Abstract

A combination of controlled annealing and characterization by scanning probe microscopy (SPM) is used to demonstrate that the refractive-index profile of a commercially available silica-based optical fiber can be accurately reconfigured for use as an evanescent field sensor. The process relies on the controlled relocation of the silica glass dopants across the fiber cross section through heat treatment and the accurate measurement of the resulting dopant redistribution with SPM and differential etching techniques. The effect of variable annealing along a length of fiber is to produce a mode transformer to couple light from a laser source into the sensing region of the fiber.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Iga, Y. Kokubun, M. Oikawa, “Measurement of index distributions,” in Fundamentals of Microoptics: Distributed-Index, Microlens and Stacked Planar Optics (Academic, Orlando, Fla., 1984), pp. 139–176.
  2. K. I. White, “Practical application of the refracted near-field technique for the measurement of optical fiber refractive index profiles,” Opt. Quantum Electron. 11, 185–196 (1979).
    [CrossRef]
  3. K. W. Raine, J. G. N. Baines, D. E. Putland, “Refractive index profiling—state of the art,” J. Lightwave Technol. 7, 1162–1169 (1989).
    [CrossRef]
  4. L. McCaughan, E. E. Bergmann, “Index distributions of optical waveguides from their mode profile,” J. Lightwave Technol. LT-1, 241–244 (1983).
    [CrossRef]
  5. C. Saekeang, P. J. Chu, “Nondestructive determination of refractive index profile of an optical fiber: backward light scattering method,” Appl. Opt. 18, 1110–1116 (1979).
    [CrossRef] [PubMed]
  6. H. M. Presby, D. Marcuse, H. M. Astle, “Automatic refractive-index profiling of optical fibers,” Appl. Opt. 17, 2209–2214 (1978).
    [CrossRef] [PubMed]
  7. M. E. Marhic, P. S. Ho, M. Epstein, “Nondestructive refractive index profile measurement of clad optical fibers,” Appl. Phys. Lett. 26, 574–575 (1975).
    [CrossRef]
  8. K. Tatekura, “Determination of the index profile of optical fibers from transverse interferograms using Fourier theory,” Appl. Opt. 22, 460–463 (1983).
    [CrossRef] [PubMed]
  9. Q. Zhong, D. Inniss, “Characterization of the lightguiding structure of optical fibers by atomic force microscopy,” J. Lightwave Technol. 12, 1517–1523 (1994).
    [CrossRef]
  10. S. T. Huntington, P. Mulvaney, A. Roberts, K. A. Nugent, M. Bazylenko, “Atomic force microscopy for the determination of refractive index profiles of optical fibres and waveguides: a quantitative study,” J. Appl. Phys. 82, 2730–2734 (1997).
    [CrossRef]
  11. J. Canning, K. Sommer, M. England, S. Huntington, “Direct evidence of two types of UV-induced glass changes in silicate-based optical fibres,” Adv. Mater. 13, 970–973 (2001).
    [CrossRef]
  12. S. T. Huntington, S. Ashby, J. D. Love, M. Elias, “Direct measurement of core profile diffusion and ellipticity in fused taper couplers using atomic force microscopy,” Electron. Lett. 36, 121–122 (2000).
    [CrossRef]

2001 (1)

J. Canning, K. Sommer, M. England, S. Huntington, “Direct evidence of two types of UV-induced glass changes in silicate-based optical fibres,” Adv. Mater. 13, 970–973 (2001).
[CrossRef]

2000 (1)

S. T. Huntington, S. Ashby, J. D. Love, M. Elias, “Direct measurement of core profile diffusion and ellipticity in fused taper couplers using atomic force microscopy,” Electron. Lett. 36, 121–122 (2000).
[CrossRef]

1997 (1)

S. T. Huntington, P. Mulvaney, A. Roberts, K. A. Nugent, M. Bazylenko, “Atomic force microscopy for the determination of refractive index profiles of optical fibres and waveguides: a quantitative study,” J. Appl. Phys. 82, 2730–2734 (1997).
[CrossRef]

1994 (1)

Q. Zhong, D. Inniss, “Characterization of the lightguiding structure of optical fibers by atomic force microscopy,” J. Lightwave Technol. 12, 1517–1523 (1994).
[CrossRef]

1989 (1)

K. W. Raine, J. G. N. Baines, D. E. Putland, “Refractive index profiling—state of the art,” J. Lightwave Technol. 7, 1162–1169 (1989).
[CrossRef]

1983 (2)

L. McCaughan, E. E. Bergmann, “Index distributions of optical waveguides from their mode profile,” J. Lightwave Technol. LT-1, 241–244 (1983).
[CrossRef]

K. Tatekura, “Determination of the index profile of optical fibers from transverse interferograms using Fourier theory,” Appl. Opt. 22, 460–463 (1983).
[CrossRef] [PubMed]

1979 (2)

C. Saekeang, P. J. Chu, “Nondestructive determination of refractive index profile of an optical fiber: backward light scattering method,” Appl. Opt. 18, 1110–1116 (1979).
[CrossRef] [PubMed]

K. I. White, “Practical application of the refracted near-field technique for the measurement of optical fiber refractive index profiles,” Opt. Quantum Electron. 11, 185–196 (1979).
[CrossRef]

1978 (1)

1975 (1)

M. E. Marhic, P. S. Ho, M. Epstein, “Nondestructive refractive index profile measurement of clad optical fibers,” Appl. Phys. Lett. 26, 574–575 (1975).
[CrossRef]

Ashby, S.

S. T. Huntington, S. Ashby, J. D. Love, M. Elias, “Direct measurement of core profile diffusion and ellipticity in fused taper couplers using atomic force microscopy,” Electron. Lett. 36, 121–122 (2000).
[CrossRef]

Astle, H. M.

Baines, J. G. N.

K. W. Raine, J. G. N. Baines, D. E. Putland, “Refractive index profiling—state of the art,” J. Lightwave Technol. 7, 1162–1169 (1989).
[CrossRef]

Bazylenko, M.

S. T. Huntington, P. Mulvaney, A. Roberts, K. A. Nugent, M. Bazylenko, “Atomic force microscopy for the determination of refractive index profiles of optical fibres and waveguides: a quantitative study,” J. Appl. Phys. 82, 2730–2734 (1997).
[CrossRef]

Bergmann, E. E.

L. McCaughan, E. E. Bergmann, “Index distributions of optical waveguides from their mode profile,” J. Lightwave Technol. LT-1, 241–244 (1983).
[CrossRef]

Canning, J.

J. Canning, K. Sommer, M. England, S. Huntington, “Direct evidence of two types of UV-induced glass changes in silicate-based optical fibres,” Adv. Mater. 13, 970–973 (2001).
[CrossRef]

Chu, P. J.

Elias, M.

S. T. Huntington, S. Ashby, J. D. Love, M. Elias, “Direct measurement of core profile diffusion and ellipticity in fused taper couplers using atomic force microscopy,” Electron. Lett. 36, 121–122 (2000).
[CrossRef]

England, M.

J. Canning, K. Sommer, M. England, S. Huntington, “Direct evidence of two types of UV-induced glass changes in silicate-based optical fibres,” Adv. Mater. 13, 970–973 (2001).
[CrossRef]

Epstein, M.

M. E. Marhic, P. S. Ho, M. Epstein, “Nondestructive refractive index profile measurement of clad optical fibers,” Appl. Phys. Lett. 26, 574–575 (1975).
[CrossRef]

Ho, P. S.

M. E. Marhic, P. S. Ho, M. Epstein, “Nondestructive refractive index profile measurement of clad optical fibers,” Appl. Phys. Lett. 26, 574–575 (1975).
[CrossRef]

Huntington, S.

J. Canning, K. Sommer, M. England, S. Huntington, “Direct evidence of two types of UV-induced glass changes in silicate-based optical fibres,” Adv. Mater. 13, 970–973 (2001).
[CrossRef]

Huntington, S. T.

S. T. Huntington, S. Ashby, J. D. Love, M. Elias, “Direct measurement of core profile diffusion and ellipticity in fused taper couplers using atomic force microscopy,” Electron. Lett. 36, 121–122 (2000).
[CrossRef]

S. T. Huntington, P. Mulvaney, A. Roberts, K. A. Nugent, M. Bazylenko, “Atomic force microscopy for the determination of refractive index profiles of optical fibres and waveguides: a quantitative study,” J. Appl. Phys. 82, 2730–2734 (1997).
[CrossRef]

Iga, K.

K. Iga, Y. Kokubun, M. Oikawa, “Measurement of index distributions,” in Fundamentals of Microoptics: Distributed-Index, Microlens and Stacked Planar Optics (Academic, Orlando, Fla., 1984), pp. 139–176.

Inniss, D.

Q. Zhong, D. Inniss, “Characterization of the lightguiding structure of optical fibers by atomic force microscopy,” J. Lightwave Technol. 12, 1517–1523 (1994).
[CrossRef]

Kokubun, Y.

K. Iga, Y. Kokubun, M. Oikawa, “Measurement of index distributions,” in Fundamentals of Microoptics: Distributed-Index, Microlens and Stacked Planar Optics (Academic, Orlando, Fla., 1984), pp. 139–176.

Love, J. D.

S. T. Huntington, S. Ashby, J. D. Love, M. Elias, “Direct measurement of core profile diffusion and ellipticity in fused taper couplers using atomic force microscopy,” Electron. Lett. 36, 121–122 (2000).
[CrossRef]

Marcuse, D.

Marhic, M. E.

M. E. Marhic, P. S. Ho, M. Epstein, “Nondestructive refractive index profile measurement of clad optical fibers,” Appl. Phys. Lett. 26, 574–575 (1975).
[CrossRef]

McCaughan, L.

L. McCaughan, E. E. Bergmann, “Index distributions of optical waveguides from their mode profile,” J. Lightwave Technol. LT-1, 241–244 (1983).
[CrossRef]

Mulvaney, P.

S. T. Huntington, P. Mulvaney, A. Roberts, K. A. Nugent, M. Bazylenko, “Atomic force microscopy for the determination of refractive index profiles of optical fibres and waveguides: a quantitative study,” J. Appl. Phys. 82, 2730–2734 (1997).
[CrossRef]

Nugent, K. A.

S. T. Huntington, P. Mulvaney, A. Roberts, K. A. Nugent, M. Bazylenko, “Atomic force microscopy for the determination of refractive index profiles of optical fibres and waveguides: a quantitative study,” J. Appl. Phys. 82, 2730–2734 (1997).
[CrossRef]

Oikawa, M.

K. Iga, Y. Kokubun, M. Oikawa, “Measurement of index distributions,” in Fundamentals of Microoptics: Distributed-Index, Microlens and Stacked Planar Optics (Academic, Orlando, Fla., 1984), pp. 139–176.

Presby, H. M.

Putland, D. E.

K. W. Raine, J. G. N. Baines, D. E. Putland, “Refractive index profiling—state of the art,” J. Lightwave Technol. 7, 1162–1169 (1989).
[CrossRef]

Raine, K. W.

K. W. Raine, J. G. N. Baines, D. E. Putland, “Refractive index profiling—state of the art,” J. Lightwave Technol. 7, 1162–1169 (1989).
[CrossRef]

Roberts, A.

S. T. Huntington, P. Mulvaney, A. Roberts, K. A. Nugent, M. Bazylenko, “Atomic force microscopy for the determination of refractive index profiles of optical fibres and waveguides: a quantitative study,” J. Appl. Phys. 82, 2730–2734 (1997).
[CrossRef]

Saekeang, C.

Sommer, K.

J. Canning, K. Sommer, M. England, S. Huntington, “Direct evidence of two types of UV-induced glass changes in silicate-based optical fibres,” Adv. Mater. 13, 970–973 (2001).
[CrossRef]

Tatekura, K.

White, K. I.

K. I. White, “Practical application of the refracted near-field technique for the measurement of optical fiber refractive index profiles,” Opt. Quantum Electron. 11, 185–196 (1979).
[CrossRef]

Zhong, Q.

Q. Zhong, D. Inniss, “Characterization of the lightguiding structure of optical fibers by atomic force microscopy,” J. Lightwave Technol. 12, 1517–1523 (1994).
[CrossRef]

Adv. Mater. (1)

J. Canning, K. Sommer, M. England, S. Huntington, “Direct evidence of two types of UV-induced glass changes in silicate-based optical fibres,” Adv. Mater. 13, 970–973 (2001).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

M. E. Marhic, P. S. Ho, M. Epstein, “Nondestructive refractive index profile measurement of clad optical fibers,” Appl. Phys. Lett. 26, 574–575 (1975).
[CrossRef]

Electron. Lett. (1)

S. T. Huntington, S. Ashby, J. D. Love, M. Elias, “Direct measurement of core profile diffusion and ellipticity in fused taper couplers using atomic force microscopy,” Electron. Lett. 36, 121–122 (2000).
[CrossRef]

J. Appl. Phys. (1)

S. T. Huntington, P. Mulvaney, A. Roberts, K. A. Nugent, M. Bazylenko, “Atomic force microscopy for the determination of refractive index profiles of optical fibres and waveguides: a quantitative study,” J. Appl. Phys. 82, 2730–2734 (1997).
[CrossRef]

J. Lightwave Technol. (3)

K. W. Raine, J. G. N. Baines, D. E. Putland, “Refractive index profiling—state of the art,” J. Lightwave Technol. 7, 1162–1169 (1989).
[CrossRef]

L. McCaughan, E. E. Bergmann, “Index distributions of optical waveguides from their mode profile,” J. Lightwave Technol. LT-1, 241–244 (1983).
[CrossRef]

Q. Zhong, D. Inniss, “Characterization of the lightguiding structure of optical fibers by atomic force microscopy,” J. Lightwave Technol. 12, 1517–1523 (1994).
[CrossRef]

Opt. Quantum Electron. (1)

K. I. White, “Practical application of the refracted near-field technique for the measurement of optical fiber refractive index profiles,” Opt. Quantum Electron. 11, 185–196 (1979).
[CrossRef]

Other (1)

K. Iga, Y. Kokubun, M. Oikawa, “Measurement of index distributions,” in Fundamentals of Microoptics: Distributed-Index, Microlens and Stacked Planar Optics (Academic, Orlando, Fla., 1984), pp. 139–176.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Transformation of the refractive-index profile from (a) the commercial 100–110-μm optical fiber to (b) the specialty optical fiber.

Fig. 2
Fig. 2

(a) Fiber annealing furnace and (b) temperature gradient along the height of the furnace.

Fig. 3
Fig. 3

Three-dimensional AFM images of the 100–110-μm fiber annealed at 670 °C for (a) 0, (b) 20, (c) 72, and (d) 145.5 h.

Fig. 4
Fig. 4

Endface of the 100–110-μm fiber showing the 15 μm × 15 μm region of the AFM analysis.

Fig. 5
Fig. 5

AFM cross-section images of the 100–110-μm fiber that has been annealed at 670 °C for varying times.

Fig. 6
Fig. 6

Variation in the dimensions of (a) region A and (b) region B after annealing.

Fig. 7
Fig. 7

Refractive-index profile of the 100–110-μm fiber that was (a) not annealed and (b) annealed for 72 h at 970 °C.

Fig. 8
Fig. 8

Overlap of the refractive-index profile (RIP) and the AFM cross section of the 100–110-μm fiber that was annealed for 72 h at 970 °C.

Fig. 9
Fig. 9

CCD image of the 100–110-μm fiber that was annealed for 72 h at 970 °C showing (a) the light being guided in the core region and (b) the light being guided in a ring at the edge of the fiber.

Tables (1)

Tables Icon

Table 1 Specifications of the 100–110-μm Multimode Optical Fiber

Metrics