Abstract

The practical storage capacity of a holographic medium can be found by finely comparing reconstructions from independent holograms of an information-dense object wave. With the help of two orthogonally polarized reference waves, a pair of volume holograms is recorded simultaneously at imprint densities as high as 4.1 × 1010 bits/cm3. As a consequence of polarization, the holograms are not mutually coherent, and the twin encodings of the object wave can be reconstructed separately. These are brought into fine registration interferometrically and then scanned by a CCD camera. Experiments on glass-mounted Agfa 8E56, a fine-grained silver halide emulsion designed for holography, are reported. When the object wave was moderately dense in information, grain noise was the main cause of the reconstruction errors. Emulsional plasticity was the more significant factor both when the object wave was optically sparse and when it was extremely dense. Plasticity noise limited the information that could be retrieved to 2.7 × 1010 bits/cm3, which is 2 orders of magnitude below the capacity suggested by the emulsion’s bandwidth and grain-noise figures alone.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. V. van Ligten, H. Osterberg, “Holographic microscopy,” Nature 211, 282–283 (1966).
    [CrossRef]
  2. G. W. Ellis, “Holomicrography: transformation of image during reconstruction à posteriori,” Science 154, 1195–1197 (1966).
    [CrossRef] [PubMed]
  3. H. Lin, M. Sharnoff, L. Du, “Microscopic mapping of subnanometric motion in semitransparent systems,” Exp. Mech. 31, 257–263 (1991).
    [CrossRef]
  4. M. Sharnoff, T. H. Karcher, L. P. Brehm, “Microdifferential holography and the polysarcomeric unit of activation of skeletal muscle,” Science 223, 822–825 (1984).
    [CrossRef] [PubMed]
  5. W.-H. Lee, M. O. Greer, “Noise characteristics of photographic emulsions used for holography,” J. Opt. Soc. Am. 61, 402–409 (1971).
    [CrossRef]
  6. W.-H. Lee, “Effect of film-grain noise on the performance of holographic memory,” J. Opt. Soc. Am. 62, 797–801 (1972).
    [CrossRef]
  7. J. Goodman, “Film grain noise in wavefront reconstruction imaging,” J. Opt. Soc. Am. 57, 493–502 (1967).
    [CrossRef] [PubMed]
  8. R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), pp. 160–162, 474.
  9. P. Hariharan, Optical Holography (Cambridge U. Press, Cambridge, UK, 1984), pp. 80–81, 60–61.
  10. H. G. Curme, “Gelatin,” in The Theory of the Photographic Process, C. E. K. Mees, T. H. James, eds., 3rd ed. (Macmillan, New York, 1966), p. 53.
  11. K. Biedermann, N.-E. Molin, “Combining hypersensitization and rapid in situ processing for time-average observation in real-time hologram interferometry,” J. Phys. E 3, 669–680 (1970).
    [CrossRef]
  12. J. N. Butters, D. Denby, J. A. Leendertz, “A method for reducing movement in holographic emulsions,” J. Phys. E 2, 116–117 (1969).
    [CrossRef]
  13. D. E. Duffy, “Reducing photographic emulsion shrinkage for real-time holographic interferometry,” J. Phys. E 3, 561–562 (1970).
    [CrossRef]
  14. M. E. Fourney, A. P. Waggoner, K. V. Mate, “Recording polarization effects via holography,” J. Opt. Soc. Am. 58, 701(1968).
    [CrossRef]
  15. “Photographic materials for holography,” Publication 21.7271 (Agfa-Gevaert, Mortsel, Belgium, 1972).
  16. R. A. Syms, L. Solimar, “Planar volume phase holograms formed in bleached photographic emulsions,” Appl. Opt. 22, 1479–1496 (1983).
    [CrossRef] [PubMed]
  17. H. T. Buschmann, “The wavelength dependence of the transfer properties of photographic materials for holography,” in Optical and Acoustical Holography, E. Camatini, ed. (Plenum, New York, 1972), pp. 151–172.
    [CrossRef]
  18. M. Sharnoff, L. Du, H. Lin, “Simple procedure for improving the fidelity of holograms,” Rev. Sci. Instrum. 63, 1695–1697 (1992).
    [CrossRef]
  19. H. Lin, M. Sharnoff, “Microscopic mapping of subnanometric motion,” Appl. Opt. 29, 5163–5169 (1990).
    [CrossRef] [PubMed]
  20. C. P. Shillaber, Photomicrography in Theory and Practice (Wiley, New York, 1944), pp. 61–68.
  21. S. Lowenthal, H. Arsenault, “Image formation for coherent diffuse objects: statistical properties,” J. Opt. Soc. Am. 60, 1478–1483 (1970).
    [CrossRef]
  22. J. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1984), pp. 29–40.
  23. J. H. Altman, H. J. Zweig, “Effect of spread function on the storage of information on photographic emulsions,” Photograph. Sci. Eng. 7, 173–177 (1963).
  24. E. G. Ramberg, “Holographic information storage,” RCA Rev. 33, 5–53 (1972).
  25. Y. Beers, Introduction to the Theory of Error (Addison-Wesley, Reading, Mass., 1957).
  26. R. W. Hamming, Coding and Information Theory, 2nd ed. (Prentice-Hall, Englewood Cliffs, N.J., 1986), Chap. 3.
  27. H. I. Bjelkhagen, Silver-Halide Recording Materials for Holography and Their Processing (Springer-Verlag, Berlin, 1993), pp. 95, 114.
    [CrossRef]

1992 (1)

M. Sharnoff, L. Du, H. Lin, “Simple procedure for improving the fidelity of holograms,” Rev. Sci. Instrum. 63, 1695–1697 (1992).
[CrossRef]

1991 (1)

H. Lin, M. Sharnoff, L. Du, “Microscopic mapping of subnanometric motion in semitransparent systems,” Exp. Mech. 31, 257–263 (1991).
[CrossRef]

1990 (1)

1984 (1)

M. Sharnoff, T. H. Karcher, L. P. Brehm, “Microdifferential holography and the polysarcomeric unit of activation of skeletal muscle,” Science 223, 822–825 (1984).
[CrossRef] [PubMed]

1983 (1)

1972 (2)

1971 (1)

1970 (3)

D. E. Duffy, “Reducing photographic emulsion shrinkage for real-time holographic interferometry,” J. Phys. E 3, 561–562 (1970).
[CrossRef]

S. Lowenthal, H. Arsenault, “Image formation for coherent diffuse objects: statistical properties,” J. Opt. Soc. Am. 60, 1478–1483 (1970).
[CrossRef]

K. Biedermann, N.-E. Molin, “Combining hypersensitization and rapid in situ processing for time-average observation in real-time hologram interferometry,” J. Phys. E 3, 669–680 (1970).
[CrossRef]

1969 (1)

J. N. Butters, D. Denby, J. A. Leendertz, “A method for reducing movement in holographic emulsions,” J. Phys. E 2, 116–117 (1969).
[CrossRef]

1968 (1)

1967 (1)

1966 (2)

R. V. van Ligten, H. Osterberg, “Holographic microscopy,” Nature 211, 282–283 (1966).
[CrossRef]

G. W. Ellis, “Holomicrography: transformation of image during reconstruction à posteriori,” Science 154, 1195–1197 (1966).
[CrossRef] [PubMed]

1963 (1)

J. H. Altman, H. J. Zweig, “Effect of spread function on the storage of information on photographic emulsions,” Photograph. Sci. Eng. 7, 173–177 (1963).

Altman, J. H.

J. H. Altman, H. J. Zweig, “Effect of spread function on the storage of information on photographic emulsions,” Photograph. Sci. Eng. 7, 173–177 (1963).

Arsenault, H.

Beers, Y.

Y. Beers, Introduction to the Theory of Error (Addison-Wesley, Reading, Mass., 1957).

Biedermann, K.

K. Biedermann, N.-E. Molin, “Combining hypersensitization and rapid in situ processing for time-average observation in real-time hologram interferometry,” J. Phys. E 3, 669–680 (1970).
[CrossRef]

Bjelkhagen, H. I.

H. I. Bjelkhagen, Silver-Halide Recording Materials for Holography and Their Processing (Springer-Verlag, Berlin, 1993), pp. 95, 114.
[CrossRef]

Brehm, L. P.

M. Sharnoff, T. H. Karcher, L. P. Brehm, “Microdifferential holography and the polysarcomeric unit of activation of skeletal muscle,” Science 223, 822–825 (1984).
[CrossRef] [PubMed]

Burckhardt, C. B.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), pp. 160–162, 474.

Buschmann, H. T.

H. T. Buschmann, “The wavelength dependence of the transfer properties of photographic materials for holography,” in Optical and Acoustical Holography, E. Camatini, ed. (Plenum, New York, 1972), pp. 151–172.
[CrossRef]

Butters, J. N.

J. N. Butters, D. Denby, J. A. Leendertz, “A method for reducing movement in holographic emulsions,” J. Phys. E 2, 116–117 (1969).
[CrossRef]

Collier, R. J.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), pp. 160–162, 474.

Curme, H. G.

H. G. Curme, “Gelatin,” in The Theory of the Photographic Process, C. E. K. Mees, T. H. James, eds., 3rd ed. (Macmillan, New York, 1966), p. 53.

Denby, D.

J. N. Butters, D. Denby, J. A. Leendertz, “A method for reducing movement in holographic emulsions,” J. Phys. E 2, 116–117 (1969).
[CrossRef]

Du, L.

M. Sharnoff, L. Du, H. Lin, “Simple procedure for improving the fidelity of holograms,” Rev. Sci. Instrum. 63, 1695–1697 (1992).
[CrossRef]

H. Lin, M. Sharnoff, L. Du, “Microscopic mapping of subnanometric motion in semitransparent systems,” Exp. Mech. 31, 257–263 (1991).
[CrossRef]

Duffy, D. E.

D. E. Duffy, “Reducing photographic emulsion shrinkage for real-time holographic interferometry,” J. Phys. E 3, 561–562 (1970).
[CrossRef]

Ellis, G. W.

G. W. Ellis, “Holomicrography: transformation of image during reconstruction à posteriori,” Science 154, 1195–1197 (1966).
[CrossRef] [PubMed]

Fourney, M. E.

Goodman, J.

J. Goodman, “Film grain noise in wavefront reconstruction imaging,” J. Opt. Soc. Am. 57, 493–502 (1967).
[CrossRef] [PubMed]

J. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1984), pp. 29–40.

Greer, M. O.

Hamming, R. W.

R. W. Hamming, Coding and Information Theory, 2nd ed. (Prentice-Hall, Englewood Cliffs, N.J., 1986), Chap. 3.

Hariharan, P.

P. Hariharan, Optical Holography (Cambridge U. Press, Cambridge, UK, 1984), pp. 80–81, 60–61.

Karcher, T. H.

M. Sharnoff, T. H. Karcher, L. P. Brehm, “Microdifferential holography and the polysarcomeric unit of activation of skeletal muscle,” Science 223, 822–825 (1984).
[CrossRef] [PubMed]

Lee, W.-H.

Leendertz, J. A.

J. N. Butters, D. Denby, J. A. Leendertz, “A method for reducing movement in holographic emulsions,” J. Phys. E 2, 116–117 (1969).
[CrossRef]

Lin, H.

M. Sharnoff, L. Du, H. Lin, “Simple procedure for improving the fidelity of holograms,” Rev. Sci. Instrum. 63, 1695–1697 (1992).
[CrossRef]

H. Lin, M. Sharnoff, L. Du, “Microscopic mapping of subnanometric motion in semitransparent systems,” Exp. Mech. 31, 257–263 (1991).
[CrossRef]

H. Lin, M. Sharnoff, “Microscopic mapping of subnanometric motion,” Appl. Opt. 29, 5163–5169 (1990).
[CrossRef] [PubMed]

Lin, L. H.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), pp. 160–162, 474.

Lowenthal, S.

Mate, K. V.

Molin, N.-E.

K. Biedermann, N.-E. Molin, “Combining hypersensitization and rapid in situ processing for time-average observation in real-time hologram interferometry,” J. Phys. E 3, 669–680 (1970).
[CrossRef]

Osterberg, H.

R. V. van Ligten, H. Osterberg, “Holographic microscopy,” Nature 211, 282–283 (1966).
[CrossRef]

Ramberg, E. G.

E. G. Ramberg, “Holographic information storage,” RCA Rev. 33, 5–53 (1972).

Sharnoff, M.

M. Sharnoff, L. Du, H. Lin, “Simple procedure for improving the fidelity of holograms,” Rev. Sci. Instrum. 63, 1695–1697 (1992).
[CrossRef]

H. Lin, M. Sharnoff, L. Du, “Microscopic mapping of subnanometric motion in semitransparent systems,” Exp. Mech. 31, 257–263 (1991).
[CrossRef]

H. Lin, M. Sharnoff, “Microscopic mapping of subnanometric motion,” Appl. Opt. 29, 5163–5169 (1990).
[CrossRef] [PubMed]

M. Sharnoff, T. H. Karcher, L. P. Brehm, “Microdifferential holography and the polysarcomeric unit of activation of skeletal muscle,” Science 223, 822–825 (1984).
[CrossRef] [PubMed]

Shillaber, C. P.

C. P. Shillaber, Photomicrography in Theory and Practice (Wiley, New York, 1944), pp. 61–68.

Solimar, L.

Syms, R. A.

van Ligten, R. V.

R. V. van Ligten, H. Osterberg, “Holographic microscopy,” Nature 211, 282–283 (1966).
[CrossRef]

Waggoner, A. P.

Zweig, H. J.

J. H. Altman, H. J. Zweig, “Effect of spread function on the storage of information on photographic emulsions,” Photograph. Sci. Eng. 7, 173–177 (1963).

Appl. Opt. (2)

Exp. Mech. (1)

H. Lin, M. Sharnoff, L. Du, “Microscopic mapping of subnanometric motion in semitransparent systems,” Exp. Mech. 31, 257–263 (1991).
[CrossRef]

J. Opt. Soc. Am. (5)

J. Phys. E (3)

K. Biedermann, N.-E. Molin, “Combining hypersensitization and rapid in situ processing for time-average observation in real-time hologram interferometry,” J. Phys. E 3, 669–680 (1970).
[CrossRef]

J. N. Butters, D. Denby, J. A. Leendertz, “A method for reducing movement in holographic emulsions,” J. Phys. E 2, 116–117 (1969).
[CrossRef]

D. E. Duffy, “Reducing photographic emulsion shrinkage for real-time holographic interferometry,” J. Phys. E 3, 561–562 (1970).
[CrossRef]

Nature (1)

R. V. van Ligten, H. Osterberg, “Holographic microscopy,” Nature 211, 282–283 (1966).
[CrossRef]

Photograph. Sci. Eng. (1)

J. H. Altman, H. J. Zweig, “Effect of spread function on the storage of information on photographic emulsions,” Photograph. Sci. Eng. 7, 173–177 (1963).

RCA Rev. (1)

E. G. Ramberg, “Holographic information storage,” RCA Rev. 33, 5–53 (1972).

Rev. Sci. Instrum. (1)

M. Sharnoff, L. Du, H. Lin, “Simple procedure for improving the fidelity of holograms,” Rev. Sci. Instrum. 63, 1695–1697 (1992).
[CrossRef]

Science (2)

G. W. Ellis, “Holomicrography: transformation of image during reconstruction à posteriori,” Science 154, 1195–1197 (1966).
[CrossRef] [PubMed]

M. Sharnoff, T. H. Karcher, L. P. Brehm, “Microdifferential holography and the polysarcomeric unit of activation of skeletal muscle,” Science 223, 822–825 (1984).
[CrossRef] [PubMed]

Other (10)

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), pp. 160–162, 474.

P. Hariharan, Optical Holography (Cambridge U. Press, Cambridge, UK, 1984), pp. 80–81, 60–61.

H. G. Curme, “Gelatin,” in The Theory of the Photographic Process, C. E. K. Mees, T. H. James, eds., 3rd ed. (Macmillan, New York, 1966), p. 53.

“Photographic materials for holography,” Publication 21.7271 (Agfa-Gevaert, Mortsel, Belgium, 1972).

H. T. Buschmann, “The wavelength dependence of the transfer properties of photographic materials for holography,” in Optical and Acoustical Holography, E. Camatini, ed. (Plenum, New York, 1972), pp. 151–172.
[CrossRef]

J. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1984), pp. 29–40.

Y. Beers, Introduction to the Theory of Error (Addison-Wesley, Reading, Mass., 1957).

R. W. Hamming, Coding and Information Theory, 2nd ed. (Prentice-Hall, Englewood Cliffs, N.J., 1986), Chap. 3.

H. I. Bjelkhagen, Silver-Halide Recording Materials for Holography and Their Processing (Springer-Verlag, Berlin, 1993), pp. 95, 114.
[CrossRef]

C. P. Shillaber, Photomicrography in Theory and Practice (Wiley, New York, 1944), pp. 61–68.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Recording setup. The polarizations of R1, R2, and W are established by polarizing adjustable beam splitters PBS and half-wave plate WP.

Fig. 2
Fig. 2

Plots of the ratio of mean signal intensity to mean grain noise intensity S (open circles) and the reciprocal of D(α*) (filled circles) versus K for well-registered images of the maximally speckled USAF target.

Fig. 3
Fig. 3

Growth of plasticity noise with diminishing reference to object ratio K. Contributions expected from grain noise alone correspond to Q ≅ 1.

Tables (1)

Tables Icon

Table 1 Parameters of an Image Pair Recorded at K= 29 and Containing 9.3 × 10 6 Bitsa

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ρ= ρo/10log28SV/10K=1.13×1010 log108480/Kbits/cm3.
Riα I1i-αI2i/ I1i+αI2i,
Dα=1/Ti Ri2α.
|Uiα|= 1+α2+6αIN2/8I1i21/2,
σα= 1/8T1+α2+6αIN2 i1/I1i21/2.
σα*Dα*=Dmin.
Q=σ α*/Dα*.

Metrics