Abstract

Radon data interpolation is a necessary procedure in computed tomography (CT), especially for reconstruction from divergent beam scanning. In a polar-grid representation, the Radon data of a fanbeam projection are populated on an arc, rather on a radial line. Collectively, the Radon data generated from a fanbeam CT system are unevenly populated: The population becomes sparser as the polar distance increases. In CT reconstruction, the Fourier central slice theorem requires a radial scanline full of Radon data. Therefore the vacant entries of a scanline must be filled by interpolation. In addition, interpolation is also required in polar-to-Cartesian conversion. In this paper we propose a practical interpolation technique for filling the vacant entries by local convex combination. It is a linear interpolant that generates a value for a grid point from the available data lying in its neighborhood, by a weighted average, with the weights corresponding to the inverse distances. In fact, the linear convex combination serves as a general flat-smoothing operation in filling a vacancy. Specifically, this technique realizes a variety of linear interpolations, including nearest-neighbor replication, two-point collinear, three-point triangulation, and four-point quadrilateral, and local extrapolation, in a unified framework. Algorithms and a simulation demonstration are provided.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (23)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription