Abstract

A simple reflow technique is employed for the fabrication of elliptical refractive microlens arrays (MLAs) on a low-cost inorganic-organic SiO2/ZrO2 sol-gel glass. The measured results show that the fabricated elliptical microlenses in a 256 × 512 array have excellent surface and dimensional qualities in terms of smoothness and uniformity. It is also shown that the optical parameters of the MLAs, such as the focal length and aperture dimension, can be accurately controlled. The proposed technique requires only an ordinary binary photomask for pattern transfer. Furthermore, the sol-gel material is found to be feasible for high-volume production, because the fabrication of MLAs can be implemented by use of cheap sol-gel materials without an etching step.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Goltson, M. Hoiz, “Agile beam steering using binary optics microlens arrays,” Opt. Eng. 29, 1392–1397 (1990).
    [CrossRef]
  2. H. Chase, M. A. Handschy, M. J. Callagham, “Improvement of spatial light modulator optical input/output performance using microlens arrays,” Opt. Lett. 20, 1444–1446 (1995).
    [CrossRef] [PubMed]
  3. K. M. Mahoney, A. M. Weiner, “Modified femtosecond pulse shaper using microlens arrays,” Opt. Lett. 21, 812–814 (1996).
    [CrossRef] [PubMed]
  4. F. Sauer, J. Jahns, V. R. Nljauder, “Refractive-diffractive micro-optics for permutation interconnects,” Opt. Eng. 33, 1550–1559 (1994).
    [CrossRef]
  5. R. R. A. Syms, A. S. Holmes, “Reflow and burial of channel waveguides formed in sol-gel glass on Si substrates,” IEEE Photon. Technol. Lett. 5, 1077–1079 (1993).
    [CrossRef]
  6. D. Blac, S. Pelissier, K. Saravanamuttu, S. I. Najafi, M. P. Andrews, “Self-processing of surface-relief gratings in photosensitive sol-gel glasses,” Adv. Mater. 11, 1508–1511 (1999).
    [CrossRef]
  7. X.-C. Yuan, W. X. Yu, N. Q. Ngo, W. C. Cheong, “Cost-effective fabrication of microlenses on hybrid sol-gel glass with a high-energy beam-sensitive gray-scale mask,” Opt. Express 10, 303–308 (2002), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  8. J. T. Rantala, N. Nordman, O. Nordman, J. Vahakangas, S. Honkannen, N. Peyghambarian, “Sol-gel hybrid glass diffractive element by electron-beam exposure,” Electron. Lett. 34, 455–456 (1998).
    [CrossRef]
  9. T. Suleski, D. O’Shea, “Grey-scale masks for diffractive-optics fabrication: I. Commercial slide imagers,” Appl. Opt. 34, 7507–7517 (1995).
    [CrossRef] [PubMed]
  10. K. Kintaka, J. Nishii, N. Tohge, “Diffraction gratings of photosensitive ZrO2 gel films fabricated with the two-ultraviolet-beam interference method,” Appl. Opt. 39, 489–493 (2000).
    [CrossRef]
  11. M. T. Gale, M. Rossi, J. Pedersen, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist,” Opt. Eng. 33, 3556–3566 (1994).
    [CrossRef]
  12. J. Neumann, K. S. Wieking, D. Kip, “Direct laser writing of surface reliefs in dry, self-developing photopolymer films,” Appl. Opt. 38, 5418–5421 (1999).
    [CrossRef]
  13. E. B. Kley, H. J. Fuchs, A. Kilian, “Fabrication of glass lenses by melting technology,” in Lithographic and Micromachining Techniques for Optical Component Fabrication, E. B. Kley, H. P. Herzig, eds., Proc. SPIE4440, 85–92 (2001).
    [CrossRef]

2002 (1)

2000 (1)

1999 (2)

D. Blac, S. Pelissier, K. Saravanamuttu, S. I. Najafi, M. P. Andrews, “Self-processing of surface-relief gratings in photosensitive sol-gel glasses,” Adv. Mater. 11, 1508–1511 (1999).
[CrossRef]

J. Neumann, K. S. Wieking, D. Kip, “Direct laser writing of surface reliefs in dry, self-developing photopolymer films,” Appl. Opt. 38, 5418–5421 (1999).
[CrossRef]

1998 (1)

J. T. Rantala, N. Nordman, O. Nordman, J. Vahakangas, S. Honkannen, N. Peyghambarian, “Sol-gel hybrid glass diffractive element by electron-beam exposure,” Electron. Lett. 34, 455–456 (1998).
[CrossRef]

1996 (1)

1995 (2)

1994 (2)

M. T. Gale, M. Rossi, J. Pedersen, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist,” Opt. Eng. 33, 3556–3566 (1994).
[CrossRef]

F. Sauer, J. Jahns, V. R. Nljauder, “Refractive-diffractive micro-optics for permutation interconnects,” Opt. Eng. 33, 1550–1559 (1994).
[CrossRef]

1993 (1)

R. R. A. Syms, A. S. Holmes, “Reflow and burial of channel waveguides formed in sol-gel glass on Si substrates,” IEEE Photon. Technol. Lett. 5, 1077–1079 (1993).
[CrossRef]

1990 (1)

W. Goltson, M. Hoiz, “Agile beam steering using binary optics microlens arrays,” Opt. Eng. 29, 1392–1397 (1990).
[CrossRef]

Andrews, M. P.

D. Blac, S. Pelissier, K. Saravanamuttu, S. I. Najafi, M. P. Andrews, “Self-processing of surface-relief gratings in photosensitive sol-gel glasses,” Adv. Mater. 11, 1508–1511 (1999).
[CrossRef]

Blac, D.

D. Blac, S. Pelissier, K. Saravanamuttu, S. I. Najafi, M. P. Andrews, “Self-processing of surface-relief gratings in photosensitive sol-gel glasses,” Adv. Mater. 11, 1508–1511 (1999).
[CrossRef]

Callagham, M. J.

Chase, H.

Cheong, W. C.

Fuchs, H. J.

E. B. Kley, H. J. Fuchs, A. Kilian, “Fabrication of glass lenses by melting technology,” in Lithographic and Micromachining Techniques for Optical Component Fabrication, E. B. Kley, H. P. Herzig, eds., Proc. SPIE4440, 85–92 (2001).
[CrossRef]

Gale, M. T.

M. T. Gale, M. Rossi, J. Pedersen, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist,” Opt. Eng. 33, 3556–3566 (1994).
[CrossRef]

Goltson, W.

W. Goltson, M. Hoiz, “Agile beam steering using binary optics microlens arrays,” Opt. Eng. 29, 1392–1397 (1990).
[CrossRef]

Handschy, M. A.

Hoiz, M.

W. Goltson, M. Hoiz, “Agile beam steering using binary optics microlens arrays,” Opt. Eng. 29, 1392–1397 (1990).
[CrossRef]

Holmes, A. S.

R. R. A. Syms, A. S. Holmes, “Reflow and burial of channel waveguides formed in sol-gel glass on Si substrates,” IEEE Photon. Technol. Lett. 5, 1077–1079 (1993).
[CrossRef]

Honkannen, S.

J. T. Rantala, N. Nordman, O. Nordman, J. Vahakangas, S. Honkannen, N. Peyghambarian, “Sol-gel hybrid glass diffractive element by electron-beam exposure,” Electron. Lett. 34, 455–456 (1998).
[CrossRef]

Jahns, J.

F. Sauer, J. Jahns, V. R. Nljauder, “Refractive-diffractive micro-optics for permutation interconnects,” Opt. Eng. 33, 1550–1559 (1994).
[CrossRef]

Kilian, A.

E. B. Kley, H. J. Fuchs, A. Kilian, “Fabrication of glass lenses by melting technology,” in Lithographic and Micromachining Techniques for Optical Component Fabrication, E. B. Kley, H. P. Herzig, eds., Proc. SPIE4440, 85–92 (2001).
[CrossRef]

Kintaka, K.

Kip, D.

Kley, E. B.

E. B. Kley, H. J. Fuchs, A. Kilian, “Fabrication of glass lenses by melting technology,” in Lithographic and Micromachining Techniques for Optical Component Fabrication, E. B. Kley, H. P. Herzig, eds., Proc. SPIE4440, 85–92 (2001).
[CrossRef]

Mahoney, K. M.

Najafi, S. I.

D. Blac, S. Pelissier, K. Saravanamuttu, S. I. Najafi, M. P. Andrews, “Self-processing of surface-relief gratings in photosensitive sol-gel glasses,” Adv. Mater. 11, 1508–1511 (1999).
[CrossRef]

Neumann, J.

Ngo, N. Q.

Nishii, J.

Nljauder, V. R.

F. Sauer, J. Jahns, V. R. Nljauder, “Refractive-diffractive micro-optics for permutation interconnects,” Opt. Eng. 33, 1550–1559 (1994).
[CrossRef]

Nordman, N.

J. T. Rantala, N. Nordman, O. Nordman, J. Vahakangas, S. Honkannen, N. Peyghambarian, “Sol-gel hybrid glass diffractive element by electron-beam exposure,” Electron. Lett. 34, 455–456 (1998).
[CrossRef]

Nordman, O.

J. T. Rantala, N. Nordman, O. Nordman, J. Vahakangas, S. Honkannen, N. Peyghambarian, “Sol-gel hybrid glass diffractive element by electron-beam exposure,” Electron. Lett. 34, 455–456 (1998).
[CrossRef]

O’Shea, D.

Pedersen, J.

M. T. Gale, M. Rossi, J. Pedersen, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist,” Opt. Eng. 33, 3556–3566 (1994).
[CrossRef]

Pelissier, S.

D. Blac, S. Pelissier, K. Saravanamuttu, S. I. Najafi, M. P. Andrews, “Self-processing of surface-relief gratings in photosensitive sol-gel glasses,” Adv. Mater. 11, 1508–1511 (1999).
[CrossRef]

Peyghambarian, N.

J. T. Rantala, N. Nordman, O. Nordman, J. Vahakangas, S. Honkannen, N. Peyghambarian, “Sol-gel hybrid glass diffractive element by electron-beam exposure,” Electron. Lett. 34, 455–456 (1998).
[CrossRef]

Rantala, J. T.

J. T. Rantala, N. Nordman, O. Nordman, J. Vahakangas, S. Honkannen, N. Peyghambarian, “Sol-gel hybrid glass diffractive element by electron-beam exposure,” Electron. Lett. 34, 455–456 (1998).
[CrossRef]

Rossi, M.

M. T. Gale, M. Rossi, J. Pedersen, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist,” Opt. Eng. 33, 3556–3566 (1994).
[CrossRef]

Saravanamuttu, K.

D. Blac, S. Pelissier, K. Saravanamuttu, S. I. Najafi, M. P. Andrews, “Self-processing of surface-relief gratings in photosensitive sol-gel glasses,” Adv. Mater. 11, 1508–1511 (1999).
[CrossRef]

Sauer, F.

F. Sauer, J. Jahns, V. R. Nljauder, “Refractive-diffractive micro-optics for permutation interconnects,” Opt. Eng. 33, 1550–1559 (1994).
[CrossRef]

Suleski, T.

Syms, R. R. A.

R. R. A. Syms, A. S. Holmes, “Reflow and burial of channel waveguides formed in sol-gel glass on Si substrates,” IEEE Photon. Technol. Lett. 5, 1077–1079 (1993).
[CrossRef]

Tohge, N.

Vahakangas, J.

J. T. Rantala, N. Nordman, O. Nordman, J. Vahakangas, S. Honkannen, N. Peyghambarian, “Sol-gel hybrid glass diffractive element by electron-beam exposure,” Electron. Lett. 34, 455–456 (1998).
[CrossRef]

Weiner, A. M.

Wieking, K. S.

Yu, W. X.

Yuan, X.-C.

Adv. Mater. (1)

D. Blac, S. Pelissier, K. Saravanamuttu, S. I. Najafi, M. P. Andrews, “Self-processing of surface-relief gratings in photosensitive sol-gel glasses,” Adv. Mater. 11, 1508–1511 (1999).
[CrossRef]

Appl. Opt. (3)

Electron. Lett. (1)

J. T. Rantala, N. Nordman, O. Nordman, J. Vahakangas, S. Honkannen, N. Peyghambarian, “Sol-gel hybrid glass diffractive element by electron-beam exposure,” Electron. Lett. 34, 455–456 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

R. R. A. Syms, A. S. Holmes, “Reflow and burial of channel waveguides formed in sol-gel glass on Si substrates,” IEEE Photon. Technol. Lett. 5, 1077–1079 (1993).
[CrossRef]

Opt. Eng. (3)

F. Sauer, J. Jahns, V. R. Nljauder, “Refractive-diffractive micro-optics for permutation interconnects,” Opt. Eng. 33, 1550–1559 (1994).
[CrossRef]

W. Goltson, M. Hoiz, “Agile beam steering using binary optics microlens arrays,” Opt. Eng. 29, 1392–1397 (1990).
[CrossRef]

M. T. Gale, M. Rossi, J. Pedersen, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist,” Opt. Eng. 33, 3556–3566 (1994).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Other (1)

E. B. Kley, H. J. Fuchs, A. Kilian, “Fabrication of glass lenses by melting technology,” in Lithographic and Micromachining Techniques for Optical Component Fabrication, E. B. Kley, H. P. Herzig, eds., Proc. SPIE4440, 85–92 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Lithographic steps of use of the reflow technique for the fabrication of MLAs in sol-gel material.

Fig. 2
Fig. 2

Mask layout of an elliptical MLA.

Fig. 3
Fig. 3

SEM image of an elliptical MLA in sol-gel material.

Fig. 4
Fig. 4

Surface profile measurement of an elliptical sol-gel MLA along the long axis of the elliptical aperture (in the x direction). (a) Measured surface profile (in micrometers). (b) Deviation of the fabricated profile from the theoretical curve (in nanometers).

Fig. 5
Fig. 5

Surface profile measurement of an elliptical sol-gel MLA along the short axis of the elliptical aperture (in the y direction). (a) Measured surface (in micrometers). (b) Deviation of the fabricated profile from the theoretical curve (in nanometers).

Fig. 6
Fig. 6

AFM image showing the surface roughness in an area of 1 µm × 1 µm on an elliptical MLA.

Fig. 7
Fig. 7

Dimensional parameters of an elliptical microlens.

Fig. 8
Fig. 8

Light intensity on the quasi-confocal plane (in the x direction) of the fabricated elliptical MLA. The grid scale is 5 µm × 5 µm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

R= D2+4h28h.
f=Rn-1,
F#=f/D.
x2a2+ y2b2+ z2c2=1,
V=πab1-1- hc2H,
V= πabh2c1- h3c.
H= h1- h3c21- h2c h2h  c,

Metrics