Abstract

Poly(vinyl alcohol-acrylamide) photopolymers are materials of interest in the field of digital information storage (holographic memories). We analyzed the behavior of a 1-mm-thick photopolymer. Using a standard holographic setup, we recorded unslanted diffraction gratings. The material has high angular selectivity (0.4°), good sensitivity (88 mJ/cm2), and small losses caused by absorption and scattering of light. It also has a high maximum diffraction efficiency (70%). A significant induction period was seen in the material. The authors hypothesize that, during most of this induction period, polymerization does in fact take place but is not reflected in the appearance of the diffracted light until a certain threshold value of exposure is reached.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Lessard, G. Manivannan, “Holographic recording materials: an overview,” in Holographic Materials, T. J. Trout, ed., Proc. SPIE2405, 2–23 (1995).
    [CrossRef]
  2. R. M. Shelby, J. A. Hoffnagle, G. W. Burr, C. M. Jefferson, M.-P. Bernal, H. Coufal, R. K. Grygier, H. Günther, R. M. Macfarlane, G. T. Sincerbox, “Pixel-matched holographic data storage with megabit pages,” Opt. Lett. 22, 1509–1511 (1997).
    [CrossRef]
  3. H.-Y. S. Li, D. Psaltis, “Three-dimensional holographic disks,” Appl. Opt. 33, 3764–3774 (1994).
    [CrossRef] [PubMed]
  4. J. R. Lawrence, F. T. O’Neill, J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttgart) 112, 449–463 (2001).
    [CrossRef]
  5. S. Martin, C. A. Feely, V. Toal, “Holographic recording characteristics of an acrylamide-based photopolymer,” Appl. Opt. 36, 5757–5769 (1997).
    [CrossRef] [PubMed]
  6. M. Ortuño, S. Gallego, C. Neipp, A. Beléndez, I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
    [CrossRef]
  7. J. H. Hong, I. McMichael, T. Y. Chang, W. Christian, E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
    [CrossRef]
  8. S. Gallego, M. Ortuño, C. Neipp, C. García, A. Beléndez, I. Pascual, “Overmodulation effects in volume holograms recorded on photopolymers,” Opt. Commun. 215, 263–269 (2003).
    [CrossRef]
  9. C. García, I. Pascual, A. Fimia, “Obtención de una placa fotosensible como material de registro holográfico,” Bol. Soc. Esp. Ceram. Vidrio 39, 435–439 (2000).
    [CrossRef]
  10. C. García, A. Fimia, I. Pascual, “Holographic behavior of a photopolymer at high thicknesses and high monomer concentrations: mechanism of photopolymerization,” Appl. Phys. B 72, 311–316 (2001).
    [CrossRef]
  11. P. J. Flory, Principles of Polymer Chemistry (Cornell U. Press, Ithaca, N.Y., 1995), pp. 161–177.
  12. S. Blaya, “Estudio y desarrollo de nuevos materiales fotopoliméricos aplicados al almacenamiento óptico de información,” tesis doctoral (Universidad Miguel Hernández, Elche, Spain, 2001).
  13. J. A. Jenney, “Holographic recording with photopolymers,” J. Opt. Soc. Am. 60, 1155–1161 (1970).
    [CrossRef]
  14. A. Beléndez, R. Fuentes, A. Fimia, “Noise gratings in thick-phase holographic lenses,” J. Opt. (Paris) 24, 99–105 (1993).
    [CrossRef]
  15. M. L. Calvo, Óptica Avanzada (Ariel, Barcelona, Spain2002).

2003

M. Ortuño, S. Gallego, C. Neipp, A. Beléndez, I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[CrossRef]

S. Gallego, M. Ortuño, C. Neipp, C. García, A. Beléndez, I. Pascual, “Overmodulation effects in volume holograms recorded on photopolymers,” Opt. Commun. 215, 263–269 (2003).
[CrossRef]

2001

J. R. Lawrence, F. T. O’Neill, J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttgart) 112, 449–463 (2001).
[CrossRef]

C. García, A. Fimia, I. Pascual, “Holographic behavior of a photopolymer at high thicknesses and high monomer concentrations: mechanism of photopolymerization,” Appl. Phys. B 72, 311–316 (2001).
[CrossRef]

2000

C. García, I. Pascual, A. Fimia, “Obtención de una placa fotosensible como material de registro holográfico,” Bol. Soc. Esp. Ceram. Vidrio 39, 435–439 (2000).
[CrossRef]

1997

1995

J. H. Hong, I. McMichael, T. Y. Chang, W. Christian, E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
[CrossRef]

1994

1993

A. Beléndez, R. Fuentes, A. Fimia, “Noise gratings in thick-phase holographic lenses,” J. Opt. (Paris) 24, 99–105 (1993).
[CrossRef]

1970

Beléndez, A.

M. Ortuño, S. Gallego, C. Neipp, A. Beléndez, I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[CrossRef]

S. Gallego, M. Ortuño, C. Neipp, C. García, A. Beléndez, I. Pascual, “Overmodulation effects in volume holograms recorded on photopolymers,” Opt. Commun. 215, 263–269 (2003).
[CrossRef]

A. Beléndez, R. Fuentes, A. Fimia, “Noise gratings in thick-phase holographic lenses,” J. Opt. (Paris) 24, 99–105 (1993).
[CrossRef]

Bernal, M.-P.

Blaya, S.

S. Blaya, “Estudio y desarrollo de nuevos materiales fotopoliméricos aplicados al almacenamiento óptico de información,” tesis doctoral (Universidad Miguel Hernández, Elche, Spain, 2001).

Burr, G. W.

Calvo, M. L.

M. L. Calvo, Óptica Avanzada (Ariel, Barcelona, Spain2002).

Chang, T. Y.

J. H. Hong, I. McMichael, T. Y. Chang, W. Christian, E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
[CrossRef]

Christian, W.

J. H. Hong, I. McMichael, T. Y. Chang, W. Christian, E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
[CrossRef]

Coufal, H.

Feely, C. A.

Fimia, A.

C. García, A. Fimia, I. Pascual, “Holographic behavior of a photopolymer at high thicknesses and high monomer concentrations: mechanism of photopolymerization,” Appl. Phys. B 72, 311–316 (2001).
[CrossRef]

C. García, I. Pascual, A. Fimia, “Obtención de una placa fotosensible como material de registro holográfico,” Bol. Soc. Esp. Ceram. Vidrio 39, 435–439 (2000).
[CrossRef]

A. Beléndez, R. Fuentes, A. Fimia, “Noise gratings in thick-phase holographic lenses,” J. Opt. (Paris) 24, 99–105 (1993).
[CrossRef]

Flory, P. J.

P. J. Flory, Principles of Polymer Chemistry (Cornell U. Press, Ithaca, N.Y., 1995), pp. 161–177.

Fuentes, R.

A. Beléndez, R. Fuentes, A. Fimia, “Noise gratings in thick-phase holographic lenses,” J. Opt. (Paris) 24, 99–105 (1993).
[CrossRef]

Gallego, S.

M. Ortuño, S. Gallego, C. Neipp, A. Beléndez, I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[CrossRef]

S. Gallego, M. Ortuño, C. Neipp, C. García, A. Beléndez, I. Pascual, “Overmodulation effects in volume holograms recorded on photopolymers,” Opt. Commun. 215, 263–269 (2003).
[CrossRef]

García, C.

S. Gallego, M. Ortuño, C. Neipp, C. García, A. Beléndez, I. Pascual, “Overmodulation effects in volume holograms recorded on photopolymers,” Opt. Commun. 215, 263–269 (2003).
[CrossRef]

C. García, A. Fimia, I. Pascual, “Holographic behavior of a photopolymer at high thicknesses and high monomer concentrations: mechanism of photopolymerization,” Appl. Phys. B 72, 311–316 (2001).
[CrossRef]

C. García, I. Pascual, A. Fimia, “Obtención de una placa fotosensible como material de registro holográfico,” Bol. Soc. Esp. Ceram. Vidrio 39, 435–439 (2000).
[CrossRef]

Grygier, R. K.

Günther, H.

Hoffnagle, J. A.

Hong, J. H.

J. H. Hong, I. McMichael, T. Y. Chang, W. Christian, E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
[CrossRef]

Jefferson, C. M.

Jenney, J. A.

Lawrence, J. R.

J. R. Lawrence, F. T. O’Neill, J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttgart) 112, 449–463 (2001).
[CrossRef]

Lessard, R. A.

R. A. Lessard, G. Manivannan, “Holographic recording materials: an overview,” in Holographic Materials, T. J. Trout, ed., Proc. SPIE2405, 2–23 (1995).
[CrossRef]

Li, H.-Y. S.

Macfarlane, R. M.

Manivannan, G.

R. A. Lessard, G. Manivannan, “Holographic recording materials: an overview,” in Holographic Materials, T. J. Trout, ed., Proc. SPIE2405, 2–23 (1995).
[CrossRef]

Martin, S.

McMichael, I.

J. H. Hong, I. McMichael, T. Y. Chang, W. Christian, E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
[CrossRef]

Neipp, C.

M. Ortuño, S. Gallego, C. Neipp, A. Beléndez, I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[CrossRef]

S. Gallego, M. Ortuño, C. Neipp, C. García, A. Beléndez, I. Pascual, “Overmodulation effects in volume holograms recorded on photopolymers,” Opt. Commun. 215, 263–269 (2003).
[CrossRef]

O’Neill, F. T.

J. R. Lawrence, F. T. O’Neill, J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttgart) 112, 449–463 (2001).
[CrossRef]

Ortuño, M.

M. Ortuño, S. Gallego, C. Neipp, A. Beléndez, I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[CrossRef]

S. Gallego, M. Ortuño, C. Neipp, C. García, A. Beléndez, I. Pascual, “Overmodulation effects in volume holograms recorded on photopolymers,” Opt. Commun. 215, 263–269 (2003).
[CrossRef]

Paek, E. G.

J. H. Hong, I. McMichael, T. Y. Chang, W. Christian, E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
[CrossRef]

Pascual, I.

M. Ortuño, S. Gallego, C. Neipp, A. Beléndez, I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[CrossRef]

S. Gallego, M. Ortuño, C. Neipp, C. García, A. Beléndez, I. Pascual, “Overmodulation effects in volume holograms recorded on photopolymers,” Opt. Commun. 215, 263–269 (2003).
[CrossRef]

C. García, A. Fimia, I. Pascual, “Holographic behavior of a photopolymer at high thicknesses and high monomer concentrations: mechanism of photopolymerization,” Appl. Phys. B 72, 311–316 (2001).
[CrossRef]

C. García, I. Pascual, A. Fimia, “Obtención de una placa fotosensible como material de registro holográfico,” Bol. Soc. Esp. Ceram. Vidrio 39, 435–439 (2000).
[CrossRef]

Psaltis, D.

Shelby, R. M.

Sheridan, J. T.

J. R. Lawrence, F. T. O’Neill, J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttgart) 112, 449–463 (2001).
[CrossRef]

Sincerbox, G. T.

Toal, V.

Appl. Opt.

Appl. Phys. B

M. Ortuño, S. Gallego, C. Neipp, A. Beléndez, I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[CrossRef]

C. García, A. Fimia, I. Pascual, “Holographic behavior of a photopolymer at high thicknesses and high monomer concentrations: mechanism of photopolymerization,” Appl. Phys. B 72, 311–316 (2001).
[CrossRef]

Bol. Soc. Esp. Ceram. Vidrio

C. García, I. Pascual, A. Fimia, “Obtención de una placa fotosensible como material de registro holográfico,” Bol. Soc. Esp. Ceram. Vidrio 39, 435–439 (2000).
[CrossRef]

J. Opt. (Paris)

A. Beléndez, R. Fuentes, A. Fimia, “Noise gratings in thick-phase holographic lenses,” J. Opt. (Paris) 24, 99–105 (1993).
[CrossRef]

J. Opt. Soc. Am.

Opt. Commun.

S. Gallego, M. Ortuño, C. Neipp, C. García, A. Beléndez, I. Pascual, “Overmodulation effects in volume holograms recorded on photopolymers,” Opt. Commun. 215, 263–269 (2003).
[CrossRef]

Opt. Eng.

J. H. Hong, I. McMichael, T. Y. Chang, W. Christian, E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
[CrossRef]

Opt. Lett.

Optik (Stuttgart)

J. R. Lawrence, F. T. O’Neill, J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttgart) 112, 449–463 (2001).
[CrossRef]

Other

R. A. Lessard, G. Manivannan, “Holographic recording materials: an overview,” in Holographic Materials, T. J. Trout, ed., Proc. SPIE2405, 2–23 (1995).
[CrossRef]

M. L. Calvo, Óptica Avanzada (Ariel, Barcelona, Spain2002).

P. J. Flory, Principles of Polymer Chemistry (Cornell U. Press, Ithaca, N.Y., 1995), pp. 161–177.

S. Blaya, “Estudio y desarrollo de nuevos materiales fotopoliméricos aplicados al almacenamiento óptico de información,” tesis doctoral (Universidad Miguel Hernández, Elche, Spain, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup: BS, beam splitter, M i , mirrors; SF i , spatial filters; L i , lenses; D i , diaphragms; PC, data recorder.

Fig. 2
Fig. 2

DE and DE plus TE versus exposure for a 1000-μm-thick photopolymer layer.

Fig. 3
Fig. 3

DE versus angle for a 1000-μm-thick photopolymer layer.

Fig. 4
Fig. 4

DE versus exposure E for a 1000-μm-thick photopolymer layer with a low acrylamide concentration (0.17 M in the original solution).

Fig. 5
Fig. 5

DE versus exposure E for a 100-μm-thick photopolymer layer.

Fig. 6
Fig. 6

DE versus angle for an overexposed photopolymer layer.

Fig. 7
Fig. 7

DE plus TE versus exposure E for an over-exposed photopolymer layer.

Fig. 8
Fig. 8

DE versus angle during the recording of various diffraction gratings by angular multiplexing.

Tables (2)

Tables Icon

Table 1 Composition of the Solution Used to Prepare Layers of the Recording Material Relative to the Thickness To Be Obtained

Tables Icon

Table 2 Exposure E Necessary for 60% and 70% Diffraction Efficiency Relative to Thickness of the Photopolymer Layer

Metrics