Abstract

Detecting objects in turbid media by use of just radiance signals has been a subject of study for many years. The use of Mueller matrix imaging methods has only recently been used as a tool for target detection. We will show not only that can targets still be detected by Mueller matrix methods even after their detection has escaped normal radiance schemes but also that their surface features can also still be distinguished. We will also show how the shape of the volume scattering function as well as the target and medium albedo strongly influences various elements of the Mueller matrix. One of the more interesting features of Mueller matrix imaging is that the diagonal elements are sensitive to perturbations in the environment surrounding the target. This implies that targets can be detected far beyond their geometric cross section. The methods presented here will have applications to submersible object detection, remote sensing in the atmosphere, and the detection of inhomogeneities in tissue.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Hielscher, A. A. Eick, J. R. Mourant, D. Shen, J. O. Freyer, I. J. Bigio, “Diffuse backscattering Mueller matrices of highly scattering media,” Opt. Express 1, 441–454 (1997) http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  2. M. J. Rakovic, G. W. Kattawar, “Theoretical analysis of polarization patterns from incoherent backscattering of light,” Appl. Opt. 37, 3333–3338 (1998).
    [CrossRef]
  3. B. D. Cameron, M. J. Rakovic, M. Mehrubeoglu, G. W. Kattawar, S. Rastegar, L. V. Wang, G. L. Cote, “Measurement and calculation of the two-dimensional backscattering Mueller matrix of a turbid medium,” Opt. Lett. 23, 485–487 (1998).
    [CrossRef]
  4. M. J. Rakovic, G. W. Kattawar, M. Mehrubeoglu, B. D. Cameron, L. V. Wang, S. Rastegar, G. L. Cote, “Light backscattering polarization patterns from turbid media: theory and experiment,” Appl. Opt. 38, 3399–3408 (1999).
    [CrossRef]
  5. G. W. Kattawar, M. J. Rakovic, “Virtues of Mueller matrix imaging for underwater target detection,” Appl. Opt. 38, 6431–6438 (1999).
    [CrossRef]
  6. G. W. Kattawar, “A three-parameter analytic phase function for multiple scattering calculations,” J. Quant. Spectrosc. Radiat. Transfer 15, 831–849 (1975).
    [CrossRef]
  7. M. I. Mischenko, J. W. Hovenier, L. D. Travis, Light Scattering by Nonspherical Particles (Academic, San Diego, Calif., 2000), p. 15.
  8. J. G. Walker, P. C. Y. Chang, K. I. Hopcraft, “Visibility depth improvement in active polarization imaging in scattering media,” Appl. Opt. 39, 4933–4941 (2000).
    [CrossRef]
  9. G. D. Gilbert, J. C. Pernicka, “Improvement of underwater visibility by reduction of backscatter with a circular polarization technique,” Appl. Opt. 6, 741–746 (1967).
    [CrossRef] [PubMed]
  10. L. E. Mertens, In-Water Photography (Wiley, New York, 1970), p. 99.

2000 (1)

1999 (2)

1998 (2)

1997 (1)

1975 (1)

G. W. Kattawar, “A three-parameter analytic phase function for multiple scattering calculations,” J. Quant. Spectrosc. Radiat. Transfer 15, 831–849 (1975).
[CrossRef]

1967 (1)

Bigio, I. J.

Cameron, B. D.

Chang, P. C. Y.

Cote, G. L.

Eick, A. A.

Freyer, J. O.

Gilbert, G. D.

Hielscher, A. H.

Hopcraft, K. I.

Hovenier, J. W.

M. I. Mischenko, J. W. Hovenier, L. D. Travis, Light Scattering by Nonspherical Particles (Academic, San Diego, Calif., 2000), p. 15.

Kattawar, G. W.

Mehrubeoglu, M.

Mertens, L. E.

L. E. Mertens, In-Water Photography (Wiley, New York, 1970), p. 99.

Mischenko, M. I.

M. I. Mischenko, J. W. Hovenier, L. D. Travis, Light Scattering by Nonspherical Particles (Academic, San Diego, Calif., 2000), p. 15.

Mourant, J. R.

Pernicka, J. C.

Rakovic, M. J.

Rastegar, S.

Shen, D.

Travis, L. D.

M. I. Mischenko, J. W. Hovenier, L. D. Travis, Light Scattering by Nonspherical Particles (Academic, San Diego, Calif., 2000), p. 15.

Walker, J. G.

Wang, L. V.

Appl. Opt. (5)

J. Quant. Spectrosc. Radiat. Transfer (1)

G. W. Kattawar, “A three-parameter analytic phase function for multiple scattering calculations,” J. Quant. Spectrosc. Radiat. Transfer 15, 831–849 (1975).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Other (2)

L. E. Mertens, In-Water Photography (Wiley, New York, 1970), p. 99.

M. I. Mischenko, J. W. Hovenier, L. D. Travis, Light Scattering by Nonspherical Particles (Academic, San Diego, Calif., 2000), p. 15.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Phase functions used in the simulations.

Fig. 2
Fig. 2

Geometry of the simulation showing the placement of the detector, target, and source.

Fig. 3
Fig. 3

Target showing the different annular regions along with their Mueller matrices for paint, depolarizing, and polarizing-preserving regions.

Fig. 4
Fig. 4

(a) Radiance versus distance from the target center for the five phase functions used in the simulations. Vertical dotted lines show the boundaries of the annular regions with different Mueller matrices. (b) The same as (a) except it is for the reduced Mueller matrix element 22.

Fig. 5
Fig. 5

(a) Radiance versus distance from the target center for the cases of no target and a perfectly black (albedo = 0.0) target for the TTH LBP phase function. (b) The same as (a) except it is for the Mueller matrix element 22.

Fig. 6
Fig. 6

(a) Same as Fig. 4(a) except it is for the Mueller matrix element 33. (b) The same as (a) except it is for the Mueller matrix element 44.

Fig. 7
Fig. 7

(a) Same as Fig. 5(a) except it is for the Mueller matrix element 33. (b) The same as (a) except it is for the Mueller matrix element 44.

Tables (1)

Tables Icon

Table 1 Parameters of Phase Functions Used in Simulations

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

pSHμ, ϕ; g=14π1-g21-2gμ+g23/2; μ=cos θ; g=cos θ.
pTTHμ, ϕ; α, g1, g2=αpSHμ, ϕ; g1+1-αpSHμ, ϕ; g2,
pSH1, ϕ; g = pTTH1, ϕ; α, g1, g2; g = 0.95; g2 = -0.95,
1 + g1 - g2 = α 1 + g11 - g12 + 1 - α1 + g21 - g22.
α=β - δγ - δ,
β = 1 + g1 - g2; γ = 1 + g11 - g12; δ = 1 + g21 - g22.
02π0π/2 p˜θ, ϕdθdϕ=12,
1 - M˜22 = M˜44 - M˜33.
1μ2-1μ2+100μ2-1μ2+1100002μμ2+100002μμ2+1,

Metrics