Abstract

We have demonstrated a target ranging and identification technique based on the timing modulation of a mode-locked laser coupled with fast incoherent detection. The range-to-target and the target-depth information have been determined with a resolution of better than 25 cm at single-pulse signal-to-noise ratios below 0.1. Our modeling results suggest that laser average power requirements remain a challenge, with upwards of 100 W likely needed for extension of this technique to ranges over 10 km, but improvements in overall system throughput would allow realization of its potential.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. A. Watson, P. F. McManamon, D. D. Smith, “Agile sensing using laser-based systems,” in Smart Imaging Systems, B. Javidi, ed., Vol. PM91 of the SPIE Press Monographs (SPIE, Bellingham, Wash., 2001), pp. 69–90.
  2. R. C. Sharp, D. E. Spock, N. Pan, J. Elliot, “190-fs passively mode-locked thulium fiber laser with a low threshold,” Opt. Lett. 21, 881–883 (1996).
    [Crossref] [PubMed]
  3. See, for example, K. W. Cattermole, Principles of Pulse Code Modulation (American Elsevier, New York, 1969).
  4. See, for example, A. V. Jelalian, Laser Radar Systems (Artech House, Boston, Mass., 1992).
  5. See, for example, E. L. Dereniak, D. G. Crowe, Optical Radiation Detectors (Wiley, New York, 1984).
  6. R. Paschotta, F. Brunner, E. Innerhofer, T. Südmeyer, U. Keller, “High average power femtosecond and picosecond lasers,” in Advanced Solid State Lasers, M. E. Fermann, L. R. Marshall, eds., Vol. 68 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002), pp. 117–120.

1996 (1)

Brunner, F.

R. Paschotta, F. Brunner, E. Innerhofer, T. Südmeyer, U. Keller, “High average power femtosecond and picosecond lasers,” in Advanced Solid State Lasers, M. E. Fermann, L. R. Marshall, eds., Vol. 68 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002), pp. 117–120.

Cattermole, K. W.

See, for example, K. W. Cattermole, Principles of Pulse Code Modulation (American Elsevier, New York, 1969).

Crowe, D. G.

See, for example, E. L. Dereniak, D. G. Crowe, Optical Radiation Detectors (Wiley, New York, 1984).

Dereniak, E. L.

See, for example, E. L. Dereniak, D. G. Crowe, Optical Radiation Detectors (Wiley, New York, 1984).

Elliot, J.

Innerhofer, E.

R. Paschotta, F. Brunner, E. Innerhofer, T. Südmeyer, U. Keller, “High average power femtosecond and picosecond lasers,” in Advanced Solid State Lasers, M. E. Fermann, L. R. Marshall, eds., Vol. 68 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002), pp. 117–120.

Jelalian, A. V.

See, for example, A. V. Jelalian, Laser Radar Systems (Artech House, Boston, Mass., 1992).

Keller, U.

R. Paschotta, F. Brunner, E. Innerhofer, T. Südmeyer, U. Keller, “High average power femtosecond and picosecond lasers,” in Advanced Solid State Lasers, M. E. Fermann, L. R. Marshall, eds., Vol. 68 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002), pp. 117–120.

McManamon, P. F.

E. A. Watson, P. F. McManamon, D. D. Smith, “Agile sensing using laser-based systems,” in Smart Imaging Systems, B. Javidi, ed., Vol. PM91 of the SPIE Press Monographs (SPIE, Bellingham, Wash., 2001), pp. 69–90.

Pan, N.

Paschotta, R.

R. Paschotta, F. Brunner, E. Innerhofer, T. Südmeyer, U. Keller, “High average power femtosecond and picosecond lasers,” in Advanced Solid State Lasers, M. E. Fermann, L. R. Marshall, eds., Vol. 68 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002), pp. 117–120.

Sharp, R. C.

Smith, D. D.

E. A. Watson, P. F. McManamon, D. D. Smith, “Agile sensing using laser-based systems,” in Smart Imaging Systems, B. Javidi, ed., Vol. PM91 of the SPIE Press Monographs (SPIE, Bellingham, Wash., 2001), pp. 69–90.

Spock, D. E.

Südmeyer, T.

R. Paschotta, F. Brunner, E. Innerhofer, T. Südmeyer, U. Keller, “High average power femtosecond and picosecond lasers,” in Advanced Solid State Lasers, M. E. Fermann, L. R. Marshall, eds., Vol. 68 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002), pp. 117–120.

Watson, E. A.

E. A. Watson, P. F. McManamon, D. D. Smith, “Agile sensing using laser-based systems,” in Smart Imaging Systems, B. Javidi, ed., Vol. PM91 of the SPIE Press Monographs (SPIE, Bellingham, Wash., 2001), pp. 69–90.

Opt. Lett. (1)

Other (5)

See, for example, K. W. Cattermole, Principles of Pulse Code Modulation (American Elsevier, New York, 1969).

See, for example, A. V. Jelalian, Laser Radar Systems (Artech House, Boston, Mass., 1992).

See, for example, E. L. Dereniak, D. G. Crowe, Optical Radiation Detectors (Wiley, New York, 1984).

R. Paschotta, F. Brunner, E. Innerhofer, T. Südmeyer, U. Keller, “High average power femtosecond and picosecond lasers,” in Advanced Solid State Lasers, M. E. Fermann, L. R. Marshall, eds., Vol. 68 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002), pp. 117–120.

E. A. Watson, P. F. McManamon, D. D. Smith, “Agile sensing using laser-based systems,” in Smart Imaging Systems, B. Javidi, ed., Vol. PM91 of the SPIE Press Monographs (SPIE, Bellingham, Wash., 2001), pp. 69–90.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the mode-locked target ID technique. EO, electro-optic.

Fig. 2
Fig. 2

Experimental setup. Inset shows the details of the mode-locked laser and extended optical path.

Fig. 3
Fig. 3

Raw signal and cross-correlation traces for a single target: (a) and (b) without and (c)–(e) with attenuation to simulate low SNR.

Fig. 4
Fig. 4

Cross-correlation traces for two targets: (a) and (b) without and (c) and (d) with attenuation to simulate a low SNR. The plots on the right are expansions of the peaks on the left.

Fig. 5
Fig. 5

Cross-correlation peaks for three targets equally spaced along the beam path by the specified distance. The last trace shows data for a single target for comparison.

Fig. 6
Fig. 6

Cross-correlation peak for a single target placed in each of three different positions relative to the laser and detector.

Fig. 7
Fig. 7

Average laser power required for a SNR of 0.1 as a function of range to target.

Tables (1)

Tables Icon

Table 1 Parameters Used in Performance Modeling

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Psig=PσΩrcvAtar TrcvTtransTatm2,

Metrics