Abstract

We present a microfabricated grating whose period can be tuned in analog fashion to within a fraction of a nanometer. The tunable angular range is more than 400 µrad in the first diffracted order. The design concept consists of a diffractive grating defined onto a 400-nm membrane, with the membrane subsequently strained in the direction perpendicular to the grating grooves by thin-film piezoelectric actuation. The strain-tuned grating device was fabricated with microelectromechanical processes, utilizing both surface and bulk micromachining. The fabricated piezoelectric film achieved a measured dielectric constant of 1200. Device characterization yielded grating period changes up to 8.3 nm (0.21% strain in the membrane) at 10 V and a diffracted angular change of 486 µrad, in good agreement with the theory. Uniformity across the actuated grating and out-of-plane deflections are characterized and discussed.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. B. Apte, F. Sandejas, W. Banyai, D. Bloom, “Grating light valves for high resolution displays,” in Technical Digest of the Solid-State Sensors and Actuators Workshop (Transducers Research Foundation, Cleveland Heights, Ohio, 1994), pp. 1–6.
  2. G. B. Hocker, D. Youngner, E. Deutsch, A. Volpicelli, S. Senturia, M. Butler, M. Sinclair, T. Plowman, A. J. Ricco, “The polychromator: a programmable MEMS diffraction grating for synthetic spectra,” in Technical Digest of the Solid-State Sensors and Actuators Workshop (Transducers Research Foundation, Cleveland Heights, Ohio, 2000), pp. 89–92.
  3. D. P. Resler, D. S. Hobbs, R. C. Sharp, L. J. Friedman, T. A. Dorschner, “High-efficiency liquid-crystal optical phased-array beam steering,” Opt. Lett. 21, 689–691 (1996).
    [CrossRef] [PubMed]
  4. D. E. Sene, J. W. Grantham, V. M. Bright, J. H. Comtois, “Development and characterization of micro-mechanical gratings for optical modulation,” in Proceedings of the ninth Annual International IEEE Micro Electro Mechanical Systems Workshop (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1996), pp. 222–227.
    [CrossRef]
  5. X. M. Zhang, A. Q. Liu, “A MEMS pitch-tunable grating add/drop multiplexers,” in Proceedings of Optical MEMS 2000 IEEE/LEOS International Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2000), pp. 25–26.
  6. T. Storgaard-Larsen, O. Leistiko, S. Bouwstra, “Optomechanical accelerometer based on strain sensing by a Bragg grating in a planar waveguide,” Sens. Actuators A 52, 25–32 (1996).
    [CrossRef]
  7. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley-Interscience, New York, 1991), pp. 799–831.
    [CrossRef]
  8. D. M. Burns, V. M. Bright, “Micro-electro-mechanical variable blaze gratings,” in Proceedings of IEEE MEMS Workshop (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1997), pp. 55–60.
  9. J. Castracane, M. A. Gutin, O. N. Gutin, “Micro-mechanically controlled diffraction: a new tool for spectroscopy,” in Diffractive/Holographic Technologies and Spatial Light Modulators VII, I. Cindrich, S. H. Lee, R. L. Sutherland, eds., Proc. SPIE3951, 36–45 (2000).
    [CrossRef]
  10. W.-C. Shih, C. W. Wong, Y. B. Jeon, S.-G. Kim, G. Barbastathis, “Electrostatic and piezoelectric analog tunable diffractive gratings,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Lasers Science Conference, Vol. 73 of 2002 OSA Trends in Optics and Photonics (Optical Society of America, Washington D.C., 2002), paper CMP4.
  11. M. S. Weinberg, “Working equations for piezoelectric actuators and sensors,” J. Microelectromech. Syst. 8, 529–533 (1999).
    [CrossRef]
  12. S. D. Senturia, Microsystem Design in (Kluwer Academic, Boston, Mass.2001), pp. 219–222.
  13. S.-G. Kim, K.-H. Hwang, “Thin-film micromirror array (TMA) for large information display systems,” J. Soc. Inf. Disp. 8, 177–181 (2000).
    [CrossRef]
  14. W. Liu, J. S. Ko, W. Zhu, “Preparation and properties of multiplayer Pb(Zr,Ti)O3/PbTiO3 thin films for pyroelectric application,” Thin Solid Films 371, 254–258 (2000).
    [CrossRef]
  15. D. M. Freeman, A. J. Aranyosi, M. J. Gordon, S. S. Hong, “Multidimensional motion analysis of MEMS using computer microvision,” in Technical Digest of the Solid- State Sensors and Actuators Workshop (Transducers Research Foundation, Cleveland Heights, Ohio, 1998), pp. 150–155.

2000 (2)

S.-G. Kim, K.-H. Hwang, “Thin-film micromirror array (TMA) for large information display systems,” J. Soc. Inf. Disp. 8, 177–181 (2000).
[CrossRef]

W. Liu, J. S. Ko, W. Zhu, “Preparation and properties of multiplayer Pb(Zr,Ti)O3/PbTiO3 thin films for pyroelectric application,” Thin Solid Films 371, 254–258 (2000).
[CrossRef]

1999 (1)

M. S. Weinberg, “Working equations for piezoelectric actuators and sensors,” J. Microelectromech. Syst. 8, 529–533 (1999).
[CrossRef]

1996 (2)

D. P. Resler, D. S. Hobbs, R. C. Sharp, L. J. Friedman, T. A. Dorschner, “High-efficiency liquid-crystal optical phased-array beam steering,” Opt. Lett. 21, 689–691 (1996).
[CrossRef] [PubMed]

T. Storgaard-Larsen, O. Leistiko, S. Bouwstra, “Optomechanical accelerometer based on strain sensing by a Bragg grating in a planar waveguide,” Sens. Actuators A 52, 25–32 (1996).
[CrossRef]

Apte, R. B.

R. B. Apte, F. Sandejas, W. Banyai, D. Bloom, “Grating light valves for high resolution displays,” in Technical Digest of the Solid-State Sensors and Actuators Workshop (Transducers Research Foundation, Cleveland Heights, Ohio, 1994), pp. 1–6.

Aranyosi, A. J.

D. M. Freeman, A. J. Aranyosi, M. J. Gordon, S. S. Hong, “Multidimensional motion analysis of MEMS using computer microvision,” in Technical Digest of the Solid- State Sensors and Actuators Workshop (Transducers Research Foundation, Cleveland Heights, Ohio, 1998), pp. 150–155.

Banyai, W.

R. B. Apte, F. Sandejas, W. Banyai, D. Bloom, “Grating light valves for high resolution displays,” in Technical Digest of the Solid-State Sensors and Actuators Workshop (Transducers Research Foundation, Cleveland Heights, Ohio, 1994), pp. 1–6.

Barbastathis, G.

W.-C. Shih, C. W. Wong, Y. B. Jeon, S.-G. Kim, G. Barbastathis, “Electrostatic and piezoelectric analog tunable diffractive gratings,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Lasers Science Conference, Vol. 73 of 2002 OSA Trends in Optics and Photonics (Optical Society of America, Washington D.C., 2002), paper CMP4.

Bloom, D.

R. B. Apte, F. Sandejas, W. Banyai, D. Bloom, “Grating light valves for high resolution displays,” in Technical Digest of the Solid-State Sensors and Actuators Workshop (Transducers Research Foundation, Cleveland Heights, Ohio, 1994), pp. 1–6.

Bouwstra, S.

T. Storgaard-Larsen, O. Leistiko, S. Bouwstra, “Optomechanical accelerometer based on strain sensing by a Bragg grating in a planar waveguide,” Sens. Actuators A 52, 25–32 (1996).
[CrossRef]

Bright, V. M.

D. M. Burns, V. M. Bright, “Micro-electro-mechanical variable blaze gratings,” in Proceedings of IEEE MEMS Workshop (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1997), pp. 55–60.

D. E. Sene, J. W. Grantham, V. M. Bright, J. H. Comtois, “Development and characterization of micro-mechanical gratings for optical modulation,” in Proceedings of the ninth Annual International IEEE Micro Electro Mechanical Systems Workshop (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1996), pp. 222–227.
[CrossRef]

Burns, D. M.

D. M. Burns, V. M. Bright, “Micro-electro-mechanical variable blaze gratings,” in Proceedings of IEEE MEMS Workshop (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1997), pp. 55–60.

Butler, M.

G. B. Hocker, D. Youngner, E. Deutsch, A. Volpicelli, S. Senturia, M. Butler, M. Sinclair, T. Plowman, A. J. Ricco, “The polychromator: a programmable MEMS diffraction grating for synthetic spectra,” in Technical Digest of the Solid-State Sensors and Actuators Workshop (Transducers Research Foundation, Cleveland Heights, Ohio, 2000), pp. 89–92.

Castracane, J.

J. Castracane, M. A. Gutin, O. N. Gutin, “Micro-mechanically controlled diffraction: a new tool for spectroscopy,” in Diffractive/Holographic Technologies and Spatial Light Modulators VII, I. Cindrich, S. H. Lee, R. L. Sutherland, eds., Proc. SPIE3951, 36–45 (2000).
[CrossRef]

Comtois, J. H.

D. E. Sene, J. W. Grantham, V. M. Bright, J. H. Comtois, “Development and characterization of micro-mechanical gratings for optical modulation,” in Proceedings of the ninth Annual International IEEE Micro Electro Mechanical Systems Workshop (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1996), pp. 222–227.
[CrossRef]

Deutsch, E.

G. B. Hocker, D. Youngner, E. Deutsch, A. Volpicelli, S. Senturia, M. Butler, M. Sinclair, T. Plowman, A. J. Ricco, “The polychromator: a programmable MEMS diffraction grating for synthetic spectra,” in Technical Digest of the Solid-State Sensors and Actuators Workshop (Transducers Research Foundation, Cleveland Heights, Ohio, 2000), pp. 89–92.

Dorschner, T. A.

Freeman, D. M.

D. M. Freeman, A. J. Aranyosi, M. J. Gordon, S. S. Hong, “Multidimensional motion analysis of MEMS using computer microvision,” in Technical Digest of the Solid- State Sensors and Actuators Workshop (Transducers Research Foundation, Cleveland Heights, Ohio, 1998), pp. 150–155.

Friedman, L. J.

Gordon, M. J.

D. M. Freeman, A. J. Aranyosi, M. J. Gordon, S. S. Hong, “Multidimensional motion analysis of MEMS using computer microvision,” in Technical Digest of the Solid- State Sensors and Actuators Workshop (Transducers Research Foundation, Cleveland Heights, Ohio, 1998), pp. 150–155.

Grantham, J. W.

D. E. Sene, J. W. Grantham, V. M. Bright, J. H. Comtois, “Development and characterization of micro-mechanical gratings for optical modulation,” in Proceedings of the ninth Annual International IEEE Micro Electro Mechanical Systems Workshop (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1996), pp. 222–227.
[CrossRef]

Gutin, M. A.

J. Castracane, M. A. Gutin, O. N. Gutin, “Micro-mechanically controlled diffraction: a new tool for spectroscopy,” in Diffractive/Holographic Technologies and Spatial Light Modulators VII, I. Cindrich, S. H. Lee, R. L. Sutherland, eds., Proc. SPIE3951, 36–45 (2000).
[CrossRef]

Gutin, O. N.

J. Castracane, M. A. Gutin, O. N. Gutin, “Micro-mechanically controlled diffraction: a new tool for spectroscopy,” in Diffractive/Holographic Technologies and Spatial Light Modulators VII, I. Cindrich, S. H. Lee, R. L. Sutherland, eds., Proc. SPIE3951, 36–45 (2000).
[CrossRef]

Hobbs, D. S.

Hocker, G. B.

G. B. Hocker, D. Youngner, E. Deutsch, A. Volpicelli, S. Senturia, M. Butler, M. Sinclair, T. Plowman, A. J. Ricco, “The polychromator: a programmable MEMS diffraction grating for synthetic spectra,” in Technical Digest of the Solid-State Sensors and Actuators Workshop (Transducers Research Foundation, Cleveland Heights, Ohio, 2000), pp. 89–92.

Hong, S. S.

D. M. Freeman, A. J. Aranyosi, M. J. Gordon, S. S. Hong, “Multidimensional motion analysis of MEMS using computer microvision,” in Technical Digest of the Solid- State Sensors and Actuators Workshop (Transducers Research Foundation, Cleveland Heights, Ohio, 1998), pp. 150–155.

Hwang, K.-H.

S.-G. Kim, K.-H. Hwang, “Thin-film micromirror array (TMA) for large information display systems,” J. Soc. Inf. Disp. 8, 177–181 (2000).
[CrossRef]

Jeon, Y. B.

W.-C. Shih, C. W. Wong, Y. B. Jeon, S.-G. Kim, G. Barbastathis, “Electrostatic and piezoelectric analog tunable diffractive gratings,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Lasers Science Conference, Vol. 73 of 2002 OSA Trends in Optics and Photonics (Optical Society of America, Washington D.C., 2002), paper CMP4.

Kim, S.-G.

S.-G. Kim, K.-H. Hwang, “Thin-film micromirror array (TMA) for large information display systems,” J. Soc. Inf. Disp. 8, 177–181 (2000).
[CrossRef]

W.-C. Shih, C. W. Wong, Y. B. Jeon, S.-G. Kim, G. Barbastathis, “Electrostatic and piezoelectric analog tunable diffractive gratings,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Lasers Science Conference, Vol. 73 of 2002 OSA Trends in Optics and Photonics (Optical Society of America, Washington D.C., 2002), paper CMP4.

Ko, J. S.

W. Liu, J. S. Ko, W. Zhu, “Preparation and properties of multiplayer Pb(Zr,Ti)O3/PbTiO3 thin films for pyroelectric application,” Thin Solid Films 371, 254–258 (2000).
[CrossRef]

Leistiko, O.

T. Storgaard-Larsen, O. Leistiko, S. Bouwstra, “Optomechanical accelerometer based on strain sensing by a Bragg grating in a planar waveguide,” Sens. Actuators A 52, 25–32 (1996).
[CrossRef]

Liu, A. Q.

X. M. Zhang, A. Q. Liu, “A MEMS pitch-tunable grating add/drop multiplexers,” in Proceedings of Optical MEMS 2000 IEEE/LEOS International Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2000), pp. 25–26.

Liu, W.

W. Liu, J. S. Ko, W. Zhu, “Preparation and properties of multiplayer Pb(Zr,Ti)O3/PbTiO3 thin films for pyroelectric application,” Thin Solid Films 371, 254–258 (2000).
[CrossRef]

Plowman, T.

G. B. Hocker, D. Youngner, E. Deutsch, A. Volpicelli, S. Senturia, M. Butler, M. Sinclair, T. Plowman, A. J. Ricco, “The polychromator: a programmable MEMS diffraction grating for synthetic spectra,” in Technical Digest of the Solid-State Sensors and Actuators Workshop (Transducers Research Foundation, Cleveland Heights, Ohio, 2000), pp. 89–92.

Resler, D. P.

Ricco, A. J.

G. B. Hocker, D. Youngner, E. Deutsch, A. Volpicelli, S. Senturia, M. Butler, M. Sinclair, T. Plowman, A. J. Ricco, “The polychromator: a programmable MEMS diffraction grating for synthetic spectra,” in Technical Digest of the Solid-State Sensors and Actuators Workshop (Transducers Research Foundation, Cleveland Heights, Ohio, 2000), pp. 89–92.

Saleh, B. E. A.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley-Interscience, New York, 1991), pp. 799–831.
[CrossRef]

Sandejas, F.

R. B. Apte, F. Sandejas, W. Banyai, D. Bloom, “Grating light valves for high resolution displays,” in Technical Digest of the Solid-State Sensors and Actuators Workshop (Transducers Research Foundation, Cleveland Heights, Ohio, 1994), pp. 1–6.

Sene, D. E.

D. E. Sene, J. W. Grantham, V. M. Bright, J. H. Comtois, “Development and characterization of micro-mechanical gratings for optical modulation,” in Proceedings of the ninth Annual International IEEE Micro Electro Mechanical Systems Workshop (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1996), pp. 222–227.
[CrossRef]

Senturia, S.

G. B. Hocker, D. Youngner, E. Deutsch, A. Volpicelli, S. Senturia, M. Butler, M. Sinclair, T. Plowman, A. J. Ricco, “The polychromator: a programmable MEMS diffraction grating for synthetic spectra,” in Technical Digest of the Solid-State Sensors and Actuators Workshop (Transducers Research Foundation, Cleveland Heights, Ohio, 2000), pp. 89–92.

Senturia, S. D.

S. D. Senturia, Microsystem Design in (Kluwer Academic, Boston, Mass.2001), pp. 219–222.

Sharp, R. C.

Shih, W.-C.

W.-C. Shih, C. W. Wong, Y. B. Jeon, S.-G. Kim, G. Barbastathis, “Electrostatic and piezoelectric analog tunable diffractive gratings,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Lasers Science Conference, Vol. 73 of 2002 OSA Trends in Optics and Photonics (Optical Society of America, Washington D.C., 2002), paper CMP4.

Sinclair, M.

G. B. Hocker, D. Youngner, E. Deutsch, A. Volpicelli, S. Senturia, M. Butler, M. Sinclair, T. Plowman, A. J. Ricco, “The polychromator: a programmable MEMS diffraction grating for synthetic spectra,” in Technical Digest of the Solid-State Sensors and Actuators Workshop (Transducers Research Foundation, Cleveland Heights, Ohio, 2000), pp. 89–92.

Storgaard-Larsen, T.

T. Storgaard-Larsen, O. Leistiko, S. Bouwstra, “Optomechanical accelerometer based on strain sensing by a Bragg grating in a planar waveguide,” Sens. Actuators A 52, 25–32 (1996).
[CrossRef]

Teich, M. C.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley-Interscience, New York, 1991), pp. 799–831.
[CrossRef]

Volpicelli, A.

G. B. Hocker, D. Youngner, E. Deutsch, A. Volpicelli, S. Senturia, M. Butler, M. Sinclair, T. Plowman, A. J. Ricco, “The polychromator: a programmable MEMS diffraction grating for synthetic spectra,” in Technical Digest of the Solid-State Sensors and Actuators Workshop (Transducers Research Foundation, Cleveland Heights, Ohio, 2000), pp. 89–92.

Weinberg, M. S.

M. S. Weinberg, “Working equations for piezoelectric actuators and sensors,” J. Microelectromech. Syst. 8, 529–533 (1999).
[CrossRef]

Wong, C. W.

W.-C. Shih, C. W. Wong, Y. B. Jeon, S.-G. Kim, G. Barbastathis, “Electrostatic and piezoelectric analog tunable diffractive gratings,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Lasers Science Conference, Vol. 73 of 2002 OSA Trends in Optics and Photonics (Optical Society of America, Washington D.C., 2002), paper CMP4.

Youngner, D.

G. B. Hocker, D. Youngner, E. Deutsch, A. Volpicelli, S. Senturia, M. Butler, M. Sinclair, T. Plowman, A. J. Ricco, “The polychromator: a programmable MEMS diffraction grating for synthetic spectra,” in Technical Digest of the Solid-State Sensors and Actuators Workshop (Transducers Research Foundation, Cleveland Heights, Ohio, 2000), pp. 89–92.

Zhang, X. M.

X. M. Zhang, A. Q. Liu, “A MEMS pitch-tunable grating add/drop multiplexers,” in Proceedings of Optical MEMS 2000 IEEE/LEOS International Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2000), pp. 25–26.

Zhu, W.

W. Liu, J. S. Ko, W. Zhu, “Preparation and properties of multiplayer Pb(Zr,Ti)O3/PbTiO3 thin films for pyroelectric application,” Thin Solid Films 371, 254–258 (2000).
[CrossRef]

J. Microelectromech. Syst. (1)

M. S. Weinberg, “Working equations for piezoelectric actuators and sensors,” J. Microelectromech. Syst. 8, 529–533 (1999).
[CrossRef]

J. Soc. Inf. Disp. (1)

S.-G. Kim, K.-H. Hwang, “Thin-film micromirror array (TMA) for large information display systems,” J. Soc. Inf. Disp. 8, 177–181 (2000).
[CrossRef]

Opt. Lett. (1)

Sens. Actuators A (1)

T. Storgaard-Larsen, O. Leistiko, S. Bouwstra, “Optomechanical accelerometer based on strain sensing by a Bragg grating in a planar waveguide,” Sens. Actuators A 52, 25–32 (1996).
[CrossRef]

Thin Solid Films (1)

W. Liu, J. S. Ko, W. Zhu, “Preparation and properties of multiplayer Pb(Zr,Ti)O3/PbTiO3 thin films for pyroelectric application,” Thin Solid Films 371, 254–258 (2000).
[CrossRef]

Other (10)

D. M. Freeman, A. J. Aranyosi, M. J. Gordon, S. S. Hong, “Multidimensional motion analysis of MEMS using computer microvision,” in Technical Digest of the Solid- State Sensors and Actuators Workshop (Transducers Research Foundation, Cleveland Heights, Ohio, 1998), pp. 150–155.

S. D. Senturia, Microsystem Design in (Kluwer Academic, Boston, Mass.2001), pp. 219–222.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley-Interscience, New York, 1991), pp. 799–831.
[CrossRef]

D. M. Burns, V. M. Bright, “Micro-electro-mechanical variable blaze gratings,” in Proceedings of IEEE MEMS Workshop (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1997), pp. 55–60.

J. Castracane, M. A. Gutin, O. N. Gutin, “Micro-mechanically controlled diffraction: a new tool for spectroscopy,” in Diffractive/Holographic Technologies and Spatial Light Modulators VII, I. Cindrich, S. H. Lee, R. L. Sutherland, eds., Proc. SPIE3951, 36–45 (2000).
[CrossRef]

W.-C. Shih, C. W. Wong, Y. B. Jeon, S.-G. Kim, G. Barbastathis, “Electrostatic and piezoelectric analog tunable diffractive gratings,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Lasers Science Conference, Vol. 73 of 2002 OSA Trends in Optics and Photonics (Optical Society of America, Washington D.C., 2002), paper CMP4.

D. E. Sene, J. W. Grantham, V. M. Bright, J. H. Comtois, “Development and characterization of micro-mechanical gratings for optical modulation,” in Proceedings of the ninth Annual International IEEE Micro Electro Mechanical Systems Workshop (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1996), pp. 222–227.
[CrossRef]

X. M. Zhang, A. Q. Liu, “A MEMS pitch-tunable grating add/drop multiplexers,” in Proceedings of Optical MEMS 2000 IEEE/LEOS International Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2000), pp. 25–26.

R. B. Apte, F. Sandejas, W. Banyai, D. Bloom, “Grating light valves for high resolution displays,” in Technical Digest of the Solid-State Sensors and Actuators Workshop (Transducers Research Foundation, Cleveland Heights, Ohio, 1994), pp. 1–6.

G. B. Hocker, D. Youngner, E. Deutsch, A. Volpicelli, S. Senturia, M. Butler, M. Sinclair, T. Plowman, A. J. Ricco, “The polychromator: a programmable MEMS diffraction grating for synthetic spectra,” in Technical Digest of the Solid-State Sensors and Actuators Workshop (Transducers Research Foundation, Cleveland Heights, Ohio, 2000), pp. 89–92.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Actuation concept of analog and digital tunable gratings. The analog design permits analog control of the diffraction angle.

Fig. 2
Fig. 2

Design schematic of a double-hinged deformable membrane driven by thin-film piezoelectric actuators. The gratings, defined on top of the membrane, are tuned progressively along with the membrane.

Fig. 3
Fig. 3

Calculated grating period change versus applied voltage for various design parameters.

Fig. 4
Fig. 4

Finite-element solution of the device design under 10-V actuation to illustrate the x-axis membrane displacement. The z axis is exaggerated 20 times to show the different layers in the membrane. The units shown are in micrometers.

Fig. 5
Fig. 5

Intensity profile comparison between an ideal binary-phase grating and one with a bow in the deformable membrane design. The duty cycle and grating step height are taken at 50% and λ/4, respectively, for an ideal grating.

Fig. 6
Fig. 6

Microfabrication process flow of the analog tunable grating. The process consists of five masks and involves both surface and bulk micromachining. KOH, potassium hydroxide; RIE, reactive ion etching.

Fig. 7
Fig. 7

(a) Piezoelectric-actuated tunable grating under 120× magnification, (b) scanning electron microscopy cross-sectional image of fabricated PZT actuator on Pt/Ti electrodes, (c) magnified view of Pt gratings with a 4-µm period.

Fig. 8
Fig. 8

Ferroelectric response of fabricated PZT film. A relative dielectric constant of 1200 and dielectric loss of less than 0.05 were measured.

Fig. 9
Fig. 9

Hysteresis characterization of piezoelectric film after completion of device fabrication.

Fig. 10
Fig. 10

Measured period change versus applied voltage for two different device designs.12 Both results match with the analytical model for a single set of material properties and with a single fitted d 31 coefficient at -100 pC/N.

Fig. 11
Fig. 11

Uniformity of membrane strain under actuation. A uniformity variation of 16% (defined as the standard deviation over the averaged value) is measured. The error bars depict the maximum and minimum values of the measurements.

Fig. 12
Fig. 12

First-order diffracted angular change versus applied voltage obtained by optical image centroid processing and mechanical motion measurements. The optical measurement is corrected for tilt in the membrane with the finite-element mechanical model and is the main source of uncertainty.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

δx=d31 EPZT AVatPZTkx,
ΔθmλΔdd2,

Metrics