, N.

A. Sergeev, V. Gelikonov, G. Gelikonov, F. Feldchtein, R. Kuranov, N. Gladkova, N. Shakhova, L. Suopova, A. Shakhov, I. Kuznetzova, A. Denisenko, V. Pochinko, Y. Chumakov, O. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. Exp. 1, 432–440 (1997); http://www.opticsexpress.org .
[CrossRef]

Siegman, A.

A. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

Southern, J. F.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Streltzova, O.

A. Sergeev, V. Gelikonov, G. Gelikonov, F. Feldchtein, R. Kuranov, N. Gladkova, N. Shakhova, L. Suopova, A. Shakhov, I. Kuznetzova, A. Denisenko, V. Pochinko, Y. Chumakov, O. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. Exp. 1, 432–440 (1997); http://www.opticsexpress.org .
[CrossRef]

Suopova, L.

A. Sergeev, V. Gelikonov, G. Gelikonov, F. Feldchtein, R. Kuranov, N. Gladkova, N. Shakhova, L. Suopova, A. Shakhov, I. Kuznetzova, A. Denisenko, V. Pochinko, Y. Chumakov, O. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. Exp. 1, 432–440 (1997); http://www.opticsexpress.org .
[CrossRef]

Swanson, E. A.

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Tearney, G.

Tearney, G. J.

Thurston, R.

Trutna, W.

Tschudi, T.

Ulbers, G.

N. Delachenal, R. Walti, R. Gianotti, S. Christov, P. Wagner, R. P. Salathe, U. Durr, G. Ulbers, “Robust and rapid optical low-coherence reflectometer using a polygon mirror,” Opt. Commun. 162, 195–199 (1999).
[CrossRef]

Ung-arunyawee, R.

A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Exp. 3, 219–2291998; http://www.opticsexpress.org .
[CrossRef]

Wagner, P.

N. Delachenal, R. Walti, R. Gianotti, S. Christov, P. Wagner, R. P. Salathe, U. Durr, G. Ulbers, “Robust and rapid optical low-coherence reflectometer using a polygon mirror,” Opt. Commun. 162, 195–199 (1999).
[CrossRef]

Walti, R.

N. Delachenal, R. Walti, R. Gianotti, S. Christov, P. Wagner, R. P. Salathe, U. Durr, G. Ulbers, “Robust and rapid optical low-coherence reflectometer using a polygon mirror,” Opt. Commun. 162, 195–199 (1999).
[CrossRef]

Wälti, R.

Wanna, J.

Weiner, A.

Weissman, N. J.

Weitkamp, C.

Welzel, J.

Y. Pan, E. Lankenau, J. Welzel, R. Birngruber, R. Engelhardt, “Optical coherence-gated imaging of biological tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1029–1034 (1996).
[CrossRef]

Yazdanfar, S.

A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Exp. 3, 219–2291998; http://www.opticsexpress.org .
[CrossRef]

Zahniser, M.

Zhu, Q.

Appl. Opt.

IEEE J. Sel. Top. Quantum Electron.

Y. Pan, E. Lankenau, J. Welzel, R. Birngruber, R. Engelhardt, “Optical coherence-gated imaging of biological tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1029–1034 (1996).
[CrossRef]

Opt. Commun.

N. Delachenal, R. Walti, R. Gianotti, S. Christov, P. Wagner, R. P. Salathe, U. Durr, G. Ulbers, “Robust and rapid optical low-coherence reflectometer using a polygon mirror,” Opt. Commun. 162, 195–199 (1999).
[CrossRef]

Opt. Exp.

A. Sergeev, V. Gelikonov, G. Gelikonov, F. Feldchtein, R. Kuranov, N. Gladkova, N. Shakhova, L. Suopova, A. Shakhov, I. Kuznetzova, A. Denisenko, V. Pochinko, Y. Chumakov, O. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. Exp. 1, 432–440 (1997); http://www.opticsexpress.org .
[CrossRef]

A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Exp. 3, 219–2291998; http://www.opticsexpress.org .
[CrossRef]

Opt. Lett.

N. G. Chen, Q. Zhu, “Rotary mirror array for high-speed optical coherence tomography,” Opt. Lett. 27, 607–609 (2002).
[CrossRef]

J. Ballif, R. Gianotti, Ph. Chavanne, R. Wälti, R. P. Salathé, “Rapid and scalable scans at 21 m/s in optical low-coherence reflectometry,” Opt. Lett. 22, 757–759 (1997).
[CrossRef] [PubMed]

G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, J. G. Fujimoto, “Rapid acquisition of in vivo biological images by use of optical coherence tomography,” Opt. Lett. 21, 1408–1410 (1996).
[CrossRef] [PubMed]

J. Heritage, A. Weiner, R. Thurston, “Picosecond pulse shaping by spectral phase and amplitude manipulation,” Opt. Lett. 10, 609–611 (1985).
[CrossRef] [PubMed]

G. Tearney, B. Bouma, J. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1813 (1997).
[CrossRef]

U. Morgner, F. X. Kartner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser,” Opt. Lett. 24, 411–413 (1999).
[CrossRef]

W. Drexler, U. Morgner, F. Kartner, C. Pitris, S. Boppart, X. Li, E. Ippen, J. Fujimoto, “In vivo ultrahigh resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
[CrossRef]

U. Morgner, W. Drexler, X. Li, F. X. Kaertner, C. Pitris, S. A. Boppart, E. P. Ippen, J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).
[CrossRef]

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992).
[CrossRef] [PubMed]

S. H. Cho, B. E. Bouma, E. P. Ippen, J. G. Fujimoto, “Low-repetition-rate high-peak-power Kerr-lens mode-locked Ti:Al2O3 laser with a multiple-pass cavity,” Opt. Lett. 24, 417–419 (1999).
[CrossRef]

S. H. Cho, F. X. Kärtner, U. Morgner, E. P. Ippen, J. G. Fujimoto, J. E. Cunningham, W. H. Knox, “Generation of 90-nJ pulses with a 4-MHz repetition-rate Kerr-lens mode-locked Ti:Al2O3 laser operating with net positive and negative intracavity dispersion,” Opt. Lett. 26, 560–562 (2001).
[CrossRef]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other

A. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic of the multipass cavity, Herriott cell scanning delay line. The cavity is formed by use of two symmetric broadband gold mirrors. Path-length scanning is achieved when one mirror of the cavity is actuated by use of an audio speaker.

Fig. 2
Fig. 2

Unfolded multipass cavity is equivalent to a series of equally spaced thin lenses. The beam position (x n , y n ) and slope (x n ′, y n ′) after the nth round trip can be calculated from the initial beam position (x 0, y 0), the slope (x 0′, y 0′), and the cavity parameters. The equivalent cavity is represented by mirrors with radii of curvature R 1 = 2f 1 and R 2 = 2f 2 that refocus the beam on each bounce.

Fig. 3
Fig. 3

Angle θ as a function of normalized cavity separation and diagram of a typical bounce pattern on one cavity mirror. The angle θ between successive bounces is a function solely of the cavity separation and mirror radii of curvature. The angle θ between adjacent spot centers can be determined for N transits, and the angle φ can be set such that the spots do not overlap with the exit beam.

Fig. 4
Fig. 4

ABCD matrix terms for a cavity with 21 bounces on each mirror. B and C are in units of centimeters and inverse centimeters, respectively. Positions of unity Q correspond to cavity separations where A = ±1, B = 0, C = ±1, and D = 0.

Fig. 5
Fig. 5

(a) Slope of the ABCD matrix terms for the cavity in Fig. 4. (b) Slope terms near the 0.46 operating point for the configuration demonstrated in this paper. A and D are in units of inverse centimeters. C is in units of inverse centimeters squared.

Fig. 6
Fig. 6

Plot of spot deviation that is due to mirror tilt versus normalized cavity separation for the first four round trips on mirror 1. The number of zero deviation configurations increases with the number of round-trip passes.

Fig. 7
Fig. 7

Plots of the spot deviation on mirror 1 for the n = 22 spot corresponding to the exit beam used for the multipass cavity delay line demonstrated in this paper. A number of cavity operating points can be chosen to minimize motion of the exit beam if the mirror is tilted during actuation. The cavity separation of 9.3 cm with a mirror focal length of 10.16 cm corresponds to the zero deviation point of d/ R = 0.46 for actuation of mirror 1.

Fig. 8
Fig. 8

Diagram of speaker coil and magnet showing position of input delay-line mirror. A coil of copper wire suspended by a rigid cone is suspended within a strong magnet. The delay-line mirror is mounted at the center of the cone. The upper portion of the wire coil is attached to the cone while the rim of the cone is attached to a metal housing by a flexible brim. Passing an alternating current through the coil causes the coil and mirror to actuate at the frequency of the driving voltage.

Fig. 9
Fig. 9

(a) Displacement versus voltage for two mirror masses. The displacement and maximum velocity of the speaker coil scales roughly linearly with the drive voltage. (b) Displacement for several sinusoidal drive frequencies. The maximum displacement decreases dramatically as the frequency is increased.

Fig. 10
Fig. 10

Velocity linearity as a function of normalized travel range. The velocity is constant to within 10% over 45% of the scan range and 25% over 60% of the scan range.

Fig. 11
Fig. 11

Schematic of the high-speed OCT system with a multipass cavity delay line. Path-length scanning is achieved when one mirror of the cavity is actuated with an audio speaker. A scanning galvanometer and imaging probe enables imaging at 4 frames/s. A broadband Kerr-lens mode-locked Cr:forsterite laser is used as a source. Free-space coupling in the sample arm is used to match the dispersion of free space introduced by the delay line to maintain high resolution. A–D, analog-digital.

Fig. 12
Fig. 12

OCT images of an in vivo Xenopus laevis (African frog) tadpole taken with a multipass cavity, Herriott cell delay line with a Cr:forsterite laser source at 1300 nm with a 125-nm bandwidth. High-speed imaging at 2000 axial scans per second permits visualization of the atrium (a), ventricle (v), and bulbous arteriosis (ba) during different stages of the cardiac cycle without blurring because of motion artifact (wavelength, 1300 nm; resolution, 6 μm axial × 25 μm transverse).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

g1=1-dR1, g2=1-dR2,
xn=x0 cos nθ+dg2g1g21-g1g21/2×x0-x0R1sin nθ,
θ=cos-12g1g2-1
xn=A sinnθ+α,
A2=x02+d2g22g1g21-g1g2x02-2 x0x0R1+x02R122,
tan α=x0dg2g1g21-g1g21/2x02-2 x0x0R1+x02R12.
Dd=1d01,
Ff=10-1f1,
Msp=ABCD=DdFf2=1-df2-df2d-d2fdf2--2f1-df,
Δxn=g2g11/2dψ11-g1g2cosnθ+cos-1g1g21/2-g1g21/2.
Δxn=dψ21-g1g2cos nθ-1.

Metrics