Abstract

The partial removal of a section of the core from a continuous D-shaped optical fiber is presented. In the core removal process, selective chemical etching is used with hydrofluoric (HF) acid. A 25% HF acid solution removes the cladding material above the core, and a 5% HF acid solution removes the core. A red laser with a wavelength of 670 nm is transmitted through the optical fiber during the etching. The power transmitted through the optical fiber is correlated to the etch depth by scanning electron microscope imaging. The developed process provides a repeatable method to produce an optical fiber with a specific etch depth.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Ainslie, “A review of the fabrication and properties of erbium-doped fibers for optical amplifiers,” J. Lightwave Technol. 9, 220–227 (1991).
    [CrossRef]
  2. K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
    [CrossRef]
  3. G. Fawcett, W. Johnstone, I. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, T. G. Ryan, “In-line fibre-optic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985–986 (1992).
    [CrossRef]
  4. S. Creany, W. Johnstone, K. McCallion, “Continuous-fiber modulator with high-bandwidth coplanar strip electrodes,” IEEE Photon. Technol. Lett. 8, 355–357 (1996).
    [CrossRef]
  5. J. V. Wright, S. R. Mallinson, C. A. Millar, “A fiber-based crosspoint switch using high-refractive index interlay materials,” IEEE J. Sel. Areas Commun. 6, 1160–1168 (1988).
    [CrossRef]
  6. W. Johnstone, G. Thursby, D. Moodie, R. Varshney, B. Culshaw, “Fibre-optic wavelength channel selector with high resolution,” Electron. Lett. 28, 1364–1365 (1992).
    [CrossRef]
  7. R. Vallee, G. He, “Polarizing properties of high index birefringent waveguide on top of a polished fiber coupler,” J. Lightwave Technol. 11, 1196–1203 (1993).
    [CrossRef]
  8. K. H. Smith, D. J. Markos, S. M. Schultz, R. H. Selfridge, T. D. Monte, R. B. Dyott, “Fabrication and analysis of a low-loss in-fiber polymer waveguide,” Appl. Opt., submitted for publication.
  9. S. Mononobe, M. Ohtsu, “Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching,” J. Lightwave Technol. 14, 2231–2235 (1996).
    [CrossRef]
  10. G. V. Mishakov, V. I. Sokolov, “Precision technique for side-polished fibers fabrication,” in Seventh International Conference on Laser and Laser-Information Technologies, V. Y. Panchenko, V. S. Golubev, eds., Proc. SPIE4644, 498–502 (2002).
    [CrossRef]
  11. S.-K. Liaw, J.-Y. Chiu, S.-M. Tseng, “Precision side-polished fibers with a long interaction length,” Jpn. J. Appl. Phys. Part 2 36, L1179–L1181 (1997).
    [CrossRef]
  12. BeamPROP User’s Guide, RSoft Inc., 200 Executive Blvd., Ossining, N.Y. 10562.

1997 (2)

K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

S.-K. Liaw, J.-Y. Chiu, S.-M. Tseng, “Precision side-polished fibers with a long interaction length,” Jpn. J. Appl. Phys. Part 2 36, L1179–L1181 (1997).
[CrossRef]

1996 (2)

S. Creany, W. Johnstone, K. McCallion, “Continuous-fiber modulator with high-bandwidth coplanar strip electrodes,” IEEE Photon. Technol. Lett. 8, 355–357 (1996).
[CrossRef]

S. Mononobe, M. Ohtsu, “Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching,” J. Lightwave Technol. 14, 2231–2235 (1996).
[CrossRef]

1993 (1)

R. Vallee, G. He, “Polarizing properties of high index birefringent waveguide on top of a polished fiber coupler,” J. Lightwave Technol. 11, 1196–1203 (1993).
[CrossRef]

1992 (2)

W. Johnstone, G. Thursby, D. Moodie, R. Varshney, B. Culshaw, “Fibre-optic wavelength channel selector with high resolution,” Electron. Lett. 28, 1364–1365 (1992).
[CrossRef]

G. Fawcett, W. Johnstone, I. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, T. G. Ryan, “In-line fibre-optic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985–986 (1992).
[CrossRef]

1991 (1)

B. J. Ainslie, “A review of the fabrication and properties of erbium-doped fibers for optical amplifiers,” J. Lightwave Technol. 9, 220–227 (1991).
[CrossRef]

1988 (1)

J. V. Wright, S. R. Mallinson, C. A. Millar, “A fiber-based crosspoint switch using high-refractive index interlay materials,” IEEE J. Sel. Areas Commun. 6, 1160–1168 (1988).
[CrossRef]

Ainslie, B. J.

B. J. Ainslie, “A review of the fabrication and properties of erbium-doped fibers for optical amplifiers,” J. Lightwave Technol. 9, 220–227 (1991).
[CrossRef]

Andonovic, I.

G. Fawcett, W. Johnstone, I. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, T. G. Ryan, “In-line fibre-optic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985–986 (1992).
[CrossRef]

Bone, D. J.

G. Fawcett, W. Johnstone, I. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, T. G. Ryan, “In-line fibre-optic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985–986 (1992).
[CrossRef]

Carter, N.

G. Fawcett, W. Johnstone, I. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, T. G. Ryan, “In-line fibre-optic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985–986 (1992).
[CrossRef]

Chiu, J.-Y.

S.-K. Liaw, J.-Y. Chiu, S.-M. Tseng, “Precision side-polished fibers with a long interaction length,” Jpn. J. Appl. Phys. Part 2 36, L1179–L1181 (1997).
[CrossRef]

Creany, S.

S. Creany, W. Johnstone, K. McCallion, “Continuous-fiber modulator with high-bandwidth coplanar strip electrodes,” IEEE Photon. Technol. Lett. 8, 355–357 (1996).
[CrossRef]

Culshaw, B.

W. Johnstone, G. Thursby, D. Moodie, R. Varshney, B. Culshaw, “Fibre-optic wavelength channel selector with high resolution,” Electron. Lett. 28, 1364–1365 (1992).
[CrossRef]

Dyott, R. B.

K. H. Smith, D. J. Markos, S. M. Schultz, R. H. Selfridge, T. D. Monte, R. B. Dyott, “Fabrication and analysis of a low-loss in-fiber polymer waveguide,” Appl. Opt., submitted for publication.

Fawcett, G.

G. Fawcett, W. Johnstone, I. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, T. G. Ryan, “In-line fibre-optic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985–986 (1992).
[CrossRef]

Harvey, T. G.

G. Fawcett, W. Johnstone, I. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, T. G. Ryan, “In-line fibre-optic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985–986 (1992).
[CrossRef]

He, G.

R. Vallee, G. He, “Polarizing properties of high index birefringent waveguide on top of a polished fiber coupler,” J. Lightwave Technol. 11, 1196–1203 (1993).
[CrossRef]

Hill, K. O.

K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

Johnstone, W.

S. Creany, W. Johnstone, K. McCallion, “Continuous-fiber modulator with high-bandwidth coplanar strip electrodes,” IEEE Photon. Technol. Lett. 8, 355–357 (1996).
[CrossRef]

G. Fawcett, W. Johnstone, I. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, T. G. Ryan, “In-line fibre-optic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985–986 (1992).
[CrossRef]

W. Johnstone, G. Thursby, D. Moodie, R. Varshney, B. Culshaw, “Fibre-optic wavelength channel selector with high resolution,” Electron. Lett. 28, 1364–1365 (1992).
[CrossRef]

Liaw, S.-K.

S.-K. Liaw, J.-Y. Chiu, S.-M. Tseng, “Precision side-polished fibers with a long interaction length,” Jpn. J. Appl. Phys. Part 2 36, L1179–L1181 (1997).
[CrossRef]

Mallinson, S. R.

J. V. Wright, S. R. Mallinson, C. A. Millar, “A fiber-based crosspoint switch using high-refractive index interlay materials,” IEEE J. Sel. Areas Commun. 6, 1160–1168 (1988).
[CrossRef]

Markos, D. J.

K. H. Smith, D. J. Markos, S. M. Schultz, R. H. Selfridge, T. D. Monte, R. B. Dyott, “Fabrication and analysis of a low-loss in-fiber polymer waveguide,” Appl. Opt., submitted for publication.

McCallion, K.

S. Creany, W. Johnstone, K. McCallion, “Continuous-fiber modulator with high-bandwidth coplanar strip electrodes,” IEEE Photon. Technol. Lett. 8, 355–357 (1996).
[CrossRef]

Meltz, G.

K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

Millar, C. A.

J. V. Wright, S. R. Mallinson, C. A. Millar, “A fiber-based crosspoint switch using high-refractive index interlay materials,” IEEE J. Sel. Areas Commun. 6, 1160–1168 (1988).
[CrossRef]

Mishakov, G. V.

G. V. Mishakov, V. I. Sokolov, “Precision technique for side-polished fibers fabrication,” in Seventh International Conference on Laser and Laser-Information Technologies, V. Y. Panchenko, V. S. Golubev, eds., Proc. SPIE4644, 498–502 (2002).
[CrossRef]

Mononobe, S.

S. Mononobe, M. Ohtsu, “Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching,” J. Lightwave Technol. 14, 2231–2235 (1996).
[CrossRef]

Monte, T. D.

K. H. Smith, D. J. Markos, S. M. Schultz, R. H. Selfridge, T. D. Monte, R. B. Dyott, “Fabrication and analysis of a low-loss in-fiber polymer waveguide,” Appl. Opt., submitted for publication.

Moodie, D.

W. Johnstone, G. Thursby, D. Moodie, R. Varshney, B. Culshaw, “Fibre-optic wavelength channel selector with high resolution,” Electron. Lett. 28, 1364–1365 (1992).
[CrossRef]

Ohtsu, M.

S. Mononobe, M. Ohtsu, “Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching,” J. Lightwave Technol. 14, 2231–2235 (1996).
[CrossRef]

Ryan, T. G.

G. Fawcett, W. Johnstone, I. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, T. G. Ryan, “In-line fibre-optic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985–986 (1992).
[CrossRef]

Schultz, S. M.

K. H. Smith, D. J. Markos, S. M. Schultz, R. H. Selfridge, T. D. Monte, R. B. Dyott, “Fabrication and analysis of a low-loss in-fiber polymer waveguide,” Appl. Opt., submitted for publication.

Selfridge, R. H.

K. H. Smith, D. J. Markos, S. M. Schultz, R. H. Selfridge, T. D. Monte, R. B. Dyott, “Fabrication and analysis of a low-loss in-fiber polymer waveguide,” Appl. Opt., submitted for publication.

Smith, K. H.

K. H. Smith, D. J. Markos, S. M. Schultz, R. H. Selfridge, T. D. Monte, R. B. Dyott, “Fabrication and analysis of a low-loss in-fiber polymer waveguide,” Appl. Opt., submitted for publication.

Sokolov, V. I.

G. V. Mishakov, V. I. Sokolov, “Precision technique for side-polished fibers fabrication,” in Seventh International Conference on Laser and Laser-Information Technologies, V. Y. Panchenko, V. S. Golubev, eds., Proc. SPIE4644, 498–502 (2002).
[CrossRef]

Thursby, G.

W. Johnstone, G. Thursby, D. Moodie, R. Varshney, B. Culshaw, “Fibre-optic wavelength channel selector with high resolution,” Electron. Lett. 28, 1364–1365 (1992).
[CrossRef]

Tseng, S.-M.

S.-K. Liaw, J.-Y. Chiu, S.-M. Tseng, “Precision side-polished fibers with a long interaction length,” Jpn. J. Appl. Phys. Part 2 36, L1179–L1181 (1997).
[CrossRef]

Vallee, R.

R. Vallee, G. He, “Polarizing properties of high index birefringent waveguide on top of a polished fiber coupler,” J. Lightwave Technol. 11, 1196–1203 (1993).
[CrossRef]

Varshney, R.

W. Johnstone, G. Thursby, D. Moodie, R. Varshney, B. Culshaw, “Fibre-optic wavelength channel selector with high resolution,” Electron. Lett. 28, 1364–1365 (1992).
[CrossRef]

Wright, J. V.

J. V. Wright, S. R. Mallinson, C. A. Millar, “A fiber-based crosspoint switch using high-refractive index interlay materials,” IEEE J. Sel. Areas Commun. 6, 1160–1168 (1988).
[CrossRef]

Electron. Lett. (2)

G. Fawcett, W. Johnstone, I. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, T. G. Ryan, “In-line fibre-optic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985–986 (1992).
[CrossRef]

W. Johnstone, G. Thursby, D. Moodie, R. Varshney, B. Culshaw, “Fibre-optic wavelength channel selector with high resolution,” Electron. Lett. 28, 1364–1365 (1992).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

J. V. Wright, S. R. Mallinson, C. A. Millar, “A fiber-based crosspoint switch using high-refractive index interlay materials,” IEEE J. Sel. Areas Commun. 6, 1160–1168 (1988).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. Creany, W. Johnstone, K. McCallion, “Continuous-fiber modulator with high-bandwidth coplanar strip electrodes,” IEEE Photon. Technol. Lett. 8, 355–357 (1996).
[CrossRef]

J. Lightwave Technol. (4)

B. J. Ainslie, “A review of the fabrication and properties of erbium-doped fibers for optical amplifiers,” J. Lightwave Technol. 9, 220–227 (1991).
[CrossRef]

K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

R. Vallee, G. He, “Polarizing properties of high index birefringent waveguide on top of a polished fiber coupler,” J. Lightwave Technol. 11, 1196–1203 (1993).
[CrossRef]

S. Mononobe, M. Ohtsu, “Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching,” J. Lightwave Technol. 14, 2231–2235 (1996).
[CrossRef]

Jpn. J. Appl. Phys. Part 2 (1)

S.-K. Liaw, J.-Y. Chiu, S.-M. Tseng, “Precision side-polished fibers with a long interaction length,” Jpn. J. Appl. Phys. Part 2 36, L1179–L1181 (1997).
[CrossRef]

Other (3)

BeamPROP User’s Guide, RSoft Inc., 200 Executive Blvd., Ossining, N.Y. 10562.

G. V. Mishakov, V. I. Sokolov, “Precision technique for side-polished fibers fabrication,” in Seventh International Conference on Laser and Laser-Information Technologies, V. Y. Panchenko, V. S. Golubev, eds., Proc. SPIE4644, 498–502 (2002).
[CrossRef]

K. H. Smith, D. J. Markos, S. M. Schultz, R. H. Selfridge, T. D. Monte, R. B. Dyott, “Fabrication and analysis of a low-loss in-fiber polymer waveguide,” Appl. Opt., submitted for publication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Cross-sectional view of a D-shaped optical fiber.

Fig. 2
Fig. 2

Dip etch setup.

Fig. 3
Fig. 3

Core etch progression.

Fig. 4
Fig. 4

Refractive-index profile used in the numerical modeling.

Fig. 5
Fig. 5

Core profile corresponding to the cutoff for 1550-nm light.

Fig. 6
Fig. 6

Core profile corresponding to the cutoff for 670-nm light.

Fig. 7
Fig. 7

Power versus time for both 1550- and 670-nm light where (a) corresponds to the initial core breach and (b) corresponds to the 1550-nm cutoff.

Fig. 8
Fig. 8

Power versus time for 670-nm light and the corresponding SEM cross-sectional images.

Metrics