Abstract

We develop novel methods for compressing volumetric imagery that has been generated by single-platform (mobile) range sensors. We exploit the correlation structure inherent in multiple views in order to improve compression efficiency. We show that, for lossless compression, three-dimensional volumes compress more efficiently than two-dimensional (2D) images by a factor of 60%. Furthermore, our error metric for lossy compression suggests that accumulating more than nine range images in one volume before compression yields as much as a 99% improvement in compression performance over 2D compression.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. T. Yen, S. W. Smith, “Real-time rectilinear volumetric imaging using a periodic array,” Ultrasound Med. Biol. 28, 923–931 (2002).
    [CrossRef] [PubMed]
  2. M. Grasmueck, “3-D ground-penetrating radar applied to fracture imaging in gneiss,” Geophysics 61, 1050–1064 (1996).
    [CrossRef]
  3. E. D. Light, R. E. Davidsen, T. A. Hruschka, S. W. Smith, “Advances in two dimensional arrays for real time volumetric imaging,” in Proceedings of IEEE Conference on Ultrasonics (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 1619–1623.
  4. D. F. Huber, M. Hebert, “A new approach to 3-D terrain mapping,” in Proceedings of IEEE Conference on Intelligent Robots and Systems (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1999), pp. 1121–1127.
  5. W. Stubenvoll, T. Dimitrova, “3D-high accuracy sonar system for multiple mobile vehicles,” in Mobile Robots XIII and Intelligent Transportation Systems, H. M. Choset, D. W. Gage, P. Kachroo, M. A. Kourjanski, M. J. de Vries, eds., Proc. SPIE3525, 320–325 (1998).
    [CrossRef]
  6. J. Gluckman, S. K. Nayar, “Rectified catadioptric stereo sensors,” IEEE Trans. Pattern Anal. Mach. Intell. 24, 224–236 (2002).
    [CrossRef]
  7. U. Hampel, E. Schleicher, R. Freyer, “Volume image reconstruction for diffuse optical tomography,” Appl. Opt. 41, 3816–3826 (2002).
    [CrossRef] [PubMed]
  8. X. Xu, R. M. Narayanan, “Three-dimensional interferometric ISAR imaging for target scattering diagnosis and modeling,” IEEE Trans. Image Process. 10, 1094–1102 (2001).
    [CrossRef]
  9. G. K. Wallace, “The JPEG still picture compression standard,” IEEE Trans. Consum. Electron. 38, 18–34 (1992).
    [CrossRef]
  10. D. S. Taubman, M. W. Marcellin, JPEG2000: Image Compression Fundamentals, Practice and Standards (Kluwer Academic, Boston, Mass., 2002).
    [CrossRef]
  11. M. W. Marcellin, M. J. Gormish, A. Bilgin, M. P. Boliek, “An overview of JPEG-2000,” in Data Compression Conference (Institute of Electrical and Electronics Engineers, New York, 2000), pp. 523–541.
  12. “JPEG 2000 Part I Final Draft International Standard,” Doc. No. N1855 (ISO/JEC JTC 1/SC 29/WG1, August2000).
  13. A. Said, W. A. Pearlman, “A new, fast, and efficient image codec based on set partitioning in hierarchical trees,” IEEE Trans. Circuits Syst. Video Technol. 6, 243–250 (1996).
    [CrossRef]
  14. M. J. Weinberger, G. Seroussi, G. Sapiro, “LOCO-I: a low complexity, context-based, lossless image compression algorithm,” in Proceedings of Data Compression Conference (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 140–149.
  15. W. Xiaolin, N. Memon, “(CALIC)-(A) context based adaptive lossless image codec,” in International Conference on Acoustics, Speech, and Signal Processing (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 1890–1893.
  16. J. Luo, X. Wang, C. W. Chen, K. J. Parker, “Volumetric medical image compression with three-dimensional wavelet transform and octave zerotree coding,” in Visual Communications and Image Processing, R. Ansari, M. J. Smith, eds., Proc. SPIE2727, 579–590 (1996).
    [CrossRef]
  17. B. Aiazzi, P. S. Alba, S. Baronti, L. Alparone, “Three-dimensional lossless compression based on a separable generalized recursive interpolation,” in International Conference on Image Processing (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 85–88.
    [CrossRef]
  18. A. Baskurt, H. Benoit-Cattin, C. Odet, “On a 3-D medical image coding method using a separable 3-D wavelet transform,” in Medical Imaging, Y. Kim, ed., Proc. SPIE2431, 184–194 (1995).
  19. K. L. Lau, W. K. Vong, W. Y. Ng, “Lossless Compression of 3-D Images by Variable Predictive Coding,” in Proceedings of 2nd Singapore International Conference on Image Processing, (Institute of Electrical and Electronics Engineers, Singapore, 1992) pp. 161–165.
  20. M. Soucy, D. Laurendeau, “Multi-resolution surface modeling from multiple range views,” in Conference on Computer Vision and Pattern Recognition (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 348–353.
  21. A. D. Sappa, M. A. Garcia, B. X. Vintimilla, “Geometric and topological lossy compression of dense range images,” in Conference on Image Processing (Institute of Electrical and Electronics Engineers, New York, 2000), pp. 423–426.
  22. C. G. Bachman, Laser Radar Systems and Techniques (Aretch House, Norwood, Mass., 1979).
  23. B. W. Schilling, D. N. Barr, G. C. Templeton, “Multiple-return laser radar for three-dimensional imaging through obscurations,” Appl. Opt. 41, 2791–2799 (2002).
    [CrossRef] [PubMed]
  24. N. S. Jayant, P. Noll, Digital Coding of Waveforms (Prentice-Hall, Englewood Cliffs, N.J., 1984).
  25. J. C. Dagher, A. Bilgin, M. W. Marcellin, “Efficient rate control for video streaming,” IEEE Trans. Image Process (to be published).
  26. G. Lafruit, “MPEG-1, MPEG-2 and MPEG-4: from video compression to a worldwide multimedia compression standard,” Revue HF 2, 17–26 (2002).
  27. C. I. Podilchuk, N. S. Jayant, N. Farvardin, “Three-dimensional subband coding of video,” IEEE Trans. Image Process. 4, 125–139 (1995).
    [CrossRef] [PubMed]

2002

J. Gluckman, S. K. Nayar, “Rectified catadioptric stereo sensors,” IEEE Trans. Pattern Anal. Mach. Intell. 24, 224–236 (2002).
[CrossRef]

U. Hampel, E. Schleicher, R. Freyer, “Volume image reconstruction for diffuse optical tomography,” Appl. Opt. 41, 3816–3826 (2002).
[CrossRef] [PubMed]

J. T. Yen, S. W. Smith, “Real-time rectilinear volumetric imaging using a periodic array,” Ultrasound Med. Biol. 28, 923–931 (2002).
[CrossRef] [PubMed]

B. W. Schilling, D. N. Barr, G. C. Templeton, “Multiple-return laser radar for three-dimensional imaging through obscurations,” Appl. Opt. 41, 2791–2799 (2002).
[CrossRef] [PubMed]

G. Lafruit, “MPEG-1, MPEG-2 and MPEG-4: from video compression to a worldwide multimedia compression standard,” Revue HF 2, 17–26 (2002).

2001

X. Xu, R. M. Narayanan, “Three-dimensional interferometric ISAR imaging for target scattering diagnosis and modeling,” IEEE Trans. Image Process. 10, 1094–1102 (2001).
[CrossRef]

1996

M. Grasmueck, “3-D ground-penetrating radar applied to fracture imaging in gneiss,” Geophysics 61, 1050–1064 (1996).
[CrossRef]

A. Said, W. A. Pearlman, “A new, fast, and efficient image codec based on set partitioning in hierarchical trees,” IEEE Trans. Circuits Syst. Video Technol. 6, 243–250 (1996).
[CrossRef]

1995

C. I. Podilchuk, N. S. Jayant, N. Farvardin, “Three-dimensional subband coding of video,” IEEE Trans. Image Process. 4, 125–139 (1995).
[CrossRef] [PubMed]

1992

G. K. Wallace, “The JPEG still picture compression standard,” IEEE Trans. Consum. Electron. 38, 18–34 (1992).
[CrossRef]

Aiazzi, B.

B. Aiazzi, P. S. Alba, S. Baronti, L. Alparone, “Three-dimensional lossless compression based on a separable generalized recursive interpolation,” in International Conference on Image Processing (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 85–88.
[CrossRef]

Alba, P. S.

B. Aiazzi, P. S. Alba, S. Baronti, L. Alparone, “Three-dimensional lossless compression based on a separable generalized recursive interpolation,” in International Conference on Image Processing (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 85–88.
[CrossRef]

Alparone, L.

B. Aiazzi, P. S. Alba, S. Baronti, L. Alparone, “Three-dimensional lossless compression based on a separable generalized recursive interpolation,” in International Conference on Image Processing (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 85–88.
[CrossRef]

Bachman, C. G.

C. G. Bachman, Laser Radar Systems and Techniques (Aretch House, Norwood, Mass., 1979).

Baronti, S.

B. Aiazzi, P. S. Alba, S. Baronti, L. Alparone, “Three-dimensional lossless compression based on a separable generalized recursive interpolation,” in International Conference on Image Processing (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 85–88.
[CrossRef]

Barr, D. N.

Baskurt, A.

A. Baskurt, H. Benoit-Cattin, C. Odet, “On a 3-D medical image coding method using a separable 3-D wavelet transform,” in Medical Imaging, Y. Kim, ed., Proc. SPIE2431, 184–194 (1995).

Benoit-Cattin, H.

A. Baskurt, H. Benoit-Cattin, C. Odet, “On a 3-D medical image coding method using a separable 3-D wavelet transform,” in Medical Imaging, Y. Kim, ed., Proc. SPIE2431, 184–194 (1995).

Bilgin, A.

J. C. Dagher, A. Bilgin, M. W. Marcellin, “Efficient rate control for video streaming,” IEEE Trans. Image Process (to be published).

M. W. Marcellin, M. J. Gormish, A. Bilgin, M. P. Boliek, “An overview of JPEG-2000,” in Data Compression Conference (Institute of Electrical and Electronics Engineers, New York, 2000), pp. 523–541.

Boliek, M. P.

M. W. Marcellin, M. J. Gormish, A. Bilgin, M. P. Boliek, “An overview of JPEG-2000,” in Data Compression Conference (Institute of Electrical and Electronics Engineers, New York, 2000), pp. 523–541.

Chen, C. W.

J. Luo, X. Wang, C. W. Chen, K. J. Parker, “Volumetric medical image compression with three-dimensional wavelet transform and octave zerotree coding,” in Visual Communications and Image Processing, R. Ansari, M. J. Smith, eds., Proc. SPIE2727, 579–590 (1996).
[CrossRef]

Dagher, J. C.

J. C. Dagher, A. Bilgin, M. W. Marcellin, “Efficient rate control for video streaming,” IEEE Trans. Image Process (to be published).

Davidsen, R. E.

E. D. Light, R. E. Davidsen, T. A. Hruschka, S. W. Smith, “Advances in two dimensional arrays for real time volumetric imaging,” in Proceedings of IEEE Conference on Ultrasonics (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 1619–1623.

Dimitrova, T.

W. Stubenvoll, T. Dimitrova, “3D-high accuracy sonar system for multiple mobile vehicles,” in Mobile Robots XIII and Intelligent Transportation Systems, H. M. Choset, D. W. Gage, P. Kachroo, M. A. Kourjanski, M. J. de Vries, eds., Proc. SPIE3525, 320–325 (1998).
[CrossRef]

Farvardin, N.

C. I. Podilchuk, N. S. Jayant, N. Farvardin, “Three-dimensional subband coding of video,” IEEE Trans. Image Process. 4, 125–139 (1995).
[CrossRef] [PubMed]

Freyer, R.

Garcia, M. A.

A. D. Sappa, M. A. Garcia, B. X. Vintimilla, “Geometric and topological lossy compression of dense range images,” in Conference on Image Processing (Institute of Electrical and Electronics Engineers, New York, 2000), pp. 423–426.

Gluckman, J.

J. Gluckman, S. K. Nayar, “Rectified catadioptric stereo sensors,” IEEE Trans. Pattern Anal. Mach. Intell. 24, 224–236 (2002).
[CrossRef]

Gormish, M. J.

M. W. Marcellin, M. J. Gormish, A. Bilgin, M. P. Boliek, “An overview of JPEG-2000,” in Data Compression Conference (Institute of Electrical and Electronics Engineers, New York, 2000), pp. 523–541.

Grasmueck, M.

M. Grasmueck, “3-D ground-penetrating radar applied to fracture imaging in gneiss,” Geophysics 61, 1050–1064 (1996).
[CrossRef]

Hampel, U.

Hebert, M.

D. F. Huber, M. Hebert, “A new approach to 3-D terrain mapping,” in Proceedings of IEEE Conference on Intelligent Robots and Systems (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1999), pp. 1121–1127.

Hruschka, T. A.

E. D. Light, R. E. Davidsen, T. A. Hruschka, S. W. Smith, “Advances in two dimensional arrays for real time volumetric imaging,” in Proceedings of IEEE Conference on Ultrasonics (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 1619–1623.

Huber, D. F.

D. F. Huber, M. Hebert, “A new approach to 3-D terrain mapping,” in Proceedings of IEEE Conference on Intelligent Robots and Systems (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1999), pp. 1121–1127.

Jayant, N. S.

C. I. Podilchuk, N. S. Jayant, N. Farvardin, “Three-dimensional subband coding of video,” IEEE Trans. Image Process. 4, 125–139 (1995).
[CrossRef] [PubMed]

N. S. Jayant, P. Noll, Digital Coding of Waveforms (Prentice-Hall, Englewood Cliffs, N.J., 1984).

Lafruit, G.

G. Lafruit, “MPEG-1, MPEG-2 and MPEG-4: from video compression to a worldwide multimedia compression standard,” Revue HF 2, 17–26 (2002).

Lau, K. L.

K. L. Lau, W. K. Vong, W. Y. Ng, “Lossless Compression of 3-D Images by Variable Predictive Coding,” in Proceedings of 2nd Singapore International Conference on Image Processing, (Institute of Electrical and Electronics Engineers, Singapore, 1992) pp. 161–165.

Laurendeau, D.

M. Soucy, D. Laurendeau, “Multi-resolution surface modeling from multiple range views,” in Conference on Computer Vision and Pattern Recognition (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 348–353.

Light, E. D.

E. D. Light, R. E. Davidsen, T. A. Hruschka, S. W. Smith, “Advances in two dimensional arrays for real time volumetric imaging,” in Proceedings of IEEE Conference on Ultrasonics (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 1619–1623.

Luo, J.

J. Luo, X. Wang, C. W. Chen, K. J. Parker, “Volumetric medical image compression with three-dimensional wavelet transform and octave zerotree coding,” in Visual Communications and Image Processing, R. Ansari, M. J. Smith, eds., Proc. SPIE2727, 579–590 (1996).
[CrossRef]

Marcellin, M. W.

D. S. Taubman, M. W. Marcellin, JPEG2000: Image Compression Fundamentals, Practice and Standards (Kluwer Academic, Boston, Mass., 2002).
[CrossRef]

M. W. Marcellin, M. J. Gormish, A. Bilgin, M. P. Boliek, “An overview of JPEG-2000,” in Data Compression Conference (Institute of Electrical and Electronics Engineers, New York, 2000), pp. 523–541.

J. C. Dagher, A. Bilgin, M. W. Marcellin, “Efficient rate control for video streaming,” IEEE Trans. Image Process (to be published).

Memon, N.

W. Xiaolin, N. Memon, “(CALIC)-(A) context based adaptive lossless image codec,” in International Conference on Acoustics, Speech, and Signal Processing (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 1890–1893.

Narayanan, R. M.

X. Xu, R. M. Narayanan, “Three-dimensional interferometric ISAR imaging for target scattering diagnosis and modeling,” IEEE Trans. Image Process. 10, 1094–1102 (2001).
[CrossRef]

Nayar, S. K.

J. Gluckman, S. K. Nayar, “Rectified catadioptric stereo sensors,” IEEE Trans. Pattern Anal. Mach. Intell. 24, 224–236 (2002).
[CrossRef]

Ng, W. Y.

K. L. Lau, W. K. Vong, W. Y. Ng, “Lossless Compression of 3-D Images by Variable Predictive Coding,” in Proceedings of 2nd Singapore International Conference on Image Processing, (Institute of Electrical and Electronics Engineers, Singapore, 1992) pp. 161–165.

Noll, P.

N. S. Jayant, P. Noll, Digital Coding of Waveforms (Prentice-Hall, Englewood Cliffs, N.J., 1984).

Odet, C.

A. Baskurt, H. Benoit-Cattin, C. Odet, “On a 3-D medical image coding method using a separable 3-D wavelet transform,” in Medical Imaging, Y. Kim, ed., Proc. SPIE2431, 184–194 (1995).

Parker, K. J.

J. Luo, X. Wang, C. W. Chen, K. J. Parker, “Volumetric medical image compression with three-dimensional wavelet transform and octave zerotree coding,” in Visual Communications and Image Processing, R. Ansari, M. J. Smith, eds., Proc. SPIE2727, 579–590 (1996).
[CrossRef]

Pearlman, W. A.

A. Said, W. A. Pearlman, “A new, fast, and efficient image codec based on set partitioning in hierarchical trees,” IEEE Trans. Circuits Syst. Video Technol. 6, 243–250 (1996).
[CrossRef]

Podilchuk, C. I.

C. I. Podilchuk, N. S. Jayant, N. Farvardin, “Three-dimensional subband coding of video,” IEEE Trans. Image Process. 4, 125–139 (1995).
[CrossRef] [PubMed]

Said, A.

A. Said, W. A. Pearlman, “A new, fast, and efficient image codec based on set partitioning in hierarchical trees,” IEEE Trans. Circuits Syst. Video Technol. 6, 243–250 (1996).
[CrossRef]

Sapiro, G.

M. J. Weinberger, G. Seroussi, G. Sapiro, “LOCO-I: a low complexity, context-based, lossless image compression algorithm,” in Proceedings of Data Compression Conference (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 140–149.

Sappa, A. D.

A. D. Sappa, M. A. Garcia, B. X. Vintimilla, “Geometric and topological lossy compression of dense range images,” in Conference on Image Processing (Institute of Electrical and Electronics Engineers, New York, 2000), pp. 423–426.

Schilling, B. W.

Schleicher, E.

Seroussi, G.

M. J. Weinberger, G. Seroussi, G. Sapiro, “LOCO-I: a low complexity, context-based, lossless image compression algorithm,” in Proceedings of Data Compression Conference (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 140–149.

Smith, S. W.

J. T. Yen, S. W. Smith, “Real-time rectilinear volumetric imaging using a periodic array,” Ultrasound Med. Biol. 28, 923–931 (2002).
[CrossRef] [PubMed]

E. D. Light, R. E. Davidsen, T. A. Hruschka, S. W. Smith, “Advances in two dimensional arrays for real time volumetric imaging,” in Proceedings of IEEE Conference on Ultrasonics (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 1619–1623.

Soucy, M.

M. Soucy, D. Laurendeau, “Multi-resolution surface modeling from multiple range views,” in Conference on Computer Vision and Pattern Recognition (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 348–353.

Stubenvoll, W.

W. Stubenvoll, T. Dimitrova, “3D-high accuracy sonar system for multiple mobile vehicles,” in Mobile Robots XIII and Intelligent Transportation Systems, H. M. Choset, D. W. Gage, P. Kachroo, M. A. Kourjanski, M. J. de Vries, eds., Proc. SPIE3525, 320–325 (1998).
[CrossRef]

Taubman, D. S.

D. S. Taubman, M. W. Marcellin, JPEG2000: Image Compression Fundamentals, Practice and Standards (Kluwer Academic, Boston, Mass., 2002).
[CrossRef]

Templeton, G. C.

Vintimilla, B. X.

A. D. Sappa, M. A. Garcia, B. X. Vintimilla, “Geometric and topological lossy compression of dense range images,” in Conference on Image Processing (Institute of Electrical and Electronics Engineers, New York, 2000), pp. 423–426.

Vong, W. K.

K. L. Lau, W. K. Vong, W. Y. Ng, “Lossless Compression of 3-D Images by Variable Predictive Coding,” in Proceedings of 2nd Singapore International Conference on Image Processing, (Institute of Electrical and Electronics Engineers, Singapore, 1992) pp. 161–165.

Wallace, G. K.

G. K. Wallace, “The JPEG still picture compression standard,” IEEE Trans. Consum. Electron. 38, 18–34 (1992).
[CrossRef]

Wang, X.

J. Luo, X. Wang, C. W. Chen, K. J. Parker, “Volumetric medical image compression with three-dimensional wavelet transform and octave zerotree coding,” in Visual Communications and Image Processing, R. Ansari, M. J. Smith, eds., Proc. SPIE2727, 579–590 (1996).
[CrossRef]

Weinberger, M. J.

M. J. Weinberger, G. Seroussi, G. Sapiro, “LOCO-I: a low complexity, context-based, lossless image compression algorithm,” in Proceedings of Data Compression Conference (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 140–149.

Xiaolin, W.

W. Xiaolin, N. Memon, “(CALIC)-(A) context based adaptive lossless image codec,” in International Conference on Acoustics, Speech, and Signal Processing (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 1890–1893.

Xu, X.

X. Xu, R. M. Narayanan, “Three-dimensional interferometric ISAR imaging for target scattering diagnosis and modeling,” IEEE Trans. Image Process. 10, 1094–1102 (2001).
[CrossRef]

Yen, J. T.

J. T. Yen, S. W. Smith, “Real-time rectilinear volumetric imaging using a periodic array,” Ultrasound Med. Biol. 28, 923–931 (2002).
[CrossRef] [PubMed]

Appl. Opt.

Geophysics

M. Grasmueck, “3-D ground-penetrating radar applied to fracture imaging in gneiss,” Geophysics 61, 1050–1064 (1996).
[CrossRef]

IEEE Trans. Circuits Syst. Video Technol.

A. Said, W. A. Pearlman, “A new, fast, and efficient image codec based on set partitioning in hierarchical trees,” IEEE Trans. Circuits Syst. Video Technol. 6, 243–250 (1996).
[CrossRef]

IEEE Trans. Consum. Electron.

G. K. Wallace, “The JPEG still picture compression standard,” IEEE Trans. Consum. Electron. 38, 18–34 (1992).
[CrossRef]

IEEE Trans. Image Process

C. I. Podilchuk, N. S. Jayant, N. Farvardin, “Three-dimensional subband coding of video,” IEEE Trans. Image Process. 4, 125–139 (1995).
[CrossRef] [PubMed]

IEEE Trans. Image Process.

X. Xu, R. M. Narayanan, “Three-dimensional interferometric ISAR imaging for target scattering diagnosis and modeling,” IEEE Trans. Image Process. 10, 1094–1102 (2001).
[CrossRef]

IEEE Trans. Pattern Anal. Mach. Intell.

J. Gluckman, S. K. Nayar, “Rectified catadioptric stereo sensors,” IEEE Trans. Pattern Anal. Mach. Intell. 24, 224–236 (2002).
[CrossRef]

Revue HF

G. Lafruit, “MPEG-1, MPEG-2 and MPEG-4: from video compression to a worldwide multimedia compression standard,” Revue HF 2, 17–26 (2002).

Ultrasound Med. Biol.

J. T. Yen, S. W. Smith, “Real-time rectilinear volumetric imaging using a periodic array,” Ultrasound Med. Biol. 28, 923–931 (2002).
[CrossRef] [PubMed]

Other

E. D. Light, R. E. Davidsen, T. A. Hruschka, S. W. Smith, “Advances in two dimensional arrays for real time volumetric imaging,” in Proceedings of IEEE Conference on Ultrasonics (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 1619–1623.

D. F. Huber, M. Hebert, “A new approach to 3-D terrain mapping,” in Proceedings of IEEE Conference on Intelligent Robots and Systems (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1999), pp. 1121–1127.

W. Stubenvoll, T. Dimitrova, “3D-high accuracy sonar system for multiple mobile vehicles,” in Mobile Robots XIII and Intelligent Transportation Systems, H. M. Choset, D. W. Gage, P. Kachroo, M. A. Kourjanski, M. J. de Vries, eds., Proc. SPIE3525, 320–325 (1998).
[CrossRef]

M. J. Weinberger, G. Seroussi, G. Sapiro, “LOCO-I: a low complexity, context-based, lossless image compression algorithm,” in Proceedings of Data Compression Conference (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 140–149.

W. Xiaolin, N. Memon, “(CALIC)-(A) context based adaptive lossless image codec,” in International Conference on Acoustics, Speech, and Signal Processing (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 1890–1893.

J. Luo, X. Wang, C. W. Chen, K. J. Parker, “Volumetric medical image compression with three-dimensional wavelet transform and octave zerotree coding,” in Visual Communications and Image Processing, R. Ansari, M. J. Smith, eds., Proc. SPIE2727, 579–590 (1996).
[CrossRef]

B. Aiazzi, P. S. Alba, S. Baronti, L. Alparone, “Three-dimensional lossless compression based on a separable generalized recursive interpolation,” in International Conference on Image Processing (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 85–88.
[CrossRef]

A. Baskurt, H. Benoit-Cattin, C. Odet, “On a 3-D medical image coding method using a separable 3-D wavelet transform,” in Medical Imaging, Y. Kim, ed., Proc. SPIE2431, 184–194 (1995).

K. L. Lau, W. K. Vong, W. Y. Ng, “Lossless Compression of 3-D Images by Variable Predictive Coding,” in Proceedings of 2nd Singapore International Conference on Image Processing, (Institute of Electrical and Electronics Engineers, Singapore, 1992) pp. 161–165.

M. Soucy, D. Laurendeau, “Multi-resolution surface modeling from multiple range views,” in Conference on Computer Vision and Pattern Recognition (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 348–353.

A. D. Sappa, M. A. Garcia, B. X. Vintimilla, “Geometric and topological lossy compression of dense range images,” in Conference on Image Processing (Institute of Electrical and Electronics Engineers, New York, 2000), pp. 423–426.

C. G. Bachman, Laser Radar Systems and Techniques (Aretch House, Norwood, Mass., 1979).

N. S. Jayant, P. Noll, Digital Coding of Waveforms (Prentice-Hall, Englewood Cliffs, N.J., 1984).

J. C. Dagher, A. Bilgin, M. W. Marcellin, “Efficient rate control for video streaming,” IEEE Trans. Image Process (to be published).

D. S. Taubman, M. W. Marcellin, JPEG2000: Image Compression Fundamentals, Practice and Standards (Kluwer Academic, Boston, Mass., 2002).
[CrossRef]

M. W. Marcellin, M. J. Gormish, A. Bilgin, M. P. Boliek, “An overview of JPEG-2000,” in Data Compression Conference (Institute of Electrical and Electronics Engineers, New York, 2000), pp. 523–541.

“JPEG 2000 Part I Final Draft International Standard,” Doc. No. N1855 (ISO/JEC JTC 1/SC 29/WG1, August2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Schematic of ladar range sensor operation. (a) Two return pulses indicate objects at two different ranges within the illuminating pulse. (b) Different scan angle generates a return signal that is correlated with the one in (a).

Fig. 2
Fig. 2

Candidate representations of a single range image. (a) Range of strongest return depicted as gray-scale pixels at 8 bpp. (b) Elevation-only data extracted from (a). (c) Data from (a) rendered as a volume. (d) Same as (c) but rendered from a different perspective.

Fig. 3
Fig. 3

Sample range images associated with different sensor positions. (a) Range measurement from sensor position 1. (b) Range measurement from sensor position 45. (c) Range measurement from sensor position 90.

Fig. 4
Fig. 4

RMSE for independent lossy compression of 13 range images with JPEG2000.

Fig. 5
Fig. 5

Compression results for extreme foliage coverage. (a) Range image with a high level of foliage. (b) RMSE for independent lossy compression of such range images with JPEG2000.

Fig. 6
Fig. 6

Results of mapping range images to a common location. (a) Range image 1 (see Figure 3(a) mapped to location 45. (b) RMSE for independent lossy compression of mapped range images with JPEG2000. (c) RMSE after inverse mapping.

Fig. 7
Fig. 7

Results of encoding the elevation information from a range image. (a) RMSE for independent lossy compression of elevation images with JPEG2000. (b) RMSE after conversion of elevation back to range.

Fig. 8
Fig. 8

Comparison of lossless versus lossy compression of range imagery.

Fig. 9
Fig. 9

RMSE for independent compression of range imagery with rate allocation.

Fig. 10
Fig. 10

3D coding performance at 0.2 bpp with JPEG2000 and MPEG-4.

Fig. 11
Fig. 11

3D Volumetric representation. (a) Data from Fig. 2(d) quantized to a 10 cm × 10 cm × 10 cm spatial resolution and viewed from a different angle. (c) Same as (b) but rendered from all data from 13 viewing positions.

Fig. 12
Fig. 12

Comparison of lossless compression of range imagery versus 3D volumes.

Fig. 13
Fig. 13

Computation of lossy compression metric for 3D volumes.

Fig. 14
Fig. 14

Computation of lossy compression metric for range imagery.

Fig. 15
Fig. 15

Comparison of lossy compression of range imagery versus 3D volumes at 0.44 bits per pixel per range image.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

RMSE=1X×Yx=1Xy=1YIx,y-Ox,y21/2,
μ=1Ni=1NRMSEi,
σ2=1N-1i=1NRMSEi-μ2,
B=log2rmax-rminΔ+1,
RMSE=δ2/12.
J=1Ni=1N DiRi
i=1N Ri=NR.
Ri=R+12log2σi2G,
Di=Gε22-2R,
G=i=1N σi21/N.

Metrics