Abstract

We present a new infrared (IR) detection scheme based on the infrared quantum counter (IRQC) detector and utilizing the photon avalanche process. At the time of its discovery, the phenomenon of photon avalanche was considered a limitation rather than an advantage for the development of IRQC. Both the experimental results and the numerical modeling presented demonstrate that the process responsible for photon avalanche can be used to enhance the detection of an IR signal. A new room-temperature IR detection scheme is proposed on the basis of the results of this research. The novel detection scheme presented demonstrates an increase in detectivity and a decrease in the noise-equivalent power when compared with the IRQC schemes previously discussed in the literature.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Bloembergen, “Solid state infrared quantum counters,” Phys. Rev. Lett. 2, 84–85 (1954).
    [CrossRef]
  2. J. S. Chivian, W. E. Case, D. D. Eden, “The photon avalanche: a new phenomenon in Pr3+-based infrared quantum counters,” Appl. Phys. Lett. 35, 124–125 (1979).
    [CrossRef]
  3. N. J. Krasutsky, “10-μm samarium based quantum counter,” J. Appl. Phys. 54, 1261–1267 (1983).
    [CrossRef]
  4. M.-F. Joubert, “Photon avalanche upconversion in rare earth laser materials,” Opt. Mater. 11, 181–203 (1999).
    [CrossRef]
  5. W. Length, R. M. MacFarlane, “Excitation mechanisms for upconversion lasers,” J. Lumin. 45, 346–350 (1990).
    [CrossRef]
  6. M. E. Koch, W. E. Case, “The photon avalanche laser,” in Advances in Laser Science I: Proceedings of the First International Laser Science Conference, W. C. Stwalley, M. Lapp, eds. (American Institute of Physics, New York, 1986), pp. 142–144.
  7. M. E. Koch, A. W. Kueny, W. E. Case, “Photon avalanche upconversion laser at 644 nm,” Appl. Phys. Lett. 56, 1083–1085 (1990).
    [CrossRef]
  8. A. Wilkins, Osram Sylvania Inc., Westfield, Indiana (personal communication, June2000).
  9. Corning Glass Works, “Corning color filter glasses effective May 1980,” (Corning Glass Works, Corning, N.Y., 1978).
  10. D. B. Gatch, S. A. Holmstrom, W. M. Yen, “Photon avalanche in Pr3+:LaCl3,” J. Lumin. 83–84, 55–59 (1999).
  11. D. B. Gatch, W. M. Dennis, W. M. Yen, “Photon avalanche effect in LaCl3:Pr3+,” Phys. Rev. B 62, 10790–10796 (2000).
    [CrossRef]
  12. Jobin Yvon Inc., Guide for Spectroscopy, Jobin Yvon/Spex Instruments S.A. Group (Instruments S.A., Edison, N.J., 1994).
  13. J. F. Porter, “Sensitivity of Pr3+:LaCl3 infrared quantum counter,” IEEE J. Quantum Electron. QE-1, 113–115 (1965).
    [CrossRef]
  14. W. B. Gandrud, H. W. Moos, “Improved rare-earth trichloride infrared quantum counter sensitivity,” IEEE J. Quantum Electron. QE-4, 249–252 (1968).
    [CrossRef]
  15. J. C. Wright, D. J. Zalucha, H. V. Lauer, D. E. Cox, F. K. Fong, “Laser optical double resonance and efficient infrared quantum counter upconversion in LaCl3:Pr3+ and LaF3:Pr3+,” J. Appl. Phys. 44, 781–786 (1973).
    [CrossRef]

2000

D. B. Gatch, W. M. Dennis, W. M. Yen, “Photon avalanche effect in LaCl3:Pr3+,” Phys. Rev. B 62, 10790–10796 (2000).
[CrossRef]

1999

D. B. Gatch, S. A. Holmstrom, W. M. Yen, “Photon avalanche in Pr3+:LaCl3,” J. Lumin. 83–84, 55–59 (1999).

M.-F. Joubert, “Photon avalanche upconversion in rare earth laser materials,” Opt. Mater. 11, 181–203 (1999).
[CrossRef]

1990

W. Length, R. M. MacFarlane, “Excitation mechanisms for upconversion lasers,” J. Lumin. 45, 346–350 (1990).
[CrossRef]

M. E. Koch, A. W. Kueny, W. E. Case, “Photon avalanche upconversion laser at 644 nm,” Appl. Phys. Lett. 56, 1083–1085 (1990).
[CrossRef]

1983

N. J. Krasutsky, “10-μm samarium based quantum counter,” J. Appl. Phys. 54, 1261–1267 (1983).
[CrossRef]

1979

J. S. Chivian, W. E. Case, D. D. Eden, “The photon avalanche: a new phenomenon in Pr3+-based infrared quantum counters,” Appl. Phys. Lett. 35, 124–125 (1979).
[CrossRef]

1973

J. C. Wright, D. J. Zalucha, H. V. Lauer, D. E. Cox, F. K. Fong, “Laser optical double resonance and efficient infrared quantum counter upconversion in LaCl3:Pr3+ and LaF3:Pr3+,” J. Appl. Phys. 44, 781–786 (1973).
[CrossRef]

1968

W. B. Gandrud, H. W. Moos, “Improved rare-earth trichloride infrared quantum counter sensitivity,” IEEE J. Quantum Electron. QE-4, 249–252 (1968).
[CrossRef]

1965

J. F. Porter, “Sensitivity of Pr3+:LaCl3 infrared quantum counter,” IEEE J. Quantum Electron. QE-1, 113–115 (1965).
[CrossRef]

1954

N. Bloembergen, “Solid state infrared quantum counters,” Phys. Rev. Lett. 2, 84–85 (1954).
[CrossRef]

Bloembergen, N.

N. Bloembergen, “Solid state infrared quantum counters,” Phys. Rev. Lett. 2, 84–85 (1954).
[CrossRef]

Case, W. E.

M. E. Koch, A. W. Kueny, W. E. Case, “Photon avalanche upconversion laser at 644 nm,” Appl. Phys. Lett. 56, 1083–1085 (1990).
[CrossRef]

J. S. Chivian, W. E. Case, D. D. Eden, “The photon avalanche: a new phenomenon in Pr3+-based infrared quantum counters,” Appl. Phys. Lett. 35, 124–125 (1979).
[CrossRef]

M. E. Koch, W. E. Case, “The photon avalanche laser,” in Advances in Laser Science I: Proceedings of the First International Laser Science Conference, W. C. Stwalley, M. Lapp, eds. (American Institute of Physics, New York, 1986), pp. 142–144.

Chivian, J. S.

J. S. Chivian, W. E. Case, D. D. Eden, “The photon avalanche: a new phenomenon in Pr3+-based infrared quantum counters,” Appl. Phys. Lett. 35, 124–125 (1979).
[CrossRef]

Cox, D. E.

J. C. Wright, D. J. Zalucha, H. V. Lauer, D. E. Cox, F. K. Fong, “Laser optical double resonance and efficient infrared quantum counter upconversion in LaCl3:Pr3+ and LaF3:Pr3+,” J. Appl. Phys. 44, 781–786 (1973).
[CrossRef]

Dennis, W. M.

D. B. Gatch, W. M. Dennis, W. M. Yen, “Photon avalanche effect in LaCl3:Pr3+,” Phys. Rev. B 62, 10790–10796 (2000).
[CrossRef]

Eden, D. D.

J. S. Chivian, W. E. Case, D. D. Eden, “The photon avalanche: a new phenomenon in Pr3+-based infrared quantum counters,” Appl. Phys. Lett. 35, 124–125 (1979).
[CrossRef]

Fong, F. K.

J. C. Wright, D. J. Zalucha, H. V. Lauer, D. E. Cox, F. K. Fong, “Laser optical double resonance and efficient infrared quantum counter upconversion in LaCl3:Pr3+ and LaF3:Pr3+,” J. Appl. Phys. 44, 781–786 (1973).
[CrossRef]

Gandrud, W. B.

W. B. Gandrud, H. W. Moos, “Improved rare-earth trichloride infrared quantum counter sensitivity,” IEEE J. Quantum Electron. QE-4, 249–252 (1968).
[CrossRef]

Gatch, D. B.

D. B. Gatch, W. M. Dennis, W. M. Yen, “Photon avalanche effect in LaCl3:Pr3+,” Phys. Rev. B 62, 10790–10796 (2000).
[CrossRef]

D. B. Gatch, S. A. Holmstrom, W. M. Yen, “Photon avalanche in Pr3+:LaCl3,” J. Lumin. 83–84, 55–59 (1999).

Holmstrom, S. A.

D. B. Gatch, S. A. Holmstrom, W. M. Yen, “Photon avalanche in Pr3+:LaCl3,” J. Lumin. 83–84, 55–59 (1999).

Joubert, M.-F.

M.-F. Joubert, “Photon avalanche upconversion in rare earth laser materials,” Opt. Mater. 11, 181–203 (1999).
[CrossRef]

Koch, M. E.

M. E. Koch, A. W. Kueny, W. E. Case, “Photon avalanche upconversion laser at 644 nm,” Appl. Phys. Lett. 56, 1083–1085 (1990).
[CrossRef]

M. E. Koch, W. E. Case, “The photon avalanche laser,” in Advances in Laser Science I: Proceedings of the First International Laser Science Conference, W. C. Stwalley, M. Lapp, eds. (American Institute of Physics, New York, 1986), pp. 142–144.

Krasutsky, N. J.

N. J. Krasutsky, “10-μm samarium based quantum counter,” J. Appl. Phys. 54, 1261–1267 (1983).
[CrossRef]

Kueny, A. W.

M. E. Koch, A. W. Kueny, W. E. Case, “Photon avalanche upconversion laser at 644 nm,” Appl. Phys. Lett. 56, 1083–1085 (1990).
[CrossRef]

Lauer, H. V.

J. C. Wright, D. J. Zalucha, H. V. Lauer, D. E. Cox, F. K. Fong, “Laser optical double resonance and efficient infrared quantum counter upconversion in LaCl3:Pr3+ and LaF3:Pr3+,” J. Appl. Phys. 44, 781–786 (1973).
[CrossRef]

Length, W.

W. Length, R. M. MacFarlane, “Excitation mechanisms for upconversion lasers,” J. Lumin. 45, 346–350 (1990).
[CrossRef]

MacFarlane, R. M.

W. Length, R. M. MacFarlane, “Excitation mechanisms for upconversion lasers,” J. Lumin. 45, 346–350 (1990).
[CrossRef]

Moos, H. W.

W. B. Gandrud, H. W. Moos, “Improved rare-earth trichloride infrared quantum counter sensitivity,” IEEE J. Quantum Electron. QE-4, 249–252 (1968).
[CrossRef]

Porter, J. F.

J. F. Porter, “Sensitivity of Pr3+:LaCl3 infrared quantum counter,” IEEE J. Quantum Electron. QE-1, 113–115 (1965).
[CrossRef]

Wilkins, A.

A. Wilkins, Osram Sylvania Inc., Westfield, Indiana (personal communication, June2000).

Wright, J. C.

J. C. Wright, D. J. Zalucha, H. V. Lauer, D. E. Cox, F. K. Fong, “Laser optical double resonance and efficient infrared quantum counter upconversion in LaCl3:Pr3+ and LaF3:Pr3+,” J. Appl. Phys. 44, 781–786 (1973).
[CrossRef]

Yen, W. M.

D. B. Gatch, W. M. Dennis, W. M. Yen, “Photon avalanche effect in LaCl3:Pr3+,” Phys. Rev. B 62, 10790–10796 (2000).
[CrossRef]

D. B. Gatch, S. A. Holmstrom, W. M. Yen, “Photon avalanche in Pr3+:LaCl3,” J. Lumin. 83–84, 55–59 (1999).

Zalucha, D. J.

J. C. Wright, D. J. Zalucha, H. V. Lauer, D. E. Cox, F. K. Fong, “Laser optical double resonance and efficient infrared quantum counter upconversion in LaCl3:Pr3+ and LaF3:Pr3+,” J. Appl. Phys. 44, 781–786 (1973).
[CrossRef]

Appl. Phys. Lett.

J. S. Chivian, W. E. Case, D. D. Eden, “The photon avalanche: a new phenomenon in Pr3+-based infrared quantum counters,” Appl. Phys. Lett. 35, 124–125 (1979).
[CrossRef]

M. E. Koch, A. W. Kueny, W. E. Case, “Photon avalanche upconversion laser at 644 nm,” Appl. Phys. Lett. 56, 1083–1085 (1990).
[CrossRef]

IEEE J. Quantum Electron.

J. F. Porter, “Sensitivity of Pr3+:LaCl3 infrared quantum counter,” IEEE J. Quantum Electron. QE-1, 113–115 (1965).
[CrossRef]

W. B. Gandrud, H. W. Moos, “Improved rare-earth trichloride infrared quantum counter sensitivity,” IEEE J. Quantum Electron. QE-4, 249–252 (1968).
[CrossRef]

J. Appl. Phys.

J. C. Wright, D. J. Zalucha, H. V. Lauer, D. E. Cox, F. K. Fong, “Laser optical double resonance and efficient infrared quantum counter upconversion in LaCl3:Pr3+ and LaF3:Pr3+,” J. Appl. Phys. 44, 781–786 (1973).
[CrossRef]

N. J. Krasutsky, “10-μm samarium based quantum counter,” J. Appl. Phys. 54, 1261–1267 (1983).
[CrossRef]

J. Lumin.

W. Length, R. M. MacFarlane, “Excitation mechanisms for upconversion lasers,” J. Lumin. 45, 346–350 (1990).
[CrossRef]

D. B. Gatch, S. A. Holmstrom, W. M. Yen, “Photon avalanche in Pr3+:LaCl3,” J. Lumin. 83–84, 55–59 (1999).

Opt. Mater.

M.-F. Joubert, “Photon avalanche upconversion in rare earth laser materials,” Opt. Mater. 11, 181–203 (1999).
[CrossRef]

Phys. Rev. B

D. B. Gatch, W. M. Dennis, W. M. Yen, “Photon avalanche effect in LaCl3:Pr3+,” Phys. Rev. B 62, 10790–10796 (2000).
[CrossRef]

Phys. Rev. Lett.

N. Bloembergen, “Solid state infrared quantum counters,” Phys. Rev. Lett. 2, 84–85 (1954).
[CrossRef]

Other

Jobin Yvon Inc., Guide for Spectroscopy, Jobin Yvon/Spex Instruments S.A. Group (Instruments S.A., Edison, N.J., 1994).

A. Wilkins, Osram Sylvania Inc., Westfield, Indiana (personal communication, June2000).

Corning Glass Works, “Corning color filter glasses effective May 1980,” (Corning Glass Works, Corning, N.Y., 1978).

M. E. Koch, W. E. Case, “The photon avalanche laser,” in Advances in Laser Science I: Proceedings of the First International Laser Science Conference, W. C. Stwalley, M. Lapp, eds. (American Institute of Physics, New York, 1986), pp. 142–144.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Energy level diagram of Pr3+ and schematic diagram of the IR detection scheme. (b) The dotted curve represents the spectral response of the tungsten-halogen lamp (reproduced from Ref. 8). The dashed curve represents the transmission of the Corning 7-57 filter (reproduced from Ref. 9). The solid curve represents the wavelength of the pump laser as well as the IR signal incident on the sample.

Fig. 2
Fig. 2

Behavior of the emission spectra of the 546.1-nm pump at room temperature. The solid curve represents the emission spectra that are due to excitation by the pump only. The dashed and dotted curves represent the emission spectra that are due to the additional IR signal. The numbers represent the signal-to-noise ratios for each of the IR detection regions.

Fig. 3
Fig. 3

(a) Power dependence of the 546.1-nm transition pump at room temperature. The open symbols represent the avalanche behavior. The solid circles represent the emission when only the pump is exciting the crystal. The solid squares and triangles represent the emission when an IR signal is incident on the crystal in addition to the pump. To the right of the vertical line, IR detection is no longer possible. (b) The solid symbols represent the model of the power dependence of the 546.1-nm transition pump at room temperature. The open symbols represent the model of the power dependence of an IRQC.

Tables (2)

Tables Icon

Table 1 NEP Values [W (Hz)-1/2] for Various IR Detection Schemes in LaCl3:Pr3+

Tables Icon

Table 2 NEP Values [W (Hz)-1/2] for Various IR Detectors Currently Available through Jobin Yvon Inc.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

n˙1=-RIRn1-τth-1n1+b61τ6-1n6+b51τ5-1n5+b41τ4-1n4+b31τ3-1n3+τ2-1n2-xan4n1+uan3n2-xcn4n1+ucn3n2-xdn3n1+udn22,
n˙2=-R26n2+τth-1n1+b52τ5-1n5+b42τ4-1n4+b32τ3-1n3-τ2-1n2+xan4n1-uan3n2-xbn4n2+ubn32+xcn4n1-ucn3n2+2xdn3n1-2udn22,
n˙3=α13RIRn1+b63τ6-1n6+b53τ5-1n5+b43τ4-1n43-τ-1n3+xan4n1-uan3n2+2xbn4n2-2ubn32+xcn4n1-ucn3n2-xdn3n1+udn22,
n˙4=α14RIRn1+b64τ6-1n6+b54τ5-1n5-τ4-1n4-xan4n1+uan3n2-xbn4n2+ubn32-xcn4n1+ucn3n2,
n˙5=α15RIRn1+b65τ6n6-τ5-1n5,
n˙6=R26n2-τ6-1n6.
NEPPAηΔf.

Metrics